MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0slt1s Structured version   Visualization version   GIF version

Theorem 0slt1s 27798
Description: Surreal zero is less than surreal one. Theorem from [Conway] p. 7. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
0slt1s 0s <s 1s

Proof of Theorem 0slt1s
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0sno 27795 . . . . 5 0s No
2 slerflex 27732 . . . . 5 ( 0s No → 0s ≤s 0s )
31, 2ax-mp 5 . . . 4 0s ≤s 0s
41elexi 3487 . . . . 5 0s ∈ V
5 breq2 5128 . . . . 5 (𝑥 = 0s → ( 0s ≤s 𝑥 ↔ 0s ≤s 0s ))
64, 5rexsn 4663 . . . 4 (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ↔ 0s ≤s 0s )
73, 6mpbir 231 . . 3 𝑥 ∈ { 0s } 0s ≤s 𝑥
87orci 865 . 2 (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s )
9 0elpw 5331 . . . 4 ∅ ∈ 𝒫 No
10 nulssgt 27767 . . . 4 (∅ ∈ 𝒫 No → ∅ <<s ∅)
119, 10ax-mp 5 . . 3 ∅ <<s ∅
12 snssi 4789 . . . . . 6 ( 0s No → { 0s } ⊆ No )
131, 12ax-mp 5 . . . . 5 { 0s } ⊆ No
14 snex 5411 . . . . . 6 { 0s } ∈ V
1514elpw 4584 . . . . 5 ({ 0s } ∈ 𝒫 No ↔ { 0s } ⊆ No )
1613, 15mpbir 231 . . . 4 { 0s } ∈ 𝒫 No
17 nulssgt 27767 . . . 4 ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅)
1816, 17ax-mp 5 . . 3 { 0s } <<s ∅
19 df-0s 27793 . . 3 0s = (∅ |s ∅)
20 df-1s 27794 . . 3 1s = ({ 0s } |s ∅)
21 sltrec 27789 . . 3 (((∅ <<s ∅ ∧ { 0s } <<s ∅) ∧ ( 0s = (∅ |s ∅) ∧ 1s = ({ 0s } |s ∅))) → ( 0s <s 1s ↔ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s )))
2211, 18, 19, 20, 21mp4an 693 . 2 ( 0s <s 1s ↔ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s ))
238, 22mpbir 231 1 0s <s 1s
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1540  wcel 2109  wrex 3061  wss 3931  c0 4313  𝒫 cpw 4580  {csn 4606   class class class wbr 5124  (class class class)co 7410   No csur 27608   <s cslt 27609   ≤s csle 27713   <<s csslt 27749   |s cscut 27751   0s c0s 27791   1s c1s 27792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1o 8485  df-2o 8486  df-no 27611  df-slt 27612  df-bday 27613  df-sle 27714  df-sslt 27750  df-scut 27752  df-0s 27793  df-1s 27794
This theorem is referenced by:  1sne0s  27806  left1s  27863  right1s  27864  sltp1d  27979  precsexlem9  28174  n0sge0  28287  nnsrecgt0d  28300  twocut  28366  nohalf  28367  expsgt0  28379  pw2recs  28380  halfcut  28390  0reno  28405
  Copyright terms: Public domain W3C validator