Step | Hyp | Ref
| Expression |
1 | | snclseqg.s |
. . . 4
⊢ 𝑆 = ((cls‘𝐽)‘{ 0 }) |
2 | 1 | imaeq2i 5956 |
. . 3
⊢ ((𝑥 ∈ 𝑋 ↦ (𝐴(+g‘𝐺)𝑥)) “ 𝑆) = ((𝑥 ∈ 𝑋 ↦ (𝐴(+g‘𝐺)𝑥)) “ ((cls‘𝐽)‘{ 0 })) |
3 | | tgpgrp 23137 |
. . . . 5
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
4 | 3 | adantr 480 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → 𝐺 ∈ Grp) |
5 | | snclseqg.j |
. . . . . . . . . 10
⊢ 𝐽 = (TopOpen‘𝐺) |
6 | | snclseqg.x |
. . . . . . . . . 10
⊢ 𝑋 = (Base‘𝐺) |
7 | 5, 6 | tgptopon 23141 |
. . . . . . . . 9
⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋)) |
8 | 7 | adantr 480 |
. . . . . . . 8
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
9 | | topontop 21970 |
. . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
10 | 8, 9 | syl 17 |
. . . . . . 7
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → 𝐽 ∈ Top) |
11 | | snclseqg.z |
. . . . . . . . . . 11
⊢ 0 =
(0g‘𝐺) |
12 | 6, 11 | grpidcl 18522 |
. . . . . . . . . 10
⊢ (𝐺 ∈ Grp → 0 ∈ 𝑋) |
13 | 4, 12 | syl 17 |
. . . . . . . . 9
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → 0 ∈ 𝑋) |
14 | 13 | snssd 4739 |
. . . . . . . 8
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → { 0 } ⊆ 𝑋) |
15 | | toponuni 21971 |
. . . . . . . . 9
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
16 | 8, 15 | syl 17 |
. . . . . . . 8
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → 𝑋 = ∪ 𝐽) |
17 | 14, 16 | sseqtrd 3957 |
. . . . . . 7
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → { 0 } ⊆ ∪ 𝐽) |
18 | | eqid 2738 |
. . . . . . . 8
⊢ ∪ 𝐽 =
∪ 𝐽 |
19 | 18 | clsss3 22118 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ { 0 } ⊆
∪ 𝐽) → ((cls‘𝐽)‘{ 0 }) ⊆ ∪ 𝐽) |
20 | 10, 17, 19 | syl2anc 583 |
. . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → ((cls‘𝐽)‘{ 0 }) ⊆ ∪ 𝐽) |
21 | 20, 16 | sseqtrrd 3958 |
. . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → ((cls‘𝐽)‘{ 0 }) ⊆ 𝑋) |
22 | 1, 21 | eqsstrid 3965 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → 𝑆 ⊆ 𝑋) |
23 | | simpr 484 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) |
24 | | snclseqg.r |
. . . . 5
⊢ ∼ =
(𝐺 ~QG
𝑆) |
25 | | eqid 2738 |
. . . . 5
⊢
(+g‘𝐺) = (+g‘𝐺) |
26 | 6, 24, 25 | eqglact 18722 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → [𝐴] ∼ = ((𝑥 ∈ 𝑋 ↦ (𝐴(+g‘𝐺)𝑥)) “ 𝑆)) |
27 | 4, 22, 23, 26 | syl3anc 1369 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → [𝐴] ∼ = ((𝑥 ∈ 𝑋 ↦ (𝐴(+g‘𝐺)𝑥)) “ 𝑆)) |
28 | | eqid 2738 |
. . . . 5
⊢ (𝑥 ∈ 𝑋 ↦ (𝐴(+g‘𝐺)𝑥)) = (𝑥 ∈ 𝑋 ↦ (𝐴(+g‘𝐺)𝑥)) |
29 | 28, 6, 25, 5 | tgplacthmeo 23162 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → (𝑥 ∈ 𝑋 ↦ (𝐴(+g‘𝐺)𝑥)) ∈ (𝐽Homeo𝐽)) |
30 | 18 | hmeocls 22827 |
. . . 4
⊢ (((𝑥 ∈ 𝑋 ↦ (𝐴(+g‘𝐺)𝑥)) ∈ (𝐽Homeo𝐽) ∧ { 0 } ⊆ ∪ 𝐽)
→ ((cls‘𝐽)‘((𝑥 ∈ 𝑋 ↦ (𝐴(+g‘𝐺)𝑥)) “ { 0 })) = ((𝑥 ∈ 𝑋 ↦ (𝐴(+g‘𝐺)𝑥)) “ ((cls‘𝐽)‘{ 0 }))) |
31 | 29, 17, 30 | syl2anc 583 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → ((cls‘𝐽)‘((𝑥 ∈ 𝑋 ↦ (𝐴(+g‘𝐺)𝑥)) “ { 0 })) = ((𝑥 ∈ 𝑋 ↦ (𝐴(+g‘𝐺)𝑥)) “ ((cls‘𝐽)‘{ 0 }))) |
32 | 2, 27, 31 | 3eqtr4a 2805 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → [𝐴] ∼ = ((cls‘𝐽)‘((𝑥 ∈ 𝑋 ↦ (𝐴(+g‘𝐺)𝑥)) “ { 0 }))) |
33 | | df-ima 5593 |
. . . . 5
⊢ ((𝑥 ∈ 𝑋 ↦ (𝐴(+g‘𝐺)𝑥)) “ { 0 }) = ran ((𝑥 ∈ 𝑋 ↦ (𝐴(+g‘𝐺)𝑥)) ↾ { 0 }) |
34 | 14 | resmptd 5937 |
. . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ (𝐴(+g‘𝐺)𝑥)) ↾ { 0 }) = (𝑥 ∈ { 0 } ↦ (𝐴(+g‘𝐺)𝑥))) |
35 | 34 | rneqd 5836 |
. . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → ran ((𝑥 ∈ 𝑋 ↦ (𝐴(+g‘𝐺)𝑥)) ↾ { 0 }) = ran (𝑥 ∈ { 0 } ↦ (𝐴(+g‘𝐺)𝑥))) |
36 | 33, 35 | eqtrid 2790 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ (𝐴(+g‘𝐺)𝑥)) “ { 0 }) = ran (𝑥 ∈ { 0 } ↦ (𝐴(+g‘𝐺)𝑥))) |
37 | 11 | fvexi 6770 |
. . . . . . . 8
⊢ 0 ∈
V |
38 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (𝐴(+g‘𝐺)𝑥) = (𝐴(+g‘𝐺) 0 )) |
39 | 38 | eqeq2d 2749 |
. . . . . . . 8
⊢ (𝑥 = 0 → (𝑦 = (𝐴(+g‘𝐺)𝑥) ↔ 𝑦 = (𝐴(+g‘𝐺) 0 ))) |
40 | 37, 39 | rexsn 4615 |
. . . . . . 7
⊢
(∃𝑥 ∈ {
0 }𝑦 = (𝐴(+g‘𝐺)𝑥) ↔ 𝑦 = (𝐴(+g‘𝐺) 0 )) |
41 | 6, 25, 11 | grprid 18525 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐴(+g‘𝐺) 0 ) = 𝐴) |
42 | 3, 41 | sylan 579 |
. . . . . . . 8
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → (𝐴(+g‘𝐺) 0 ) = 𝐴) |
43 | 42 | eqeq2d 2749 |
. . . . . . 7
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → (𝑦 = (𝐴(+g‘𝐺) 0 ) ↔ 𝑦 = 𝐴)) |
44 | 40, 43 | syl5bb 282 |
. . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → (∃𝑥 ∈ { 0 }𝑦 = (𝐴(+g‘𝐺)𝑥) ↔ 𝑦 = 𝐴)) |
45 | 44 | abbidv 2808 |
. . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → {𝑦 ∣ ∃𝑥 ∈ { 0 }𝑦 = (𝐴(+g‘𝐺)𝑥)} = {𝑦 ∣ 𝑦 = 𝐴}) |
46 | | eqid 2738 |
. . . . . 6
⊢ (𝑥 ∈ { 0 } ↦ (𝐴(+g‘𝐺)𝑥)) = (𝑥 ∈ { 0 } ↦ (𝐴(+g‘𝐺)𝑥)) |
47 | 46 | rnmpt 5853 |
. . . . 5
⊢ ran
(𝑥 ∈ { 0 } ↦
(𝐴(+g‘𝐺)𝑥)) = {𝑦 ∣ ∃𝑥 ∈ { 0 }𝑦 = (𝐴(+g‘𝐺)𝑥)} |
48 | | df-sn 4559 |
. . . . 5
⊢ {𝐴} = {𝑦 ∣ 𝑦 = 𝐴} |
49 | 45, 47, 48 | 3eqtr4g 2804 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → ran (𝑥 ∈ { 0 } ↦ (𝐴(+g‘𝐺)𝑥)) = {𝐴}) |
50 | 36, 49 | eqtrd 2778 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ (𝐴(+g‘𝐺)𝑥)) “ { 0 }) = {𝐴}) |
51 | 50 | fveq2d 6760 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → ((cls‘𝐽)‘((𝑥 ∈ 𝑋 ↦ (𝐴(+g‘𝐺)𝑥)) “ { 0 })) = ((cls‘𝐽)‘{𝐴})) |
52 | 32, 51 | eqtrd 2778 |
1
⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → [𝐴] ∼ = ((cls‘𝐽)‘{𝐴})) |