| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0slt1s | Structured version Visualization version GIF version | ||
| Description: Surreal zero is less than surreal one. Theorem from [Conway] p. 7. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| 0slt1s | ⊢ 0s <s 1s |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0sno 27745 | . . . . 5 ⊢ 0s ∈ No | |
| 2 | slerflex 27682 | . . . . 5 ⊢ ( 0s ∈ No → 0s ≤s 0s ) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ 0s ≤s 0s |
| 4 | 1 | elexi 3473 | . . . . 5 ⊢ 0s ∈ V |
| 5 | breq2 5114 | . . . . 5 ⊢ (𝑥 = 0s → ( 0s ≤s 𝑥 ↔ 0s ≤s 0s )) | |
| 6 | 4, 5 | rexsn 4649 | . . . 4 ⊢ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ↔ 0s ≤s 0s ) |
| 7 | 3, 6 | mpbir 231 | . . 3 ⊢ ∃𝑥 ∈ { 0s } 0s ≤s 𝑥 |
| 8 | 7 | orci 865 | . 2 ⊢ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s ) |
| 9 | 0elpw 5314 | . . . 4 ⊢ ∅ ∈ 𝒫 No | |
| 10 | nulssgt 27717 | . . . 4 ⊢ (∅ ∈ 𝒫 No → ∅ <<s ∅) | |
| 11 | 9, 10 | ax-mp 5 | . . 3 ⊢ ∅ <<s ∅ |
| 12 | snssi 4775 | . . . . . 6 ⊢ ( 0s ∈ No → { 0s } ⊆ No ) | |
| 13 | 1, 12 | ax-mp 5 | . . . . 5 ⊢ { 0s } ⊆ No |
| 14 | snex 5394 | . . . . . 6 ⊢ { 0s } ∈ V | |
| 15 | 14 | elpw 4570 | . . . . 5 ⊢ ({ 0s } ∈ 𝒫 No ↔ { 0s } ⊆ No ) |
| 16 | 13, 15 | mpbir 231 | . . . 4 ⊢ { 0s } ∈ 𝒫 No |
| 17 | nulssgt 27717 | . . . 4 ⊢ ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅) | |
| 18 | 16, 17 | ax-mp 5 | . . 3 ⊢ { 0s } <<s ∅ |
| 19 | df-0s 27743 | . . 3 ⊢ 0s = (∅ |s ∅) | |
| 20 | df-1s 27744 | . . 3 ⊢ 1s = ({ 0s } |s ∅) | |
| 21 | sltrec 27739 | . . 3 ⊢ (((∅ <<s ∅ ∧ { 0s } <<s ∅) ∧ ( 0s = (∅ |s ∅) ∧ 1s = ({ 0s } |s ∅))) → ( 0s <s 1s ↔ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s ))) | |
| 22 | 11, 18, 19, 20, 21 | mp4an 693 | . 2 ⊢ ( 0s <s 1s ↔ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s )) |
| 23 | 8, 22 | mpbir 231 | 1 ⊢ 0s <s 1s |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ⊆ wss 3917 ∅c0 4299 𝒫 cpw 4566 {csn 4592 class class class wbr 5110 (class class class)co 7390 No csur 27558 <s cslt 27559 ≤s csle 27663 <<s csslt 27699 |s cscut 27701 0s c0s 27741 1s c1s 27742 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1o 8437 df-2o 8438 df-no 27561 df-slt 27562 df-bday 27563 df-sle 27664 df-sslt 27700 df-scut 27702 df-0s 27743 df-1s 27744 |
| This theorem is referenced by: 1sne0s 27756 left1s 27813 right1s 27814 sltp1d 27929 precsexlem9 28124 n0sge0 28237 nnsrecgt0d 28250 twocut 28316 nohalf 28317 expsgt0 28329 pw2recs 28330 halfcut 28340 0reno 28355 |
| Copyright terms: Public domain | W3C validator |