| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > restsn | Structured version Visualization version GIF version | ||
| Description: The only subspace topology induced by the topology {∅}. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| Ref | Expression |
|---|---|
| restsn | ⊢ (𝐴 ∈ 𝑉 → ({∅} ↾t 𝐴) = {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sn0top 22862 | . . . 4 ⊢ {∅} ∈ Top | |
| 2 | elrest 17366 | . . . 4 ⊢ (({∅} ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ ({∅} ↾t 𝐴) ↔ ∃𝑦 ∈ {∅}𝑥 = (𝑦 ∩ 𝐴))) | |
| 3 | 1, 2 | mpan 690 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ ({∅} ↾t 𝐴) ↔ ∃𝑦 ∈ {∅}𝑥 = (𝑦 ∩ 𝐴))) |
| 4 | 0ex 5257 | . . . . 5 ⊢ ∅ ∈ V | |
| 5 | ineq1 4172 | . . . . . . 7 ⊢ (𝑦 = ∅ → (𝑦 ∩ 𝐴) = (∅ ∩ 𝐴)) | |
| 6 | 0in 4356 | . . . . . . 7 ⊢ (∅ ∩ 𝐴) = ∅ | |
| 7 | 5, 6 | eqtrdi 2780 | . . . . . 6 ⊢ (𝑦 = ∅ → (𝑦 ∩ 𝐴) = ∅) |
| 8 | 7 | eqeq2d 2740 | . . . . 5 ⊢ (𝑦 = ∅ → (𝑥 = (𝑦 ∩ 𝐴) ↔ 𝑥 = ∅)) |
| 9 | 4, 8 | rexsn 4642 | . . . 4 ⊢ (∃𝑦 ∈ {∅}𝑥 = (𝑦 ∩ 𝐴) ↔ 𝑥 = ∅) |
| 10 | velsn 4601 | . . . 4 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
| 11 | 9, 10 | bitr4i 278 | . . 3 ⊢ (∃𝑦 ∈ {∅}𝑥 = (𝑦 ∩ 𝐴) ↔ 𝑥 ∈ {∅}) |
| 12 | 3, 11 | bitrdi 287 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ ({∅} ↾t 𝐴) ↔ 𝑥 ∈ {∅})) |
| 13 | 12 | eqrdv 2727 | 1 ⊢ (𝐴 ∈ 𝑉 → ({∅} ↾t 𝐴) = {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∩ cin 3910 ∅c0 4292 {csn 4585 (class class class)co 7369 ↾t crest 17359 Topctop 22756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-rest 17361 df-top 22757 df-topon 22774 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |