MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restsn Structured version   Visualization version   GIF version

Theorem restsn 21780
Description: The only subspace topology induced by the topology {∅}. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Assertion
Ref Expression
restsn (𝐴𝑉 → ({∅} ↾t 𝐴) = {∅})

Proof of Theorem restsn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sn0top 21609 . . . 4 {∅} ∈ Top
2 elrest 16703 . . . 4 (({∅} ∈ Top ∧ 𝐴𝑉) → (𝑥 ∈ ({∅} ↾t 𝐴) ↔ ∃𝑦 ∈ {∅}𝑥 = (𝑦𝐴)))
31, 2mpan 688 . . 3 (𝐴𝑉 → (𝑥 ∈ ({∅} ↾t 𝐴) ↔ ∃𝑦 ∈ {∅}𝑥 = (𝑦𝐴)))
4 0ex 5213 . . . . 5 ∅ ∈ V
5 ineq1 4183 . . . . . . 7 (𝑦 = ∅ → (𝑦𝐴) = (∅ ∩ 𝐴))
6 0in 4349 . . . . . . 7 (∅ ∩ 𝐴) = ∅
75, 6syl6eq 2874 . . . . . 6 (𝑦 = ∅ → (𝑦𝐴) = ∅)
87eqeq2d 2834 . . . . 5 (𝑦 = ∅ → (𝑥 = (𝑦𝐴) ↔ 𝑥 = ∅))
94, 8rexsn 4622 . . . 4 (∃𝑦 ∈ {∅}𝑥 = (𝑦𝐴) ↔ 𝑥 = ∅)
10 velsn 4585 . . . 4 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
119, 10bitr4i 280 . . 3 (∃𝑦 ∈ {∅}𝑥 = (𝑦𝐴) ↔ 𝑥 ∈ {∅})
123, 11syl6bb 289 . 2 (𝐴𝑉 → (𝑥 ∈ ({∅} ↾t 𝐴) ↔ 𝑥 ∈ {∅}))
1312eqrdv 2821 1 (𝐴𝑉 → ({∅} ↾t 𝐴) = {∅})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  wcel 2114  wrex 3141  cin 3937  c0 4293  {csn 4569  (class class class)co 7158  t crest 16696  Topctop 21503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-rest 16698  df-top 21504  df-topon 21521
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator