MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0slt1s Structured version   Visualization version   GIF version

Theorem 0slt1s 27319
Description: Surreal zero is less than surreal one. Theorem from [Conway] p. 7. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
0slt1s 0s <s 1s

Proof of Theorem 0slt1s
Dummy variables ð‘Ĩ ð‘Ķ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0sno 27316 . . . . 5 0s ∈ No
2 slerflex 27255 . . . . 5 ( 0s ∈ No → 0s â‰Īs 0s )
31, 2ax-mp 5 . . . 4 0s â‰Īs 0s
41elexi 3493 . . . . 5 0s ∈ V
5 breq2 5151 . . . . 5 (ð‘Ĩ = 0s → ( 0s â‰Īs ð‘Ĩ ↔ 0s â‰Īs 0s ))
64, 5rexsn 4685 . . . 4 (∃ð‘Ĩ ∈ { 0s } 0s â‰Īs ð‘Ĩ ↔ 0s â‰Īs 0s )
73, 6mpbir 230 . . 3 ∃ð‘Ĩ ∈ { 0s } 0s â‰Īs ð‘Ĩ
87orci 863 . 2 (∃ð‘Ĩ ∈ { 0s } 0s â‰Īs ð‘Ĩ âˆĻ ∃ð‘Ķ ∈ ∅ ð‘Ķ â‰Īs 1s )
9 0elpw 5353 . . . 4 ∅ ∈ ð’Ŧ No
10 nulssgt 27288 . . . 4 (∅ ∈ ð’Ŧ No → ∅ <<s ∅)
119, 10ax-mp 5 . . 3 ∅ <<s ∅
12 snssi 4810 . . . . . 6 ( 0s ∈ No → { 0s } ⊆ No )
131, 12ax-mp 5 . . . . 5 { 0s } ⊆ No
14 snex 5430 . . . . . 6 { 0s } ∈ V
1514elpw 4605 . . . . 5 ({ 0s } ∈ ð’Ŧ No ↔ { 0s } ⊆ No )
1613, 15mpbir 230 . . . 4 { 0s } ∈ ð’Ŧ No
17 nulssgt 27288 . . . 4 ({ 0s } ∈ ð’Ŧ No → { 0s } <<s ∅)
1816, 17ax-mp 5 . . 3 { 0s } <<s ∅
19 df-0s 27314 . . 3 0s = (∅ |s ∅)
20 df-1s 27315 . . 3 1s = ({ 0s } |s ∅)
21 sltrec 27310 . . 3 (((∅ <<s ∅ ∧ { 0s } <<s ∅) ∧ ( 0s = (∅ |s ∅) ∧ 1s = ({ 0s } |s ∅))) → ( 0s <s 1s ↔ (∃ð‘Ĩ ∈ { 0s } 0s â‰Īs ð‘Ĩ âˆĻ ∃ð‘Ķ ∈ ∅ ð‘Ķ â‰Īs 1s )))
2211, 18, 19, 20, 21mp4an 691 . 2 ( 0s <s 1s ↔ (∃ð‘Ĩ ∈ { 0s } 0s â‰Īs ð‘Ĩ âˆĻ ∃ð‘Ķ ∈ ∅ ð‘Ķ â‰Īs 1s ))
238, 22mpbir 230 1 0s <s 1s
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   âˆĻ wo 845   = wceq 1541   ∈ wcel 2106  âˆƒwrex 3070   ⊆ wss 3947  âˆ…c0 4321  ð’Ŧ cpw 4601  {csn 4627   class class class wbr 5147  (class class class)co 7405   No csur 27132   <s cslt 27133   â‰Īs csle 27236   <<s csslt 27271   |s cscut 27273   0s c0s 27312   1s c1s 27313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1o 8462  df-2o 8463  df-no 27135  df-slt 27136  df-bday 27137  df-sle 27237  df-sslt 27272  df-scut 27274  df-0s 27314  df-1s 27315
This theorem is referenced by:  left1s  27378  right1s  27379  divs1  27640  precsexlem9  27650
  Copyright terms: Public domain W3C validator