![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnresequniqs | Structured version Visualization version GIF version |
Description: The range of a restriction is equal to the union of the quotient set. (Contributed by Peter Mazsa, 19-May-2018.) |
Ref | Expression |
---|---|
rnresequniqs | ⊢ ((𝑅 ↾ 𝐴) ∈ 𝑉 → ran (𝑅 ↾ 𝐴) = ∪ (𝐴 / 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniqsALTV 38325 | . 2 ⊢ ((𝑅 ↾ 𝐴) ∈ 𝑉 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) | |
2 | df-ima 5706 | . 2 ⊢ (𝑅 “ 𝐴) = ran (𝑅 ↾ 𝐴) | |
3 | 1, 2 | eqtr2di 2794 | 1 ⊢ ((𝑅 ↾ 𝐴) ∈ 𝑉 → ran (𝑅 ↾ 𝐴) = ∪ (𝐴 / 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∪ cuni 4915 ran crn 5694 ↾ cres 5695 “ cima 5696 / cqs 8752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-xp 5699 df-rel 5700 df-cnv 5701 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-ec 8755 df-qs 8759 |
This theorem is referenced by: unidmqs 38650 |
Copyright terms: Public domain | W3C validator |