![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0slt1s | Structured version Visualization version GIF version |
Description: Surreal zero is less than surreal one. Theorem from [Conway] p. 7. (Contributed by Scott Fenton, 7-Aug-2024.) |
Ref | Expression |
---|---|
0slt1s | âĒ 0s <s 1s |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0sno 27316 | . . . . 5 âĒ 0s â No | |
2 | slerflex 27255 | . . . . 5 âĒ ( 0s â No â 0s âĪs 0s ) | |
3 | 1, 2 | ax-mp 5 | . . . 4 âĒ 0s âĪs 0s |
4 | 1 | elexi 3493 | . . . . 5 âĒ 0s â V |
5 | breq2 5151 | . . . . 5 âĒ (ðĨ = 0s â ( 0s âĪs ðĨ â 0s âĪs 0s )) | |
6 | 4, 5 | rexsn 4685 | . . . 4 âĒ (âðĨ â { 0s } 0s âĪs ðĨ â 0s âĪs 0s ) |
7 | 3, 6 | mpbir 230 | . . 3 âĒ âðĨ â { 0s } 0s âĪs ðĨ |
8 | 7 | orci 863 | . 2 âĒ (âðĨ â { 0s } 0s âĪs ðĨ âĻ âðĶ â â ðĶ âĪs 1s ) |
9 | 0elpw 5353 | . . . 4 âĒ â â ðŦ No | |
10 | nulssgt 27288 | . . . 4 âĒ (â â ðŦ No â â <<s â ) | |
11 | 9, 10 | ax-mp 5 | . . 3 âĒ â <<s â |
12 | snssi 4810 | . . . . . 6 âĒ ( 0s â No â { 0s } â No ) | |
13 | 1, 12 | ax-mp 5 | . . . . 5 âĒ { 0s } â No |
14 | snex 5430 | . . . . . 6 âĒ { 0s } â V | |
15 | 14 | elpw 4605 | . . . . 5 âĒ ({ 0s } â ðŦ No â { 0s } â No ) |
16 | 13, 15 | mpbir 230 | . . . 4 âĒ { 0s } â ðŦ No |
17 | nulssgt 27288 | . . . 4 âĒ ({ 0s } â ðŦ No â { 0s } <<s â ) | |
18 | 16, 17 | ax-mp 5 | . . 3 âĒ { 0s } <<s â |
19 | df-0s 27314 | . . 3 âĒ 0s = (â |s â ) | |
20 | df-1s 27315 | . . 3 âĒ 1s = ({ 0s } |s â ) | |
21 | sltrec 27310 | . . 3 âĒ (((â <<s â ⧠{ 0s } <<s â ) ⧠( 0s = (â |s â ) ⧠1s = ({ 0s } |s â ))) â ( 0s <s 1s â (âðĨ â { 0s } 0s âĪs ðĨ âĻ âðĶ â â ðĶ âĪs 1s ))) | |
22 | 11, 18, 19, 20, 21 | mp4an 691 | . 2 âĒ ( 0s <s 1s â (âðĨ â { 0s } 0s âĪs ðĨ âĻ âðĶ â â ðĶ âĪs 1s )) |
23 | 8, 22 | mpbir 230 | 1 âĒ 0s <s 1s |
Colors of variables: wff setvar class |
Syntax hints: â wb 205 âĻ wo 845 = wceq 1541 â wcel 2106 âwrex 3070 â wss 3947 â c0 4321 ðŦ cpw 4601 {csn 4627 class class class wbr 5147 (class class class)co 7405 No csur 27132 <s cslt 27133 âĪs csle 27236 <<s csslt 27271 |s cscut 27273 0s c0s 27312 1s c1s 27313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1o 8462 df-2o 8463 df-no 27135 df-slt 27136 df-bday 27137 df-sle 27237 df-sslt 27272 df-scut 27274 df-0s 27314 df-1s 27315 |
This theorem is referenced by: left1s 27378 right1s 27379 divs1 27640 precsexlem9 27650 |
Copyright terms: Public domain | W3C validator |