MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snclseqg Structured version   Visualization version   GIF version

Theorem snclseqg 24032
Description: The coset of the closure of the identity is the closure of a point. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
snclseqg.x 𝑋 = (Base‘𝐺)
snclseqg.j 𝐽 = (TopOpen‘𝐺)
snclseqg.z 0 = (0g𝐺)
snclseqg.r = (𝐺 ~QG 𝑆)
snclseqg.s 𝑆 = ((cls‘𝐽)‘{ 0 })
Assertion
Ref Expression
snclseqg ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] = ((cls‘𝐽)‘{𝐴}))

Proof of Theorem snclseqg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snclseqg.s . . . 4 𝑆 = ((cls‘𝐽)‘{ 0 })
21imaeq2i 6011 . . 3 ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ 𝑆) = ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ ((cls‘𝐽)‘{ 0 }))
3 tgpgrp 23994 . . . . 5 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
43adantr 480 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐺 ∈ Grp)
5 snclseqg.j . . . . . . . . . 10 𝐽 = (TopOpen‘𝐺)
6 snclseqg.x . . . . . . . . . 10 𝑋 = (Base‘𝐺)
75, 6tgptopon 23998 . . . . . . . . 9 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋))
87adantr 480 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
9 topontop 22829 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
108, 9syl 17 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐽 ∈ Top)
11 snclseqg.z . . . . . . . . . . 11 0 = (0g𝐺)
126, 11grpidcl 18880 . . . . . . . . . 10 (𝐺 ∈ Grp → 0𝑋)
134, 12syl 17 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 0𝑋)
1413snssd 4760 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → { 0 } ⊆ 𝑋)
15 toponuni 22830 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
168, 15syl 17 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝑋 = 𝐽)
1714, 16sseqtrd 3967 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → { 0 } ⊆ 𝐽)
18 eqid 2733 . . . . . . . 8 𝐽 = 𝐽
1918clsss3 22975 . . . . . . 7 ((𝐽 ∈ Top ∧ { 0 } ⊆ 𝐽) → ((cls‘𝐽)‘{ 0 }) ⊆ 𝐽)
2010, 17, 19syl2anc 584 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((cls‘𝐽)‘{ 0 }) ⊆ 𝐽)
2120, 16sseqtrrd 3968 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((cls‘𝐽)‘{ 0 }) ⊆ 𝑋)
221, 21eqsstrid 3969 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝑆𝑋)
23 simpr 484 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐴𝑋)
24 snclseqg.r . . . . 5 = (𝐺 ~QG 𝑆)
25 eqid 2733 . . . . 5 (+g𝐺) = (+g𝐺)
266, 24, 25eqglact 19093 . . . 4 ((𝐺 ∈ Grp ∧ 𝑆𝑋𝐴𝑋) → [𝐴] = ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ 𝑆))
274, 22, 23, 26syl3anc 1373 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] = ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ 𝑆))
28 eqid 2733 . . . . 5 (𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) = (𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥))
2928, 6, 25, 5tgplacthmeo 24019 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) ∈ (𝐽Homeo𝐽))
3018hmeocls 23684 . . . 4 (((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) ∈ (𝐽Homeo𝐽) ∧ { 0 } ⊆ 𝐽) → ((cls‘𝐽)‘((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 })) = ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ ((cls‘𝐽)‘{ 0 })))
3129, 17, 30syl2anc 584 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((cls‘𝐽)‘((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 })) = ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ ((cls‘𝐽)‘{ 0 })))
322, 27, 313eqtr4a 2794 . 2 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] = ((cls‘𝐽)‘((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 })))
33 df-ima 5632 . . . . 5 ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 }) = ran ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) ↾ { 0 })
3414resmptd 5993 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) ↾ { 0 }) = (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥)))
3534rneqd 5882 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ran ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) ↾ { 0 }) = ran (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥)))
3633, 35eqtrid 2780 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 }) = ran (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥)))
3711fvexi 6842 . . . . . . . 8 0 ∈ V
38 oveq2 7360 . . . . . . . . 9 (𝑥 = 0 → (𝐴(+g𝐺)𝑥) = (𝐴(+g𝐺) 0 ))
3938eqeq2d 2744 . . . . . . . 8 (𝑥 = 0 → (𝑦 = (𝐴(+g𝐺)𝑥) ↔ 𝑦 = (𝐴(+g𝐺) 0 )))
4037, 39rexsn 4634 . . . . . . 7 (∃𝑥 ∈ { 0 }𝑦 = (𝐴(+g𝐺)𝑥) ↔ 𝑦 = (𝐴(+g𝐺) 0 ))
416, 25, 11grprid 18883 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐴(+g𝐺) 0 ) = 𝐴)
423, 41sylan 580 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝐴(+g𝐺) 0 ) = 𝐴)
4342eqeq2d 2744 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝑦 = (𝐴(+g𝐺) 0 ) ↔ 𝑦 = 𝐴))
4440, 43bitrid 283 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (∃𝑥 ∈ { 0 }𝑦 = (𝐴(+g𝐺)𝑥) ↔ 𝑦 = 𝐴))
4544abbidv 2799 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → {𝑦 ∣ ∃𝑥 ∈ { 0 }𝑦 = (𝐴(+g𝐺)𝑥)} = {𝑦𝑦 = 𝐴})
46 eqid 2733 . . . . . 6 (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥)) = (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥))
4746rnmpt 5901 . . . . 5 ran (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥)) = {𝑦 ∣ ∃𝑥 ∈ { 0 }𝑦 = (𝐴(+g𝐺)𝑥)}
48 df-sn 4576 . . . . 5 {𝐴} = {𝑦𝑦 = 𝐴}
4945, 47, 483eqtr4g 2793 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ran (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥)) = {𝐴})
5036, 49eqtrd 2768 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 }) = {𝐴})
5150fveq2d 6832 . 2 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((cls‘𝐽)‘((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 })) = ((cls‘𝐽)‘{𝐴}))
5232, 51eqtrd 2768 1 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] = ((cls‘𝐽)‘{𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {cab 2711  wrex 3057  wss 3898  {csn 4575   cuni 4858  cmpt 5174  ran crn 5620  cres 5621  cima 5622  cfv 6486  (class class class)co 7352  [cec 8626  Basecbs 17122  +gcplusg 17163  TopOpenctopn 17327  0gc0g 17345  Grpcgrp 18848   ~QG cqg 19037  Topctop 22809  TopOnctopon 22826  clsccl 22934  Homeochmeo 23669  TopGrpctgp 23987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-ec 8630  df-map 8758  df-0g 17347  df-topgen 17349  df-plusf 18549  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-eqg 19040  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-cls 22937  df-cn 23143  df-cnp 23144  df-tx 23478  df-hmeo 23671  df-tmd 23988  df-tgp 23989
This theorem is referenced by:  tgptsmscls  24066
  Copyright terms: Public domain W3C validator