MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snclseqg Structured version   Visualization version   GIF version

Theorem snclseqg 24054
Description: The coset of the closure of the identity is the closure of a point. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
snclseqg.x 𝑋 = (Base‘𝐺)
snclseqg.j 𝐽 = (TopOpen‘𝐺)
snclseqg.z 0 = (0g𝐺)
snclseqg.r = (𝐺 ~QG 𝑆)
snclseqg.s 𝑆 = ((cls‘𝐽)‘{ 0 })
Assertion
Ref Expression
snclseqg ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] = ((cls‘𝐽)‘{𝐴}))

Proof of Theorem snclseqg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snclseqg.s . . . 4 𝑆 = ((cls‘𝐽)‘{ 0 })
21imaeq2i 6045 . . 3 ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ 𝑆) = ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ ((cls‘𝐽)‘{ 0 }))
3 tgpgrp 24016 . . . . 5 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
43adantr 480 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐺 ∈ Grp)
5 snclseqg.j . . . . . . . . . 10 𝐽 = (TopOpen‘𝐺)
6 snclseqg.x . . . . . . . . . 10 𝑋 = (Base‘𝐺)
75, 6tgptopon 24020 . . . . . . . . 9 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋))
87adantr 480 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
9 topontop 22851 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
108, 9syl 17 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐽 ∈ Top)
11 snclseqg.z . . . . . . . . . . 11 0 = (0g𝐺)
126, 11grpidcl 18948 . . . . . . . . . 10 (𝐺 ∈ Grp → 0𝑋)
134, 12syl 17 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 0𝑋)
1413snssd 4785 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → { 0 } ⊆ 𝑋)
15 toponuni 22852 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
168, 15syl 17 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝑋 = 𝐽)
1714, 16sseqtrd 3995 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → { 0 } ⊆ 𝐽)
18 eqid 2735 . . . . . . . 8 𝐽 = 𝐽
1918clsss3 22997 . . . . . . 7 ((𝐽 ∈ Top ∧ { 0 } ⊆ 𝐽) → ((cls‘𝐽)‘{ 0 }) ⊆ 𝐽)
2010, 17, 19syl2anc 584 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((cls‘𝐽)‘{ 0 }) ⊆ 𝐽)
2120, 16sseqtrrd 3996 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((cls‘𝐽)‘{ 0 }) ⊆ 𝑋)
221, 21eqsstrid 3997 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝑆𝑋)
23 simpr 484 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐴𝑋)
24 snclseqg.r . . . . 5 = (𝐺 ~QG 𝑆)
25 eqid 2735 . . . . 5 (+g𝐺) = (+g𝐺)
266, 24, 25eqglact 19162 . . . 4 ((𝐺 ∈ Grp ∧ 𝑆𝑋𝐴𝑋) → [𝐴] = ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ 𝑆))
274, 22, 23, 26syl3anc 1373 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] = ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ 𝑆))
28 eqid 2735 . . . . 5 (𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) = (𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥))
2928, 6, 25, 5tgplacthmeo 24041 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) ∈ (𝐽Homeo𝐽))
3018hmeocls 23706 . . . 4 (((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) ∈ (𝐽Homeo𝐽) ∧ { 0 } ⊆ 𝐽) → ((cls‘𝐽)‘((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 })) = ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ ((cls‘𝐽)‘{ 0 })))
3129, 17, 30syl2anc 584 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((cls‘𝐽)‘((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 })) = ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ ((cls‘𝐽)‘{ 0 })))
322, 27, 313eqtr4a 2796 . 2 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] = ((cls‘𝐽)‘((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 })))
33 df-ima 5667 . . . . 5 ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 }) = ran ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) ↾ { 0 })
3414resmptd 6027 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) ↾ { 0 }) = (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥)))
3534rneqd 5918 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ran ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) ↾ { 0 }) = ran (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥)))
3633, 35eqtrid 2782 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 }) = ran (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥)))
3711fvexi 6890 . . . . . . . 8 0 ∈ V
38 oveq2 7413 . . . . . . . . 9 (𝑥 = 0 → (𝐴(+g𝐺)𝑥) = (𝐴(+g𝐺) 0 ))
3938eqeq2d 2746 . . . . . . . 8 (𝑥 = 0 → (𝑦 = (𝐴(+g𝐺)𝑥) ↔ 𝑦 = (𝐴(+g𝐺) 0 )))
4037, 39rexsn 4658 . . . . . . 7 (∃𝑥 ∈ { 0 }𝑦 = (𝐴(+g𝐺)𝑥) ↔ 𝑦 = (𝐴(+g𝐺) 0 ))
416, 25, 11grprid 18951 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐴(+g𝐺) 0 ) = 𝐴)
423, 41sylan 580 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝐴(+g𝐺) 0 ) = 𝐴)
4342eqeq2d 2746 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝑦 = (𝐴(+g𝐺) 0 ) ↔ 𝑦 = 𝐴))
4440, 43bitrid 283 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (∃𝑥 ∈ { 0 }𝑦 = (𝐴(+g𝐺)𝑥) ↔ 𝑦 = 𝐴))
4544abbidv 2801 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → {𝑦 ∣ ∃𝑥 ∈ { 0 }𝑦 = (𝐴(+g𝐺)𝑥)} = {𝑦𝑦 = 𝐴})
46 eqid 2735 . . . . . 6 (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥)) = (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥))
4746rnmpt 5937 . . . . 5 ran (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥)) = {𝑦 ∣ ∃𝑥 ∈ { 0 }𝑦 = (𝐴(+g𝐺)𝑥)}
48 df-sn 4602 . . . . 5 {𝐴} = {𝑦𝑦 = 𝐴}
4945, 47, 483eqtr4g 2795 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ran (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥)) = {𝐴})
5036, 49eqtrd 2770 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 }) = {𝐴})
5150fveq2d 6880 . 2 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((cls‘𝐽)‘((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 })) = ((cls‘𝐽)‘{𝐴}))
5232, 51eqtrd 2770 1 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] = ((cls‘𝐽)‘{𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {cab 2713  wrex 3060  wss 3926  {csn 4601   cuni 4883  cmpt 5201  ran crn 5655  cres 5656  cima 5657  cfv 6531  (class class class)co 7405  [cec 8717  Basecbs 17228  +gcplusg 17271  TopOpenctopn 17435  0gc0g 17453  Grpcgrp 18916   ~QG cqg 19105  Topctop 22831  TopOnctopon 22848  clsccl 22956  Homeochmeo 23691  TopGrpctgp 24009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-ec 8721  df-map 8842  df-0g 17455  df-topgen 17457  df-plusf 18617  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-eqg 19108  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-cls 22959  df-cn 23165  df-cnp 23166  df-tx 23500  df-hmeo 23693  df-tmd 24010  df-tgp 24011
This theorem is referenced by:  tgptsmscls  24088
  Copyright terms: Public domain W3C validator