Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnresequniqs Structured version   Visualization version   GIF version

Theorem rnresequniqs 38292
Description: The range of a restriction is equal to the union of the quotient set. (Contributed by Peter Mazsa, 19-May-2018.)
Assertion
Ref Expression
rnresequniqs ((𝑅𝐴) ∈ 𝑉 → ran (𝑅𝐴) = (𝐴 / 𝑅))

Proof of Theorem rnresequniqs
StepHypRef Expression
1 uniqsALTV 38289 . 2 ((𝑅𝐴) ∈ 𝑉 (𝐴 / 𝑅) = (𝑅𝐴))
2 df-ima 5678 . 2 (𝑅𝐴) = ran (𝑅𝐴)
31, 2eqtr2di 2786 1 ((𝑅𝐴) ∈ 𝑉 → ran (𝑅𝐴) = (𝐴 / 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107   cuni 4887  ran crn 5666  cres 5667  cima 5668   / cqs 8726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-xp 5671  df-rel 5672  df-cnv 5673  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ec 8729  df-qs 8733
This theorem is referenced by:  unidmqs  38614
  Copyright terms: Public domain W3C validator