![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0slt1s | Structured version Visualization version GIF version |
Description: Surreal zero is less than surreal one. Theorem from [Conway] p. 7. (Contributed by Scott Fenton, 7-Aug-2024.) |
Ref | Expression |
---|---|
0slt1s | ⊢ 0s <s 1s |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0sno 27805 | . . . . 5 ⊢ 0s ∈ No | |
2 | slerflex 27742 | . . . . 5 ⊢ ( 0s ∈ No → 0s ≤s 0s ) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ 0s ≤s 0s |
4 | 1 | elexi 3482 | . . . . 5 ⊢ 0s ∈ V |
5 | breq2 5153 | . . . . 5 ⊢ (𝑥 = 0s → ( 0s ≤s 𝑥 ↔ 0s ≤s 0s )) | |
6 | 4, 5 | rexsn 4688 | . . . 4 ⊢ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ↔ 0s ≤s 0s ) |
7 | 3, 6 | mpbir 230 | . . 3 ⊢ ∃𝑥 ∈ { 0s } 0s ≤s 𝑥 |
8 | 7 | orci 863 | . 2 ⊢ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s ) |
9 | 0elpw 5356 | . . . 4 ⊢ ∅ ∈ 𝒫 No | |
10 | nulssgt 27777 | . . . 4 ⊢ (∅ ∈ 𝒫 No → ∅ <<s ∅) | |
11 | 9, 10 | ax-mp 5 | . . 3 ⊢ ∅ <<s ∅ |
12 | snssi 4813 | . . . . . 6 ⊢ ( 0s ∈ No → { 0s } ⊆ No ) | |
13 | 1, 12 | ax-mp 5 | . . . . 5 ⊢ { 0s } ⊆ No |
14 | snex 5433 | . . . . . 6 ⊢ { 0s } ∈ V | |
15 | 14 | elpw 4608 | . . . . 5 ⊢ ({ 0s } ∈ 𝒫 No ↔ { 0s } ⊆ No ) |
16 | 13, 15 | mpbir 230 | . . . 4 ⊢ { 0s } ∈ 𝒫 No |
17 | nulssgt 27777 | . . . 4 ⊢ ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅) | |
18 | 16, 17 | ax-mp 5 | . . 3 ⊢ { 0s } <<s ∅ |
19 | df-0s 27803 | . . 3 ⊢ 0s = (∅ |s ∅) | |
20 | df-1s 27804 | . . 3 ⊢ 1s = ({ 0s } |s ∅) | |
21 | sltrec 27799 | . . 3 ⊢ (((∅ <<s ∅ ∧ { 0s } <<s ∅) ∧ ( 0s = (∅ |s ∅) ∧ 1s = ({ 0s } |s ∅))) → ( 0s <s 1s ↔ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s ))) | |
22 | 11, 18, 19, 20, 21 | mp4an 691 | . 2 ⊢ ( 0s <s 1s ↔ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s )) |
23 | 8, 22 | mpbir 230 | 1 ⊢ 0s <s 1s |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 845 = wceq 1533 ∈ wcel 2098 ∃wrex 3059 ⊆ wss 3944 ∅c0 4322 𝒫 cpw 4604 {csn 4630 class class class wbr 5149 (class class class)co 7419 No csur 27618 <s cslt 27619 ≤s csle 27723 <<s csslt 27759 |s cscut 27761 0s c0s 27801 1s c1s 27802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ord 6374 df-on 6375 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-1o 8487 df-2o 8488 df-no 27621 df-slt 27622 df-bday 27623 df-sle 27724 df-sslt 27760 df-scut 27762 df-0s 27803 df-1s 27804 |
This theorem is referenced by: left1s 27867 right1s 27868 divs1 28153 precsexlem9 28163 om2noseqlt 28222 n0scut 28255 n0sge0 28258 1nns 28267 nnsrecgt0d 28271 0reno 28297 |
Copyright terms: Public domain | W3C validator |