Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0slt1s | Structured version Visualization version GIF version |
Description: Surreal zero is less than surreal one. Theorem from [Conway] p. 7. (Contributed by Scott Fenton, 7-Aug-2024.) |
Ref | Expression |
---|---|
0slt1s | ⊢ 0s <s 1s |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0sno 33947 | . . . . 5 ⊢ 0s ∈ No | |
2 | slerflex 33893 | . . . . 5 ⊢ ( 0s ∈ No → 0s ≤s 0s ) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ 0s ≤s 0s |
4 | 1 | elexi 3441 | . . . . 5 ⊢ 0s ∈ V |
5 | breq2 5074 | . . . . 5 ⊢ (𝑥 = 0s → ( 0s ≤s 𝑥 ↔ 0s ≤s 0s )) | |
6 | 4, 5 | rexsn 4615 | . . . 4 ⊢ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ↔ 0s ≤s 0s ) |
7 | 3, 6 | mpbir 230 | . . 3 ⊢ ∃𝑥 ∈ { 0s } 0s ≤s 𝑥 |
8 | 7 | orci 861 | . 2 ⊢ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s ) |
9 | 0elpw 5273 | . . . 4 ⊢ ∅ ∈ 𝒫 No | |
10 | nulssgt 33919 | . . . 4 ⊢ (∅ ∈ 𝒫 No → ∅ <<s ∅) | |
11 | 9, 10 | ax-mp 5 | . . 3 ⊢ ∅ <<s ∅ |
12 | snssi 4738 | . . . . . 6 ⊢ ( 0s ∈ No → { 0s } ⊆ No ) | |
13 | 1, 12 | ax-mp 5 | . . . . 5 ⊢ { 0s } ⊆ No |
14 | snex 5349 | . . . . . 6 ⊢ { 0s } ∈ V | |
15 | 14 | elpw 4534 | . . . . 5 ⊢ ({ 0s } ∈ 𝒫 No ↔ { 0s } ⊆ No ) |
16 | 13, 15 | mpbir 230 | . . . 4 ⊢ { 0s } ∈ 𝒫 No |
17 | nulssgt 33919 | . . . 4 ⊢ ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅) | |
18 | 16, 17 | ax-mp 5 | . . 3 ⊢ { 0s } <<s ∅ |
19 | df-0s 33945 | . . 3 ⊢ 0s = (∅ |s ∅) | |
20 | df-1s 33946 | . . 3 ⊢ 1s = ({ 0s } |s ∅) | |
21 | sltrec 33941 | . . 3 ⊢ (((∅ <<s ∅ ∧ { 0s } <<s ∅) ∧ ( 0s = (∅ |s ∅) ∧ 1s = ({ 0s } |s ∅))) → ( 0s <s 1s ↔ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s ))) | |
22 | 11, 18, 19, 20, 21 | mp4an 689 | . 2 ⊢ ( 0s <s 1s ↔ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s 1s )) |
23 | 8, 22 | mpbir 230 | 1 ⊢ 0s <s 1s |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 {csn 4558 class class class wbr 5070 (class class class)co 7255 No csur 33770 <s cslt 33771 ≤s csle 33874 <<s csslt 33902 |s cscut 33904 0s c0s 33943 1s c1s 33944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1o 8267 df-2o 8268 df-no 33773 df-slt 33774 df-bday 33775 df-sle 33875 df-sslt 33903 df-scut 33905 df-0s 33945 df-1s 33946 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |