| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0slt1s | Structured version Visualization version GIF version | ||
| Description: Surreal zero is less than surreal one. Theorem from [Conway] p. 7. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| 0slt1s | ⊢ 0s <s 1s |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0sno 27738 | . . . . 5 ⊢ 0s ∈ No | |
| 2 | slerflex 27675 | . . . . 5 ⊢ ( 0s ∈ No → 0s ≤s 0s ) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ 0s ≤s 0s |
| 4 | 1 | elexi 3470 | . . . . 5 ⊢ 0s ∈ V |
| 5 | breq2 5111 | . . . . 5 ⊢ (𝑥 = 0s → ( 0s ≤s 𝑥 ↔ 0s ≤s 0s )) | |
| 6 | 4, 5 | rexsn 4646 | . . . 4 ⊢ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ↔ 0s ≤s 0s ) |
| 7 | 3, 6 | mpbir 231 | . . 3 ⊢ ∃𝑥 ∈ { 0s } 0s ≤s 𝑥 |
| 8 | 7 | orci 865 | . 2 ⊢ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s ) |
| 9 | 0elpw 5311 | . . . 4 ⊢ ∅ ∈ 𝒫 No | |
| 10 | nulssgt 27710 | . . . 4 ⊢ (∅ ∈ 𝒫 No → ∅ <<s ∅) | |
| 11 | 9, 10 | ax-mp 5 | . . 3 ⊢ ∅ <<s ∅ |
| 12 | snssi 4772 | . . . . . 6 ⊢ ( 0s ∈ No → { 0s } ⊆ No ) | |
| 13 | 1, 12 | ax-mp 5 | . . . . 5 ⊢ { 0s } ⊆ No |
| 14 | snex 5391 | . . . . . 6 ⊢ { 0s } ∈ V | |
| 15 | 14 | elpw 4567 | . . . . 5 ⊢ ({ 0s } ∈ 𝒫 No ↔ { 0s } ⊆ No ) |
| 16 | 13, 15 | mpbir 231 | . . . 4 ⊢ { 0s } ∈ 𝒫 No |
| 17 | nulssgt 27710 | . . . 4 ⊢ ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅) | |
| 18 | 16, 17 | ax-mp 5 | . . 3 ⊢ { 0s } <<s ∅ |
| 19 | df-0s 27736 | . . 3 ⊢ 0s = (∅ |s ∅) | |
| 20 | df-1s 27737 | . . 3 ⊢ 1s = ({ 0s } |s ∅) | |
| 21 | sltrec 27732 | . . 3 ⊢ (((∅ <<s ∅ ∧ { 0s } <<s ∅) ∧ ( 0s = (∅ |s ∅) ∧ 1s = ({ 0s } |s ∅))) → ( 0s <s 1s ↔ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s ))) | |
| 22 | 11, 18, 19, 20, 21 | mp4an 693 | . 2 ⊢ ( 0s <s 1s ↔ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s )) |
| 23 | 8, 22 | mpbir 231 | 1 ⊢ 0s <s 1s |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3914 ∅c0 4296 𝒫 cpw 4563 {csn 4589 class class class wbr 5107 (class class class)co 7387 No csur 27551 <s cslt 27552 ≤s csle 27656 <<s csslt 27692 |s cscut 27694 0s c0s 27734 1s c1s 27735 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1o 8434 df-2o 8435 df-no 27554 df-slt 27555 df-bday 27556 df-sle 27657 df-sslt 27693 df-scut 27695 df-0s 27736 df-1s 27737 |
| This theorem is referenced by: 1sne0s 27749 left1s 27806 right1s 27807 sltp1d 27922 precsexlem9 28117 n0sge0 28230 nnsrecgt0d 28243 twocut 28309 nohalf 28310 expsgt0 28322 pw2recs 28323 halfcut 28333 0reno 28348 |
| Copyright terms: Public domain | W3C validator |