![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0gerp | Structured version Visualization version GIF version |
Description: The arbitrary sum of nonnegative extended reals is greater than or equal to a given extended real number if this number can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0gerp.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
sge0gerp.f | ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
sge0gerp.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
sge0gerp.z | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝑋 ∩ Fin)𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) |
Ref | Expression |
---|---|
sge0gerp | ⊢ (𝜑 → 𝐴 ≤ (Σ^‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1913 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) | |
3 | sge0gerp.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) | |
4 | 3 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,]+∞)) |
5 | elinel1 4224 | . . . . . . . . 9 ⊢ (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → 𝑧 ∈ 𝒫 𝑋) | |
6 | elpwi 4629 | . . . . . . . . 9 ⊢ (𝑧 ∈ 𝒫 𝑋 → 𝑧 ⊆ 𝑋) | |
7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → 𝑧 ⊆ 𝑋) |
8 | 7 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑧 ⊆ 𝑋) |
9 | 4, 8 | fssresd 6788 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹 ↾ 𝑧):𝑧⟶(0[,]+∞)) |
10 | 2, 9 | sge0xrcl 46306 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹 ↾ 𝑧)) ∈ ℝ*) |
11 | 10 | ralrimiva 3152 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹 ↾ 𝑧)) ∈ ℝ*) |
12 | eqid 2740 | . . . . 5 ⊢ (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) = (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) | |
13 | 12 | rnmptss 7157 | . . . 4 ⊢ (∀𝑧 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹 ↾ 𝑧)) ∈ ℝ* → ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) ⊆ ℝ*) |
14 | 11, 13 | syl 17 | . . 3 ⊢ (𝜑 → ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) ⊆ ℝ*) |
15 | sge0gerp.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
16 | sge0gerp.z | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝑋 ∩ Fin)𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) | |
17 | nfv 1913 | . . . . 5 ⊢ Ⅎ𝑧(𝜑 ∧ 𝑥 ∈ ℝ+) | |
18 | nfmpt1 5274 | . . . . . . 7 ⊢ Ⅎ𝑧(𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) | |
19 | 18 | nfrn 5977 | . . . . . 6 ⊢ Ⅎ𝑧ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) |
20 | nfv 1913 | . . . . . 6 ⊢ Ⅎ𝑧 𝐴 ≤ (𝑦 +𝑒 𝑥) | |
21 | 19, 20 | nfrexw 3319 | . . . . 5 ⊢ Ⅎ𝑧∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥) |
22 | id 22 | . . . . . . . . 9 ⊢ (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) | |
23 | fvexd 6935 | . . . . . . . . 9 ⊢ (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → (Σ^‘(𝐹 ↾ 𝑧)) ∈ V) | |
24 | 12 | elrnmpt1 5983 | . . . . . . . . 9 ⊢ ((𝑧 ∈ (𝒫 𝑋 ∩ Fin) ∧ (Σ^‘(𝐹 ↾ 𝑧)) ∈ V) → (Σ^‘(𝐹 ↾ 𝑧)) ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))) |
25 | 22, 23, 24 | syl2anc 583 | . . . . . . . 8 ⊢ (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → (Σ^‘(𝐹 ↾ 𝑧)) ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))) |
26 | 25 | 3ad2ant2 1134 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) → (Σ^‘(𝐹 ↾ 𝑧)) ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))) |
27 | simp3 1138 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) → 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) | |
28 | nfv 1913 | . . . . . . . 8 ⊢ Ⅎ𝑦 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥) | |
29 | oveq1 7455 | . . . . . . . . 9 ⊢ (𝑦 = (Σ^‘(𝐹 ↾ 𝑧)) → (𝑦 +𝑒 𝑥) = ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) | |
30 | 29 | breq2d 5178 | . . . . . . . 8 ⊢ (𝑦 = (Σ^‘(𝐹 ↾ 𝑧)) → (𝐴 ≤ (𝑦 +𝑒 𝑥) ↔ 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥))) |
31 | 28, 30 | rspce 3624 | . . . . . . 7 ⊢ (((Σ^‘(𝐹 ↾ 𝑧)) ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) ∧ 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥)) |
32 | 26, 27, 31 | syl2anc 583 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥)) |
33 | 32 | 3exp 1119 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → (𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥)))) |
34 | 17, 21, 33 | rexlimd 3272 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (∃𝑧 ∈ (𝒫 𝑋 ∩ Fin)𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥))) |
35 | 16, 34 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥)) |
36 | 1, 14, 15, 35 | supxrge 45253 | . 2 ⊢ (𝜑 → 𝐴 ≤ sup(ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))), ℝ*, < )) |
37 | sge0gerp.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
38 | 37, 3 | sge0sup 46312 | . . 3 ⊢ (𝜑 → (Σ^‘𝐹) = sup(ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))), ℝ*, < )) |
39 | 38 | eqcomd 2746 | . 2 ⊢ (𝜑 → sup(ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))), ℝ*, < ) = (Σ^‘𝐹)) |
40 | 36, 39 | breqtrd 5192 | 1 ⊢ (𝜑 → 𝐴 ≤ (Σ^‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 𝒫 cpw 4622 class class class wbr 5166 ↦ cmpt 5249 ran crn 5701 ↾ cres 5702 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 Fincfn 9003 supcsup 9509 0cc0 11184 +∞cpnf 11321 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 ℝ+crp 13057 +𝑒 cxad 13173 [,]cicc 13410 Σ^csumge0 46283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-xadd 13176 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-sumge0 46284 |
This theorem is referenced by: sge0gerpmpt 46323 |
Copyright terms: Public domain | W3C validator |