MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snclseqg Structured version   Visualization version   GIF version

Theorem snclseqg 24145
Description: The coset of the closure of the identity is the closure of a point. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
snclseqg.x 𝑋 = (Base‘𝐺)
snclseqg.j 𝐽 = (TopOpen‘𝐺)
snclseqg.z 0 = (0g𝐺)
snclseqg.r = (𝐺 ~QG 𝑆)
snclseqg.s 𝑆 = ((cls‘𝐽)‘{ 0 })
Assertion
Ref Expression
snclseqg ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] = ((cls‘𝐽)‘{𝐴}))

Proof of Theorem snclseqg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snclseqg.s . . . 4 𝑆 = ((cls‘𝐽)‘{ 0 })
21imaeq2i 6087 . . 3 ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ 𝑆) = ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ ((cls‘𝐽)‘{ 0 }))
3 tgpgrp 24107 . . . . 5 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
43adantr 480 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐺 ∈ Grp)
5 snclseqg.j . . . . . . . . . 10 𝐽 = (TopOpen‘𝐺)
6 snclseqg.x . . . . . . . . . 10 𝑋 = (Base‘𝐺)
75, 6tgptopon 24111 . . . . . . . . 9 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋))
87adantr 480 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
9 topontop 22940 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
108, 9syl 17 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐽 ∈ Top)
11 snclseqg.z . . . . . . . . . . 11 0 = (0g𝐺)
126, 11grpidcl 19005 . . . . . . . . . 10 (𝐺 ∈ Grp → 0𝑋)
134, 12syl 17 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 0𝑋)
1413snssd 4834 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → { 0 } ⊆ 𝑋)
15 toponuni 22941 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
168, 15syl 17 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝑋 = 𝐽)
1714, 16sseqtrd 4049 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → { 0 } ⊆ 𝐽)
18 eqid 2740 . . . . . . . 8 𝐽 = 𝐽
1918clsss3 23088 . . . . . . 7 ((𝐽 ∈ Top ∧ { 0 } ⊆ 𝐽) → ((cls‘𝐽)‘{ 0 }) ⊆ 𝐽)
2010, 17, 19syl2anc 583 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((cls‘𝐽)‘{ 0 }) ⊆ 𝐽)
2120, 16sseqtrrd 4050 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((cls‘𝐽)‘{ 0 }) ⊆ 𝑋)
221, 21eqsstrid 4057 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝑆𝑋)
23 simpr 484 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐴𝑋)
24 snclseqg.r . . . . 5 = (𝐺 ~QG 𝑆)
25 eqid 2740 . . . . 5 (+g𝐺) = (+g𝐺)
266, 24, 25eqglact 19219 . . . 4 ((𝐺 ∈ Grp ∧ 𝑆𝑋𝐴𝑋) → [𝐴] = ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ 𝑆))
274, 22, 23, 26syl3anc 1371 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] = ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ 𝑆))
28 eqid 2740 . . . . 5 (𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) = (𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥))
2928, 6, 25, 5tgplacthmeo 24132 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) ∈ (𝐽Homeo𝐽))
3018hmeocls 23797 . . . 4 (((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) ∈ (𝐽Homeo𝐽) ∧ { 0 } ⊆ 𝐽) → ((cls‘𝐽)‘((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 })) = ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ ((cls‘𝐽)‘{ 0 })))
3129, 17, 30syl2anc 583 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((cls‘𝐽)‘((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 })) = ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ ((cls‘𝐽)‘{ 0 })))
322, 27, 313eqtr4a 2806 . 2 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] = ((cls‘𝐽)‘((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 })))
33 df-ima 5713 . . . . 5 ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 }) = ran ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) ↾ { 0 })
3414resmptd 6069 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) ↾ { 0 }) = (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥)))
3534rneqd 5963 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ran ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) ↾ { 0 }) = ran (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥)))
3633, 35eqtrid 2792 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 }) = ran (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥)))
3711fvexi 6934 . . . . . . . 8 0 ∈ V
38 oveq2 7456 . . . . . . . . 9 (𝑥 = 0 → (𝐴(+g𝐺)𝑥) = (𝐴(+g𝐺) 0 ))
3938eqeq2d 2751 . . . . . . . 8 (𝑥 = 0 → (𝑦 = (𝐴(+g𝐺)𝑥) ↔ 𝑦 = (𝐴(+g𝐺) 0 )))
4037, 39rexsn 4706 . . . . . . 7 (∃𝑥 ∈ { 0 }𝑦 = (𝐴(+g𝐺)𝑥) ↔ 𝑦 = (𝐴(+g𝐺) 0 ))
416, 25, 11grprid 19008 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐴(+g𝐺) 0 ) = 𝐴)
423, 41sylan 579 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝐴(+g𝐺) 0 ) = 𝐴)
4342eqeq2d 2751 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝑦 = (𝐴(+g𝐺) 0 ) ↔ 𝑦 = 𝐴))
4440, 43bitrid 283 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (∃𝑥 ∈ { 0 }𝑦 = (𝐴(+g𝐺)𝑥) ↔ 𝑦 = 𝐴))
4544abbidv 2811 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → {𝑦 ∣ ∃𝑥 ∈ { 0 }𝑦 = (𝐴(+g𝐺)𝑥)} = {𝑦𝑦 = 𝐴})
46 eqid 2740 . . . . . 6 (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥)) = (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥))
4746rnmpt 5980 . . . . 5 ran (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥)) = {𝑦 ∣ ∃𝑥 ∈ { 0 }𝑦 = (𝐴(+g𝐺)𝑥)}
48 df-sn 4649 . . . . 5 {𝐴} = {𝑦𝑦 = 𝐴}
4945, 47, 483eqtr4g 2805 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ran (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥)) = {𝐴})
5036, 49eqtrd 2780 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 }) = {𝐴})
5150fveq2d 6924 . 2 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((cls‘𝐽)‘((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 })) = ((cls‘𝐽)‘{𝐴}))
5232, 51eqtrd 2780 1 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] = ((cls‘𝐽)‘{𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {cab 2717  wrex 3076  wss 3976  {csn 4648   cuni 4931  cmpt 5249  ran crn 5701  cres 5702  cima 5703  cfv 6573  (class class class)co 7448  [cec 8761  Basecbs 17258  +gcplusg 17311  TopOpenctopn 17481  0gc0g 17499  Grpcgrp 18973   ~QG cqg 19162  Topctop 22920  TopOnctopon 22937  clsccl 23047  Homeochmeo 23782  TopGrpctgp 24100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-ec 8765  df-map 8886  df-0g 17501  df-topgen 17503  df-plusf 18677  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-eqg 19165  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-cls 23050  df-cn 23256  df-cnp 23257  df-tx 23591  df-hmeo 23784  df-tmd 24101  df-tgp 24102
This theorem is referenced by:  tgptsmscls  24179
  Copyright terms: Public domain W3C validator