MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restsn Structured version   Visualization version   GIF version

Theorem restsn 23025
Description: The only subspace topology induced by the topology {∅}. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Assertion
Ref Expression
restsn (𝐴𝑉 → ({∅} ↾t 𝐴) = {∅})

Proof of Theorem restsn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sn0top 22853 . . . 4 {∅} ∈ Top
2 elrest 17380 . . . 4 (({∅} ∈ Top ∧ 𝐴𝑉) → (𝑥 ∈ ({∅} ↾t 𝐴) ↔ ∃𝑦 ∈ {∅}𝑥 = (𝑦𝐴)))
31, 2mpan 687 . . 3 (𝐴𝑉 → (𝑥 ∈ ({∅} ↾t 𝐴) ↔ ∃𝑦 ∈ {∅}𝑥 = (𝑦𝐴)))
4 0ex 5300 . . . . 5 ∅ ∈ V
5 ineq1 4200 . . . . . . 7 (𝑦 = ∅ → (𝑦𝐴) = (∅ ∩ 𝐴))
6 0in 4388 . . . . . . 7 (∅ ∩ 𝐴) = ∅
75, 6eqtrdi 2782 . . . . . 6 (𝑦 = ∅ → (𝑦𝐴) = ∅)
87eqeq2d 2737 . . . . 5 (𝑦 = ∅ → (𝑥 = (𝑦𝐴) ↔ 𝑥 = ∅))
94, 8rexsn 4681 . . . 4 (∃𝑦 ∈ {∅}𝑥 = (𝑦𝐴) ↔ 𝑥 = ∅)
10 velsn 4639 . . . 4 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
119, 10bitr4i 278 . . 3 (∃𝑦 ∈ {∅}𝑥 = (𝑦𝐴) ↔ 𝑥 ∈ {∅})
123, 11bitrdi 287 . 2 (𝐴𝑉 → (𝑥 ∈ ({∅} ↾t 𝐴) ↔ 𝑥 ∈ {∅}))
1312eqrdv 2724 1 (𝐴𝑉 → ({∅} ↾t 𝐴) = {∅})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  wrex 3064  cin 3942  c0 4317  {csn 4623  (class class class)co 7404  t crest 17373  Topctop 22746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-rest 17375  df-top 22747  df-topon 22764
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator