| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rnresequniqs | Structured version Visualization version GIF version | ||
| Description: The range of a restriction is equal to the union of the quotient set. (Contributed by Peter Mazsa, 19-May-2018.) |
| Ref | Expression |
|---|---|
| rnresequniqs | ⊢ ((𝑅 ↾ 𝐴) ∈ 𝑉 → ran (𝑅 ↾ 𝐴) = ∪ (𝐴 / 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniqsALTV 38289 | . 2 ⊢ ((𝑅 ↾ 𝐴) ∈ 𝑉 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) | |
| 2 | df-ima 5678 | . 2 ⊢ (𝑅 “ 𝐴) = ran (𝑅 ↾ 𝐴) | |
| 3 | 1, 2 | eqtr2di 2786 | 1 ⊢ ((𝑅 ↾ 𝐴) ∈ 𝑉 → ran (𝑅 ↾ 𝐴) = ∪ (𝐴 / 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∪ cuni 4887 ran crn 5666 ↾ cres 5667 “ cima 5668 / cqs 8726 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-xp 5671 df-rel 5672 df-cnv 5673 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-ec 8729 df-qs 8733 |
| This theorem is referenced by: unidmqs 38614 |
| Copyright terms: Public domain | W3C validator |