![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > restsn | Structured version Visualization version GIF version |
Description: The only subspace topology induced by the topology {∅}. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
Ref | Expression |
---|---|
restsn | ⊢ (𝐴 ∈ 𝑉 → ({∅} ↾t 𝐴) = {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sn0top 22993 | . . . 4 ⊢ {∅} ∈ Top | |
2 | elrest 17442 | . . . 4 ⊢ (({∅} ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ ({∅} ↾t 𝐴) ↔ ∃𝑦 ∈ {∅}𝑥 = (𝑦 ∩ 𝐴))) | |
3 | 1, 2 | mpan 688 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ ({∅} ↾t 𝐴) ↔ ∃𝑦 ∈ {∅}𝑥 = (𝑦 ∩ 𝐴))) |
4 | 0ex 5312 | . . . . 5 ⊢ ∅ ∈ V | |
5 | ineq1 4206 | . . . . . . 7 ⊢ (𝑦 = ∅ → (𝑦 ∩ 𝐴) = (∅ ∩ 𝐴)) | |
6 | 0in 4398 | . . . . . . 7 ⊢ (∅ ∩ 𝐴) = ∅ | |
7 | 5, 6 | eqtrdi 2782 | . . . . . 6 ⊢ (𝑦 = ∅ → (𝑦 ∩ 𝐴) = ∅) |
8 | 7 | eqeq2d 2737 | . . . . 5 ⊢ (𝑦 = ∅ → (𝑥 = (𝑦 ∩ 𝐴) ↔ 𝑥 = ∅)) |
9 | 4, 8 | rexsn 4691 | . . . 4 ⊢ (∃𝑦 ∈ {∅}𝑥 = (𝑦 ∩ 𝐴) ↔ 𝑥 = ∅) |
10 | velsn 4649 | . . . 4 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
11 | 9, 10 | bitr4i 277 | . . 3 ⊢ (∃𝑦 ∈ {∅}𝑥 = (𝑦 ∩ 𝐴) ↔ 𝑥 ∈ {∅}) |
12 | 3, 11 | bitrdi 286 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ ({∅} ↾t 𝐴) ↔ 𝑥 ∈ {∅})) |
13 | 12 | eqrdv 2724 | 1 ⊢ (𝐴 ∈ 𝑉 → ({∅} ↾t 𝐴) = {∅}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 ∃wrex 3060 ∩ cin 3946 ∅c0 4325 {csn 4633 (class class class)co 7424 ↾t crest 17435 Topctop 22886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-ov 7427 df-oprab 7428 df-mpo 7429 df-rest 17437 df-top 22887 df-topon 22904 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |