MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0slt1s Structured version   Visualization version   GIF version

Theorem 0slt1s 27783
Description: Surreal zero is less than surreal one. Theorem from [Conway] p. 7. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
0slt1s 0s <s 1s

Proof of Theorem 0slt1s
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0sno 27780 . . . . 5 0s No
2 slerflex 27712 . . . . 5 ( 0s No → 0s ≤s 0s )
31, 2ax-mp 5 . . . 4 0s ≤s 0s
41elexi 3461 . . . . 5 0s ∈ V
5 breq2 5099 . . . . 5 (𝑥 = 0s → ( 0s ≤s 𝑥 ↔ 0s ≤s 0s ))
64, 5rexsn 4636 . . . 4 (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ↔ 0s ≤s 0s )
73, 6mpbir 231 . . 3 𝑥 ∈ { 0s } 0s ≤s 𝑥
87orci 865 . 2 (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s )
9 0elpw 5298 . . . 4 ∅ ∈ 𝒫 No
10 nulssgt 27749 . . . 4 (∅ ∈ 𝒫 No → ∅ <<s ∅)
119, 10ax-mp 5 . . 3 ∅ <<s ∅
12 snssi 4761 . . . . . 6 ( 0s No → { 0s } ⊆ No )
131, 12ax-mp 5 . . . . 5 { 0s } ⊆ No
14 snex 5378 . . . . . 6 { 0s } ∈ V
1514elpw 4555 . . . . 5 ({ 0s } ∈ 𝒫 No ↔ { 0s } ⊆ No )
1613, 15mpbir 231 . . . 4 { 0s } ∈ 𝒫 No
17 nulssgt 27749 . . . 4 ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅)
1816, 17ax-mp 5 . . 3 { 0s } <<s ∅
19 df-0s 27778 . . 3 0s = (∅ |s ∅)
20 df-1s 27779 . . 3 1s = ({ 0s } |s ∅)
21 sltrec 27772 . . 3 (((∅ <<s ∅ ∧ { 0s } <<s ∅) ∧ ( 0s = (∅ |s ∅) ∧ 1s = ({ 0s } |s ∅))) → ( 0s <s 1s ↔ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s )))
2211, 18, 19, 20, 21mp4an 693 . 2 ( 0s <s 1s ↔ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s ))
238, 22mpbir 231 1 0s <s 1s
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1541  wcel 2113  wrex 3058  wss 3899  c0 4284  𝒫 cpw 4551  {csn 4577   class class class wbr 5095  (class class class)co 7355   No csur 27588   <s cslt 27589   ≤s csle 27693   <<s csslt 27730   |s cscut 27732   0s c0s 27776   1s c1s 27777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6317  df-on 6318  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1o 8394  df-2o 8395  df-no 27591  df-slt 27592  df-bday 27593  df-sle 27694  df-sslt 27731  df-scut 27733  df-0s 27778  df-1s 27779
This theorem is referenced by:  1sne0s  27791  left1s  27850  right1s  27851  sltp1d  27968  precsexlem9  28163  n0sge0  28276  nnsrecgt0d  28289  twocut  28356  nohalf  28357  expsgt0  28370  pw2recs  28371  halfcut  28388  0reno  28409
  Copyright terms: Public domain W3C validator