MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restsn Structured version   Visualization version   GIF version

Theorem restsn 23193
Description: The only subspace topology induced by the topology {∅}. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Assertion
Ref Expression
restsn (𝐴𝑉 → ({∅} ↾t 𝐴) = {∅})

Proof of Theorem restsn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sn0top 23021 . . . 4 {∅} ∈ Top
2 elrest 17473 . . . 4 (({∅} ∈ Top ∧ 𝐴𝑉) → (𝑥 ∈ ({∅} ↾t 𝐴) ↔ ∃𝑦 ∈ {∅}𝑥 = (𝑦𝐴)))
31, 2mpan 690 . . 3 (𝐴𝑉 → (𝑥 ∈ ({∅} ↾t 𝐴) ↔ ∃𝑦 ∈ {∅}𝑥 = (𝑦𝐴)))
4 0ex 5312 . . . . 5 ∅ ∈ V
5 ineq1 4220 . . . . . . 7 (𝑦 = ∅ → (𝑦𝐴) = (∅ ∩ 𝐴))
6 0in 4402 . . . . . . 7 (∅ ∩ 𝐴) = ∅
75, 6eqtrdi 2790 . . . . . 6 (𝑦 = ∅ → (𝑦𝐴) = ∅)
87eqeq2d 2745 . . . . 5 (𝑦 = ∅ → (𝑥 = (𝑦𝐴) ↔ 𝑥 = ∅))
94, 8rexsn 4686 . . . 4 (∃𝑦 ∈ {∅}𝑥 = (𝑦𝐴) ↔ 𝑥 = ∅)
10 velsn 4646 . . . 4 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
119, 10bitr4i 278 . . 3 (∃𝑦 ∈ {∅}𝑥 = (𝑦𝐴) ↔ 𝑥 ∈ {∅})
123, 11bitrdi 287 . 2 (𝐴𝑉 → (𝑥 ∈ ({∅} ↾t 𝐴) ↔ 𝑥 ∈ {∅}))
1312eqrdv 2732 1 (𝐴𝑉 → ({∅} ↾t 𝐴) = {∅})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1536  wcel 2105  wrex 3067  cin 3961  c0 4338  {csn 4630  (class class class)co 7430  t crest 17466  Topctop 22914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-rest 17468  df-top 22915  df-topon 22932
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator