![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0slt1s | Structured version Visualization version GIF version |
Description: Surreal zero is less than surreal one. Theorem from [Conway] p. 7. (Contributed by Scott Fenton, 7-Aug-2024.) |
Ref | Expression |
---|---|
0slt1s | âĒ 0s <s 1s |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0sno 27777 | . . . . 5 âĒ 0s â No | |
2 | slerflex 27714 | . . . . 5 âĒ ( 0s â No â 0s âĪs 0s ) | |
3 | 1, 2 | ax-mp 5 | . . . 4 âĒ 0s âĪs 0s |
4 | 1 | elexi 3491 | . . . . 5 âĒ 0s â V |
5 | breq2 5154 | . . . . 5 âĒ (ðĨ = 0s â ( 0s âĪs ðĨ â 0s âĪs 0s )) | |
6 | 4, 5 | rexsn 4689 | . . . 4 âĒ (âðĨ â { 0s } 0s âĪs ðĨ â 0s âĪs 0s ) |
7 | 3, 6 | mpbir 230 | . . 3 âĒ âðĨ â { 0s } 0s âĪs ðĨ |
8 | 7 | orci 863 | . 2 âĒ (âðĨ â { 0s } 0s âĪs ðĨ âĻ âðĶ â â ðĶ âĪs 1s ) |
9 | 0elpw 5358 | . . . 4 âĒ â â ðŦ No | |
10 | nulssgt 27749 | . . . 4 âĒ (â â ðŦ No â â <<s â ) | |
11 | 9, 10 | ax-mp 5 | . . 3 âĒ â <<s â |
12 | snssi 4814 | . . . . . 6 âĒ ( 0s â No â { 0s } â No ) | |
13 | 1, 12 | ax-mp 5 | . . . . 5 âĒ { 0s } â No |
14 | snex 5435 | . . . . . 6 âĒ { 0s } â V | |
15 | 14 | elpw 4608 | . . . . 5 âĒ ({ 0s } â ðŦ No â { 0s } â No ) |
16 | 13, 15 | mpbir 230 | . . . 4 âĒ { 0s } â ðŦ No |
17 | nulssgt 27749 | . . . 4 âĒ ({ 0s } â ðŦ No â { 0s } <<s â ) | |
18 | 16, 17 | ax-mp 5 | . . 3 âĒ { 0s } <<s â |
19 | df-0s 27775 | . . 3 âĒ 0s = (â |s â ) | |
20 | df-1s 27776 | . . 3 âĒ 1s = ({ 0s } |s â ) | |
21 | sltrec 27771 | . . 3 âĒ (((â <<s â â§ { 0s } <<s â ) â§ ( 0s = (â |s â ) â§ 1s = ({ 0s } |s â ))) â ( 0s <s 1s â (âðĨ â { 0s } 0s âĪs ðĨ âĻ âðĶ â â ðĶ âĪs 1s ))) | |
22 | 11, 18, 19, 20, 21 | mp4an 691 | . 2 âĒ ( 0s <s 1s â (âðĨ â { 0s } 0s âĪs ðĨ âĻ âðĶ â â ðĶ âĪs 1s )) |
23 | 8, 22 | mpbir 230 | 1 âĒ 0s <s 1s |
Colors of variables: wff setvar class |
Syntax hints: â wb 205 âĻ wo 845 = wceq 1533 â wcel 2098 âwrex 3066 â wss 3947 â c0 4324 ðŦ cpw 4604 {csn 4630 class class class wbr 5150 (class class class)co 7424 No csur 27591 <s cslt 27592 âĪs csle 27695 <<s csslt 27731 |s cscut 27733 0s c0s 27773 1s c1s 27774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-ord 6375 df-on 6376 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-1o 8491 df-2o 8492 df-no 27594 df-slt 27595 df-bday 27596 df-sle 27696 df-sslt 27732 df-scut 27734 df-0s 27775 df-1s 27776 |
This theorem is referenced by: left1s 27839 right1s 27840 divs1 28121 precsexlem9 28131 om2noseqlt 28190 n0scut 28221 n0sge0 28224 1nns 28233 nnsrecgt0d 28237 0reno 28243 |
Copyright terms: Public domain | W3C validator |