MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snclseqg Structured version   Visualization version   GIF version

Theorem snclseqg 23267
Description: The coset of the closure of the identity is the closure of a point. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
snclseqg.x 𝑋 = (Base‘𝐺)
snclseqg.j 𝐽 = (TopOpen‘𝐺)
snclseqg.z 0 = (0g𝐺)
snclseqg.r = (𝐺 ~QG 𝑆)
snclseqg.s 𝑆 = ((cls‘𝐽)‘{ 0 })
Assertion
Ref Expression
snclseqg ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] = ((cls‘𝐽)‘{𝐴}))

Proof of Theorem snclseqg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snclseqg.s . . . 4 𝑆 = ((cls‘𝐽)‘{ 0 })
21imaeq2i 5967 . . 3 ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ 𝑆) = ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ ((cls‘𝐽)‘{ 0 }))
3 tgpgrp 23229 . . . . 5 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
43adantr 481 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐺 ∈ Grp)
5 snclseqg.j . . . . . . . . . 10 𝐽 = (TopOpen‘𝐺)
6 snclseqg.x . . . . . . . . . 10 𝑋 = (Base‘𝐺)
75, 6tgptopon 23233 . . . . . . . . 9 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋))
87adantr 481 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
9 topontop 22062 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
108, 9syl 17 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐽 ∈ Top)
11 snclseqg.z . . . . . . . . . . 11 0 = (0g𝐺)
126, 11grpidcl 18607 . . . . . . . . . 10 (𝐺 ∈ Grp → 0𝑋)
134, 12syl 17 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 0𝑋)
1413snssd 4742 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → { 0 } ⊆ 𝑋)
15 toponuni 22063 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
168, 15syl 17 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝑋 = 𝐽)
1714, 16sseqtrd 3961 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → { 0 } ⊆ 𝐽)
18 eqid 2738 . . . . . . . 8 𝐽 = 𝐽
1918clsss3 22210 . . . . . . 7 ((𝐽 ∈ Top ∧ { 0 } ⊆ 𝐽) → ((cls‘𝐽)‘{ 0 }) ⊆ 𝐽)
2010, 17, 19syl2anc 584 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((cls‘𝐽)‘{ 0 }) ⊆ 𝐽)
2120, 16sseqtrrd 3962 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((cls‘𝐽)‘{ 0 }) ⊆ 𝑋)
221, 21eqsstrid 3969 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝑆𝑋)
23 simpr 485 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐴𝑋)
24 snclseqg.r . . . . 5 = (𝐺 ~QG 𝑆)
25 eqid 2738 . . . . 5 (+g𝐺) = (+g𝐺)
266, 24, 25eqglact 18807 . . . 4 ((𝐺 ∈ Grp ∧ 𝑆𝑋𝐴𝑋) → [𝐴] = ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ 𝑆))
274, 22, 23, 26syl3anc 1370 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] = ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ 𝑆))
28 eqid 2738 . . . . 5 (𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) = (𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥))
2928, 6, 25, 5tgplacthmeo 23254 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) ∈ (𝐽Homeo𝐽))
3018hmeocls 22919 . . . 4 (((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) ∈ (𝐽Homeo𝐽) ∧ { 0 } ⊆ 𝐽) → ((cls‘𝐽)‘((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 })) = ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ ((cls‘𝐽)‘{ 0 })))
3129, 17, 30syl2anc 584 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((cls‘𝐽)‘((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 })) = ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ ((cls‘𝐽)‘{ 0 })))
322, 27, 313eqtr4a 2804 . 2 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] = ((cls‘𝐽)‘((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 })))
33 df-ima 5602 . . . . 5 ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 }) = ran ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) ↾ { 0 })
3414resmptd 5948 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) ↾ { 0 }) = (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥)))
3534rneqd 5847 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ran ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) ↾ { 0 }) = ran (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥)))
3633, 35eqtrid 2790 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 }) = ran (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥)))
3711fvexi 6788 . . . . . . . 8 0 ∈ V
38 oveq2 7283 . . . . . . . . 9 (𝑥 = 0 → (𝐴(+g𝐺)𝑥) = (𝐴(+g𝐺) 0 ))
3938eqeq2d 2749 . . . . . . . 8 (𝑥 = 0 → (𝑦 = (𝐴(+g𝐺)𝑥) ↔ 𝑦 = (𝐴(+g𝐺) 0 )))
4037, 39rexsn 4618 . . . . . . 7 (∃𝑥 ∈ { 0 }𝑦 = (𝐴(+g𝐺)𝑥) ↔ 𝑦 = (𝐴(+g𝐺) 0 ))
416, 25, 11grprid 18610 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐴(+g𝐺) 0 ) = 𝐴)
423, 41sylan 580 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝐴(+g𝐺) 0 ) = 𝐴)
4342eqeq2d 2749 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝑦 = (𝐴(+g𝐺) 0 ) ↔ 𝑦 = 𝐴))
4440, 43bitrid 282 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (∃𝑥 ∈ { 0 }𝑦 = (𝐴(+g𝐺)𝑥) ↔ 𝑦 = 𝐴))
4544abbidv 2807 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → {𝑦 ∣ ∃𝑥 ∈ { 0 }𝑦 = (𝐴(+g𝐺)𝑥)} = {𝑦𝑦 = 𝐴})
46 eqid 2738 . . . . . 6 (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥)) = (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥))
4746rnmpt 5864 . . . . 5 ran (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥)) = {𝑦 ∣ ∃𝑥 ∈ { 0 }𝑦 = (𝐴(+g𝐺)𝑥)}
48 df-sn 4562 . . . . 5 {𝐴} = {𝑦𝑦 = 𝐴}
4945, 47, 483eqtr4g 2803 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ran (𝑥 ∈ { 0 } ↦ (𝐴(+g𝐺)𝑥)) = {𝐴})
5036, 49eqtrd 2778 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 }) = {𝐴})
5150fveq2d 6778 . 2 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((cls‘𝐽)‘((𝑥𝑋 ↦ (𝐴(+g𝐺)𝑥)) “ { 0 })) = ((cls‘𝐽)‘{𝐴}))
5232, 51eqtrd 2778 1 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] = ((cls‘𝐽)‘{𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {cab 2715  wrex 3065  wss 3887  {csn 4561   cuni 4839  cmpt 5157  ran crn 5590  cres 5591  cima 5592  cfv 6433  (class class class)co 7275  [cec 8496  Basecbs 16912  +gcplusg 16962  TopOpenctopn 17132  0gc0g 17150  Grpcgrp 18577   ~QG cqg 18751  Topctop 22042  TopOnctopon 22059  clsccl 22169  Homeochmeo 22904  TopGrpctgp 23222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-ec 8500  df-map 8617  df-0g 17152  df-topgen 17154  df-plusf 18325  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-eqg 18754  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-cls 22172  df-cn 22378  df-cnp 22379  df-tx 22713  df-hmeo 22906  df-tmd 23223  df-tgp 23224
This theorem is referenced by:  tgptsmscls  23301
  Copyright terms: Public domain W3C validator