| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0slt1s | Structured version Visualization version GIF version | ||
| Description: Surreal zero is less than surreal one. Theorem from [Conway] p. 7. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| 0slt1s | ⊢ 0s <s 1s |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0sno 27780 | . . . . 5 ⊢ 0s ∈ No | |
| 2 | slerflex 27712 | . . . . 5 ⊢ ( 0s ∈ No → 0s ≤s 0s ) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ 0s ≤s 0s |
| 4 | 1 | elexi 3461 | . . . . 5 ⊢ 0s ∈ V |
| 5 | breq2 5099 | . . . . 5 ⊢ (𝑥 = 0s → ( 0s ≤s 𝑥 ↔ 0s ≤s 0s )) | |
| 6 | 4, 5 | rexsn 4636 | . . . 4 ⊢ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ↔ 0s ≤s 0s ) |
| 7 | 3, 6 | mpbir 231 | . . 3 ⊢ ∃𝑥 ∈ { 0s } 0s ≤s 𝑥 |
| 8 | 7 | orci 865 | . 2 ⊢ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s ) |
| 9 | 0elpw 5298 | . . . 4 ⊢ ∅ ∈ 𝒫 No | |
| 10 | nulssgt 27749 | . . . 4 ⊢ (∅ ∈ 𝒫 No → ∅ <<s ∅) | |
| 11 | 9, 10 | ax-mp 5 | . . 3 ⊢ ∅ <<s ∅ |
| 12 | snssi 4761 | . . . . . 6 ⊢ ( 0s ∈ No → { 0s } ⊆ No ) | |
| 13 | 1, 12 | ax-mp 5 | . . . . 5 ⊢ { 0s } ⊆ No |
| 14 | snex 5378 | . . . . . 6 ⊢ { 0s } ∈ V | |
| 15 | 14 | elpw 4555 | . . . . 5 ⊢ ({ 0s } ∈ 𝒫 No ↔ { 0s } ⊆ No ) |
| 16 | 13, 15 | mpbir 231 | . . . 4 ⊢ { 0s } ∈ 𝒫 No |
| 17 | nulssgt 27749 | . . . 4 ⊢ ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅) | |
| 18 | 16, 17 | ax-mp 5 | . . 3 ⊢ { 0s } <<s ∅ |
| 19 | df-0s 27778 | . . 3 ⊢ 0s = (∅ |s ∅) | |
| 20 | df-1s 27779 | . . 3 ⊢ 1s = ({ 0s } |s ∅) | |
| 21 | sltrec 27772 | . . 3 ⊢ (((∅ <<s ∅ ∧ { 0s } <<s ∅) ∧ ( 0s = (∅ |s ∅) ∧ 1s = ({ 0s } |s ∅))) → ( 0s <s 1s ↔ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s ))) | |
| 22 | 11, 18, 19, 20, 21 | mp4an 693 | . 2 ⊢ ( 0s <s 1s ↔ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s )) |
| 23 | 8, 22 | mpbir 231 | 1 ⊢ 0s <s 1s |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ∃wrex 3058 ⊆ wss 3899 ∅c0 4284 𝒫 cpw 4551 {csn 4577 class class class wbr 5095 (class class class)co 7355 No csur 27588 <s cslt 27589 ≤s csle 27693 <<s csslt 27730 |s cscut 27732 0s c0s 27776 1s c1s 27777 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6317 df-on 6318 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1o 8394 df-2o 8395 df-no 27591 df-slt 27592 df-bday 27593 df-sle 27694 df-sslt 27731 df-scut 27733 df-0s 27778 df-1s 27779 |
| This theorem is referenced by: 1sne0s 27791 left1s 27850 right1s 27851 sltp1d 27968 precsexlem9 28163 n0sge0 28276 nnsrecgt0d 28289 twocut 28356 nohalf 28357 expsgt0 28370 pw2recs 28371 halfcut 28388 0reno 28409 |
| Copyright terms: Public domain | W3C validator |