MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0slt1s Structured version   Visualization version   GIF version

Theorem 0slt1s 27748
Description: Surreal zero is less than surreal one. Theorem from [Conway] p. 7. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
0slt1s 0s <s 1s

Proof of Theorem 0slt1s
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0sno 27745 . . . . 5 0s No
2 slerflex 27682 . . . . 5 ( 0s No → 0s ≤s 0s )
31, 2ax-mp 5 . . . 4 0s ≤s 0s
41elexi 3473 . . . . 5 0s ∈ V
5 breq2 5114 . . . . 5 (𝑥 = 0s → ( 0s ≤s 𝑥 ↔ 0s ≤s 0s ))
64, 5rexsn 4649 . . . 4 (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ↔ 0s ≤s 0s )
73, 6mpbir 231 . . 3 𝑥 ∈ { 0s } 0s ≤s 𝑥
87orci 865 . 2 (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s )
9 0elpw 5314 . . . 4 ∅ ∈ 𝒫 No
10 nulssgt 27717 . . . 4 (∅ ∈ 𝒫 No → ∅ <<s ∅)
119, 10ax-mp 5 . . 3 ∅ <<s ∅
12 snssi 4775 . . . . . 6 ( 0s No → { 0s } ⊆ No )
131, 12ax-mp 5 . . . . 5 { 0s } ⊆ No
14 snex 5394 . . . . . 6 { 0s } ∈ V
1514elpw 4570 . . . . 5 ({ 0s } ∈ 𝒫 No ↔ { 0s } ⊆ No )
1613, 15mpbir 231 . . . 4 { 0s } ∈ 𝒫 No
17 nulssgt 27717 . . . 4 ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅)
1816, 17ax-mp 5 . . 3 { 0s } <<s ∅
19 df-0s 27743 . . 3 0s = (∅ |s ∅)
20 df-1s 27744 . . 3 1s = ({ 0s } |s ∅)
21 sltrec 27739 . . 3 (((∅ <<s ∅ ∧ { 0s } <<s ∅) ∧ ( 0s = (∅ |s ∅) ∧ 1s = ({ 0s } |s ∅))) → ( 0s <s 1s ↔ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s )))
2211, 18, 19, 20, 21mp4an 693 . 2 ( 0s <s 1s ↔ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s ))
238, 22mpbir 231 1 0s <s 1s
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1540  wcel 2109  wrex 3054  wss 3917  c0 4299  𝒫 cpw 4566  {csn 4592   class class class wbr 5110  (class class class)co 7390   No csur 27558   <s cslt 27559   ≤s csle 27663   <<s csslt 27699   |s cscut 27701   0s c0s 27741   1s c1s 27742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1o 8437  df-2o 8438  df-no 27561  df-slt 27562  df-bday 27563  df-sle 27664  df-sslt 27700  df-scut 27702  df-0s 27743  df-1s 27744
This theorem is referenced by:  1sne0s  27756  left1s  27813  right1s  27814  sltp1d  27929  precsexlem9  28124  n0sge0  28237  nnsrecgt0d  28250  twocut  28316  nohalf  28317  expsgt0  28329  pw2recs  28330  halfcut  28340  0reno  28355
  Copyright terms: Public domain W3C validator