![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0gerp | Structured version Visualization version GIF version |
Description: The arbitrary sum of nonnegative extended reals is greater than or equal to a given extended real number if this number can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0gerp.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
sge0gerp.f | ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
sge0gerp.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
sge0gerp.z | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝑋 ∩ Fin)𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) |
Ref | Expression |
---|---|
sge0gerp | ⊢ (𝜑 → 𝐴 ≤ (Σ^‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) | |
3 | sge0gerp.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) | |
4 | 3 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,]+∞)) |
5 | elinel1 4195 | . . . . . . . . 9 ⊢ (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → 𝑧 ∈ 𝒫 𝑋) | |
6 | elpwi 4609 | . . . . . . . . 9 ⊢ (𝑧 ∈ 𝒫 𝑋 → 𝑧 ⊆ 𝑋) | |
7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → 𝑧 ⊆ 𝑋) |
8 | 7 | adantl 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑧 ⊆ 𝑋) |
9 | 4, 8 | fssresd 6758 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹 ↾ 𝑧):𝑧⟶(0[,]+∞)) |
10 | 2, 9 | sge0xrcl 45400 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹 ↾ 𝑧)) ∈ ℝ*) |
11 | 10 | ralrimiva 3146 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹 ↾ 𝑧)) ∈ ℝ*) |
12 | eqid 2732 | . . . . 5 ⊢ (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) = (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) | |
13 | 12 | rnmptss 7124 | . . . 4 ⊢ (∀𝑧 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹 ↾ 𝑧)) ∈ ℝ* → ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) ⊆ ℝ*) |
14 | 11, 13 | syl 17 | . . 3 ⊢ (𝜑 → ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) ⊆ ℝ*) |
15 | sge0gerp.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
16 | sge0gerp.z | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝑋 ∩ Fin)𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) | |
17 | nfv 1917 | . . . . 5 ⊢ Ⅎ𝑧(𝜑 ∧ 𝑥 ∈ ℝ+) | |
18 | nfmpt1 5256 | . . . . . . 7 ⊢ Ⅎ𝑧(𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) | |
19 | 18 | nfrn 5951 | . . . . . 6 ⊢ Ⅎ𝑧ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) |
20 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑧 𝐴 ≤ (𝑦 +𝑒 𝑥) | |
21 | 19, 20 | nfrexw 3310 | . . . . 5 ⊢ Ⅎ𝑧∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥) |
22 | id 22 | . . . . . . . . 9 ⊢ (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) | |
23 | fvexd 6906 | . . . . . . . . 9 ⊢ (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → (Σ^‘(𝐹 ↾ 𝑧)) ∈ V) | |
24 | 12 | elrnmpt1 5957 | . . . . . . . . 9 ⊢ ((𝑧 ∈ (𝒫 𝑋 ∩ Fin) ∧ (Σ^‘(𝐹 ↾ 𝑧)) ∈ V) → (Σ^‘(𝐹 ↾ 𝑧)) ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))) |
25 | 22, 23, 24 | syl2anc 584 | . . . . . . . 8 ⊢ (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → (Σ^‘(𝐹 ↾ 𝑧)) ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))) |
26 | 25 | 3ad2ant2 1134 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) → (Σ^‘(𝐹 ↾ 𝑧)) ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))) |
27 | simp3 1138 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) → 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) | |
28 | nfv 1917 | . . . . . . . 8 ⊢ Ⅎ𝑦 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥) | |
29 | oveq1 7418 | . . . . . . . . 9 ⊢ (𝑦 = (Σ^‘(𝐹 ↾ 𝑧)) → (𝑦 +𝑒 𝑥) = ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) | |
30 | 29 | breq2d 5160 | . . . . . . . 8 ⊢ (𝑦 = (Σ^‘(𝐹 ↾ 𝑧)) → (𝐴 ≤ (𝑦 +𝑒 𝑥) ↔ 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥))) |
31 | 28, 30 | rspce 3601 | . . . . . . 7 ⊢ (((Σ^‘(𝐹 ↾ 𝑧)) ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) ∧ 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥)) |
32 | 26, 27, 31 | syl2anc 584 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥)) |
33 | 32 | 3exp 1119 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → (𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥)))) |
34 | 17, 21, 33 | rexlimd 3263 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (∃𝑧 ∈ (𝒫 𝑋 ∩ Fin)𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥))) |
35 | 16, 34 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥)) |
36 | 1, 14, 15, 35 | supxrge 44347 | . 2 ⊢ (𝜑 → 𝐴 ≤ sup(ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))), ℝ*, < )) |
37 | sge0gerp.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
38 | 37, 3 | sge0sup 45406 | . . 3 ⊢ (𝜑 → (Σ^‘𝐹) = sup(ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))), ℝ*, < )) |
39 | 38 | eqcomd 2738 | . 2 ⊢ (𝜑 → sup(ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))), ℝ*, < ) = (Σ^‘𝐹)) |
40 | 36, 39 | breqtrd 5174 | 1 ⊢ (𝜑 → 𝐴 ≤ (Σ^‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 Vcvv 3474 ∩ cin 3947 ⊆ wss 3948 𝒫 cpw 4602 class class class wbr 5148 ↦ cmpt 5231 ran crn 5677 ↾ cres 5678 ⟶wf 6539 ‘cfv 6543 (class class class)co 7411 Fincfn 8941 supcsup 9437 0cc0 11112 +∞cpnf 11249 ℝ*cxr 11251 < clt 11252 ≤ cle 11253 ℝ+crp 12978 +𝑒 cxad 13094 [,]cicc 13331 Σ^csumge0 45377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12979 df-xadd 13097 df-ico 13334 df-icc 13335 df-fz 13489 df-fzo 13632 df-seq 13971 df-exp 14032 df-hash 14295 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-clim 15436 df-sum 15637 df-sumge0 45378 |
This theorem is referenced by: sge0gerpmpt 45417 |
Copyright terms: Public domain | W3C validator |