Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0gerp Structured version   Visualization version   GIF version

Theorem sge0gerp 46424
Description: The arbitrary sum of nonnegative extended reals is greater than or equal to a given extended real number if this number can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0gerp.x (𝜑𝑋𝑉)
sge0gerp.f (𝜑𝐹:𝑋⟶(0[,]+∞))
sge0gerp.a (𝜑𝐴 ∈ ℝ*)
sge0gerp.z ((𝜑𝑥 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝑋 ∩ Fin)𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥))
Assertion
Ref Expression
sge0gerp (𝜑𝐴 ≤ (Σ^𝐹))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑋,𝑧   𝜑,𝑥,𝑧
Allowed substitution hints:   𝑉(𝑥,𝑧)

Proof of Theorem sge0gerp
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . 3 𝑥𝜑
2 simpr 484 . . . . . 6 ((𝜑𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑧 ∈ (𝒫 𝑋 ∩ Fin))
3 sge0gerp.f . . . . . . . 8 (𝜑𝐹:𝑋⟶(0[,]+∞))
43adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,]+∞))
5 elinel1 4176 . . . . . . . . 9 (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → 𝑧 ∈ 𝒫 𝑋)
6 elpwi 4582 . . . . . . . . 9 (𝑧 ∈ 𝒫 𝑋𝑧𝑋)
75, 6syl 17 . . . . . . . 8 (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → 𝑧𝑋)
87adantl 481 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑧𝑋)
94, 8fssresd 6745 . . . . . 6 ((𝜑𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑧):𝑧⟶(0[,]+∞))
102, 9sge0xrcl 46414 . . . . 5 ((𝜑𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑧)) ∈ ℝ*)
1110ralrimiva 3132 . . . 4 (𝜑 → ∀𝑧 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑧)) ∈ ℝ*)
12 eqid 2735 . . . . 5 (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧))) = (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧)))
1312rnmptss 7113 . . . 4 (∀𝑧 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑧)) ∈ ℝ* → ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧))) ⊆ ℝ*)
1411, 13syl 17 . . 3 (𝜑 → ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧))) ⊆ ℝ*)
15 sge0gerp.a . . 3 (𝜑𝐴 ∈ ℝ*)
16 sge0gerp.z . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝑋 ∩ Fin)𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥))
17 nfv 1914 . . . . 5 𝑧(𝜑𝑥 ∈ ℝ+)
18 nfmpt1 5220 . . . . . . 7 𝑧(𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧)))
1918nfrn 5932 . . . . . 6 𝑧ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧)))
20 nfv 1914 . . . . . 6 𝑧 𝐴 ≤ (𝑦 +𝑒 𝑥)
2119, 20nfrexw 3293 . . . . 5 𝑧𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥)
22 id 22 . . . . . . . . 9 (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → 𝑧 ∈ (𝒫 𝑋 ∩ Fin))
23 fvexd 6891 . . . . . . . . 9 (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → (Σ^‘(𝐹𝑧)) ∈ V)
2412elrnmpt1 5940 . . . . . . . . 9 ((𝑧 ∈ (𝒫 𝑋 ∩ Fin) ∧ (Σ^‘(𝐹𝑧)) ∈ V) → (Σ^‘(𝐹𝑧)) ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧))))
2522, 23, 24syl2anc 584 . . . . . . . 8 (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → (Σ^‘(𝐹𝑧)) ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧))))
26253ad2ant2 1134 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥)) → (Σ^‘(𝐹𝑧)) ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧))))
27 simp3 1138 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥)) → 𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥))
28 nfv 1914 . . . . . . . 8 𝑦 𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥)
29 oveq1 7412 . . . . . . . . 9 (𝑦 = (Σ^‘(𝐹𝑧)) → (𝑦 +𝑒 𝑥) = ((Σ^‘(𝐹𝑧)) +𝑒 𝑥))
3029breq2d 5131 . . . . . . . 8 (𝑦 = (Σ^‘(𝐹𝑧)) → (𝐴 ≤ (𝑦 +𝑒 𝑥) ↔ 𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥)))
3128, 30rspce 3590 . . . . . . 7 (((Σ^‘(𝐹𝑧)) ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧))) ∧ 𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥)) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥))
3226, 27, 31syl2anc 584 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥)) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥))
33323exp 1119 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → (𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥))))
3417, 21, 33rexlimd 3249 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑧 ∈ (𝒫 𝑋 ∩ Fin)𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥)))
3516, 34mpd 15 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥))
361, 14, 15, 35supxrge 45365 . 2 (𝜑𝐴 ≤ sup(ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧))), ℝ*, < ))
37 sge0gerp.x . . . 4 (𝜑𝑋𝑉)
3837, 3sge0sup 46420 . . 3 (𝜑 → (Σ^𝐹) = sup(ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧))), ℝ*, < ))
3938eqcomd 2741 . 2 (𝜑 → sup(ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧))), ℝ*, < ) = (Σ^𝐹))
4036, 39breqtrd 5145 1 (𝜑𝐴 ≤ (Σ^𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  Vcvv 3459  cin 3925  wss 3926  𝒫 cpw 4575   class class class wbr 5119  cmpt 5201  ran crn 5655  cres 5656  wf 6527  cfv 6531  (class class class)co 7405  Fincfn 8959  supcsup 9452  0cc0 11129  +∞cpnf 11266  *cxr 11268   < clt 11269  cle 11270  +crp 13008   +𝑒 cxad 13126  [,]cicc 13365  Σ^csumge0 46391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-xadd 13129  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-sumge0 46392
This theorem is referenced by:  sge0gerpmpt  46431
  Copyright terms: Public domain W3C validator