| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0slt1s | Structured version Visualization version GIF version | ||
| Description: Surreal zero is less than surreal one. Theorem from [Conway] p. 7. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| 0slt1s | ⊢ 0s <s 1s |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0sno 27763 | . . . . 5 ⊢ 0s ∈ No | |
| 2 | slerflex 27695 | . . . . 5 ⊢ ( 0s ∈ No → 0s ≤s 0s ) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ 0s ≤s 0s |
| 4 | 1 | elexi 3457 | . . . . 5 ⊢ 0s ∈ V |
| 5 | breq2 5093 | . . . . 5 ⊢ (𝑥 = 0s → ( 0s ≤s 𝑥 ↔ 0s ≤s 0s )) | |
| 6 | 4, 5 | rexsn 4633 | . . . 4 ⊢ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ↔ 0s ≤s 0s ) |
| 7 | 3, 6 | mpbir 231 | . . 3 ⊢ ∃𝑥 ∈ { 0s } 0s ≤s 𝑥 |
| 8 | 7 | orci 865 | . 2 ⊢ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s ) |
| 9 | 0elpw 5292 | . . . 4 ⊢ ∅ ∈ 𝒫 No | |
| 10 | nulssgt 27732 | . . . 4 ⊢ (∅ ∈ 𝒫 No → ∅ <<s ∅) | |
| 11 | 9, 10 | ax-mp 5 | . . 3 ⊢ ∅ <<s ∅ |
| 12 | snssi 4758 | . . . . . 6 ⊢ ( 0s ∈ No → { 0s } ⊆ No ) | |
| 13 | 1, 12 | ax-mp 5 | . . . . 5 ⊢ { 0s } ⊆ No |
| 14 | snex 5372 | . . . . . 6 ⊢ { 0s } ∈ V | |
| 15 | 14 | elpw 4552 | . . . . 5 ⊢ ({ 0s } ∈ 𝒫 No ↔ { 0s } ⊆ No ) |
| 16 | 13, 15 | mpbir 231 | . . . 4 ⊢ { 0s } ∈ 𝒫 No |
| 17 | nulssgt 27732 | . . . 4 ⊢ ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅) | |
| 18 | 16, 17 | ax-mp 5 | . . 3 ⊢ { 0s } <<s ∅ |
| 19 | df-0s 27761 | . . 3 ⊢ 0s = (∅ |s ∅) | |
| 20 | df-1s 27762 | . . 3 ⊢ 1s = ({ 0s } |s ∅) | |
| 21 | sltrec 27755 | . . 3 ⊢ (((∅ <<s ∅ ∧ { 0s } <<s ∅) ∧ ( 0s = (∅ |s ∅) ∧ 1s = ({ 0s } |s ∅))) → ( 0s <s 1s ↔ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s ))) | |
| 22 | 11, 18, 19, 20, 21 | mp4an 693 | . 2 ⊢ ( 0s <s 1s ↔ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s )) |
| 23 | 8, 22 | mpbir 231 | 1 ⊢ 0s <s 1s |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1541 ∈ wcel 2110 ∃wrex 3054 ⊆ wss 3900 ∅c0 4281 𝒫 cpw 4548 {csn 4574 class class class wbr 5089 (class class class)co 7341 No csur 27571 <s cslt 27572 ≤s csle 27676 <<s csslt 27713 |s cscut 27715 0s c0s 27759 1s c1s 27760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6305 df-on 6306 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1o 8380 df-2o 8381 df-no 27574 df-slt 27575 df-bday 27576 df-sle 27677 df-sslt 27714 df-scut 27716 df-0s 27761 df-1s 27762 |
| This theorem is referenced by: 1sne0s 27774 left1s 27833 right1s 27834 sltp1d 27951 precsexlem9 28146 n0sge0 28259 nnsrecgt0d 28272 twocut 28339 nohalf 28340 expsgt0 28353 pw2recs 28354 halfcut 28371 0reno 28392 |
| Copyright terms: Public domain | W3C validator |