| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0slt1s | Structured version Visualization version GIF version | ||
| Description: Surreal zero is less than surreal one. Theorem from [Conway] p. 7. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| 0slt1s | ⊢ 0s <s 1s |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0sno 27795 | . . . . 5 ⊢ 0s ∈ No | |
| 2 | slerflex 27732 | . . . . 5 ⊢ ( 0s ∈ No → 0s ≤s 0s ) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ 0s ≤s 0s |
| 4 | 1 | elexi 3487 | . . . . 5 ⊢ 0s ∈ V |
| 5 | breq2 5128 | . . . . 5 ⊢ (𝑥 = 0s → ( 0s ≤s 𝑥 ↔ 0s ≤s 0s )) | |
| 6 | 4, 5 | rexsn 4663 | . . . 4 ⊢ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ↔ 0s ≤s 0s ) |
| 7 | 3, 6 | mpbir 231 | . . 3 ⊢ ∃𝑥 ∈ { 0s } 0s ≤s 𝑥 |
| 8 | 7 | orci 865 | . 2 ⊢ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s ) |
| 9 | 0elpw 5331 | . . . 4 ⊢ ∅ ∈ 𝒫 No | |
| 10 | nulssgt 27767 | . . . 4 ⊢ (∅ ∈ 𝒫 No → ∅ <<s ∅) | |
| 11 | 9, 10 | ax-mp 5 | . . 3 ⊢ ∅ <<s ∅ |
| 12 | snssi 4789 | . . . . . 6 ⊢ ( 0s ∈ No → { 0s } ⊆ No ) | |
| 13 | 1, 12 | ax-mp 5 | . . . . 5 ⊢ { 0s } ⊆ No |
| 14 | snex 5411 | . . . . . 6 ⊢ { 0s } ∈ V | |
| 15 | 14 | elpw 4584 | . . . . 5 ⊢ ({ 0s } ∈ 𝒫 No ↔ { 0s } ⊆ No ) |
| 16 | 13, 15 | mpbir 231 | . . . 4 ⊢ { 0s } ∈ 𝒫 No |
| 17 | nulssgt 27767 | . . . 4 ⊢ ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅) | |
| 18 | 16, 17 | ax-mp 5 | . . 3 ⊢ { 0s } <<s ∅ |
| 19 | df-0s 27793 | . . 3 ⊢ 0s = (∅ |s ∅) | |
| 20 | df-1s 27794 | . . 3 ⊢ 1s = ({ 0s } |s ∅) | |
| 21 | sltrec 27789 | . . 3 ⊢ (((∅ <<s ∅ ∧ { 0s } <<s ∅) ∧ ( 0s = (∅ |s ∅) ∧ 1s = ({ 0s } |s ∅))) → ( 0s <s 1s ↔ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s ))) | |
| 22 | 11, 18, 19, 20, 21 | mp4an 693 | . 2 ⊢ ( 0s <s 1s ↔ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s )) |
| 23 | 8, 22 | mpbir 231 | 1 ⊢ 0s <s 1s |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 ⊆ wss 3931 ∅c0 4313 𝒫 cpw 4580 {csn 4606 class class class wbr 5124 (class class class)co 7410 No csur 27608 <s cslt 27609 ≤s csle 27713 <<s csslt 27749 |s cscut 27751 0s c0s 27791 1s c1s 27792 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1o 8485 df-2o 8486 df-no 27611 df-slt 27612 df-bday 27613 df-sle 27714 df-sslt 27750 df-scut 27752 df-0s 27793 df-1s 27794 |
| This theorem is referenced by: 1sne0s 27806 left1s 27863 right1s 27864 sltp1d 27979 precsexlem9 28174 n0sge0 28287 nnsrecgt0d 28300 twocut 28366 nohalf 28367 expsgt0 28379 pw2recs 28380 halfcut 28390 0reno 28405 |
| Copyright terms: Public domain | W3C validator |