MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0slt1s Structured version   Visualization version   GIF version

Theorem 0slt1s 27766
Description: Surreal zero is less than surreal one. Theorem from [Conway] p. 7. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
0slt1s 0s <s 1s

Proof of Theorem 0slt1s
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0sno 27763 . . . . 5 0s No
2 slerflex 27695 . . . . 5 ( 0s No → 0s ≤s 0s )
31, 2ax-mp 5 . . . 4 0s ≤s 0s
41elexi 3457 . . . . 5 0s ∈ V
5 breq2 5093 . . . . 5 (𝑥 = 0s → ( 0s ≤s 𝑥 ↔ 0s ≤s 0s ))
64, 5rexsn 4633 . . . 4 (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ↔ 0s ≤s 0s )
73, 6mpbir 231 . . 3 𝑥 ∈ { 0s } 0s ≤s 𝑥
87orci 865 . 2 (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s )
9 0elpw 5292 . . . 4 ∅ ∈ 𝒫 No
10 nulssgt 27732 . . . 4 (∅ ∈ 𝒫 No → ∅ <<s ∅)
119, 10ax-mp 5 . . 3 ∅ <<s ∅
12 snssi 4758 . . . . . 6 ( 0s No → { 0s } ⊆ No )
131, 12ax-mp 5 . . . . 5 { 0s } ⊆ No
14 snex 5372 . . . . . 6 { 0s } ∈ V
1514elpw 4552 . . . . 5 ({ 0s } ∈ 𝒫 No ↔ { 0s } ⊆ No )
1613, 15mpbir 231 . . . 4 { 0s } ∈ 𝒫 No
17 nulssgt 27732 . . . 4 ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅)
1816, 17ax-mp 5 . . 3 { 0s } <<s ∅
19 df-0s 27761 . . 3 0s = (∅ |s ∅)
20 df-1s 27762 . . 3 1s = ({ 0s } |s ∅)
21 sltrec 27755 . . 3 (((∅ <<s ∅ ∧ { 0s } <<s ∅) ∧ ( 0s = (∅ |s ∅) ∧ 1s = ({ 0s } |s ∅))) → ( 0s <s 1s ↔ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s )))
2211, 18, 19, 20, 21mp4an 693 . 2 ( 0s <s 1s ↔ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s ))
238, 22mpbir 231 1 0s <s 1s
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1541  wcel 2110  wrex 3054  wss 3900  c0 4281  𝒫 cpw 4548  {csn 4574   class class class wbr 5089  (class class class)co 7341   No csur 27571   <s cslt 27572   ≤s csle 27676   <<s csslt 27713   |s cscut 27715   0s c0s 27759   1s c1s 27760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6305  df-on 6306  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1o 8380  df-2o 8381  df-no 27574  df-slt 27575  df-bday 27576  df-sle 27677  df-sslt 27714  df-scut 27716  df-0s 27761  df-1s 27762
This theorem is referenced by:  1sne0s  27774  left1s  27833  right1s  27834  sltp1d  27951  precsexlem9  28146  n0sge0  28259  nnsrecgt0d  28272  twocut  28339  nohalf  28340  expsgt0  28353  pw2recs  28354  halfcut  28371  0reno  28392
  Copyright terms: Public domain W3C validator