Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnresequniqs Structured version   Visualization version   GIF version

Theorem rnresequniqs 37954
Description: The range of a restriction is equal to the union of the quotient set. (Contributed by Peter Mazsa, 19-May-2018.)
Assertion
Ref Expression
rnresequniqs ((𝑅𝐴) ∈ 𝑉 → ran (𝑅𝐴) = (𝐴 / 𝑅))

Proof of Theorem rnresequniqs
StepHypRef Expression
1 uniqsALTV 37951 . 2 ((𝑅𝐴) ∈ 𝑉 (𝐴 / 𝑅) = (𝑅𝐴))
2 df-ima 5691 . 2 (𝑅𝐴) = ran (𝑅𝐴)
31, 2eqtr2di 2782 1 ((𝑅𝐴) ∈ 𝑉 → ran (𝑅𝐴) = (𝐴 / 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098   cuni 4909  ran crn 5679  cres 5680  cima 5681   / cqs 8724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-xp 5684  df-rel 5685  df-cnv 5686  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-ec 8727  df-qs 8731
This theorem is referenced by:  unidmqs  38276
  Copyright terms: Public domain W3C validator