MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restsn Structured version   Visualization version   GIF version

Theorem restsn 23057
Description: The only subspace topology induced by the topology {∅}. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Assertion
Ref Expression
restsn (𝐴𝑉 → ({∅} ↾t 𝐴) = {∅})

Proof of Theorem restsn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sn0top 22886 . . . 4 {∅} ∈ Top
2 elrest 17390 . . . 4 (({∅} ∈ Top ∧ 𝐴𝑉) → (𝑥 ∈ ({∅} ↾t 𝐴) ↔ ∃𝑦 ∈ {∅}𝑥 = (𝑦𝐴)))
31, 2mpan 690 . . 3 (𝐴𝑉 → (𝑥 ∈ ({∅} ↾t 𝐴) ↔ ∃𝑦 ∈ {∅}𝑥 = (𝑦𝐴)))
4 0ex 5262 . . . . 5 ∅ ∈ V
5 ineq1 4176 . . . . . . 7 (𝑦 = ∅ → (𝑦𝐴) = (∅ ∩ 𝐴))
6 0in 4360 . . . . . . 7 (∅ ∩ 𝐴) = ∅
75, 6eqtrdi 2780 . . . . . 6 (𝑦 = ∅ → (𝑦𝐴) = ∅)
87eqeq2d 2740 . . . . 5 (𝑦 = ∅ → (𝑥 = (𝑦𝐴) ↔ 𝑥 = ∅))
94, 8rexsn 4646 . . . 4 (∃𝑦 ∈ {∅}𝑥 = (𝑦𝐴) ↔ 𝑥 = ∅)
10 velsn 4605 . . . 4 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
119, 10bitr4i 278 . . 3 (∃𝑦 ∈ {∅}𝑥 = (𝑦𝐴) ↔ 𝑥 ∈ {∅})
123, 11bitrdi 287 . 2 (𝐴𝑉 → (𝑥 ∈ ({∅} ↾t 𝐴) ↔ 𝑥 ∈ {∅}))
1312eqrdv 2727 1 (𝐴𝑉 → ({∅} ↾t 𝐴) = {∅})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wrex 3053  cin 3913  c0 4296  {csn 4589  (class class class)co 7387  t crest 17383  Topctop 22780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-rest 17385  df-top 22781  df-topon 22798
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator