Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0gerp Structured version   Visualization version   GIF version

Theorem sge0gerp 43933
Description: The arbitrary sum of nonnegative extended reals is greater than or equal to a given extended real number if this number can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0gerp.x (𝜑𝑋𝑉)
sge0gerp.f (𝜑𝐹:𝑋⟶(0[,]+∞))
sge0gerp.a (𝜑𝐴 ∈ ℝ*)
sge0gerp.z ((𝜑𝑥 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝑋 ∩ Fin)𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥))
Assertion
Ref Expression
sge0gerp (𝜑𝐴 ≤ (Σ^𝐹))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑋,𝑧   𝜑,𝑥,𝑧
Allowed substitution hints:   𝑉(𝑥,𝑧)

Proof of Theorem sge0gerp
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1917 . . 3 𝑥𝜑
2 simpr 485 . . . . . 6 ((𝜑𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑧 ∈ (𝒫 𝑋 ∩ Fin))
3 sge0gerp.f . . . . . . . 8 (𝜑𝐹:𝑋⟶(0[,]+∞))
43adantr 481 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,]+∞))
5 elinel1 4129 . . . . . . . . 9 (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → 𝑧 ∈ 𝒫 𝑋)
6 elpwi 4542 . . . . . . . . 9 (𝑧 ∈ 𝒫 𝑋𝑧𝑋)
75, 6syl 17 . . . . . . . 8 (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → 𝑧𝑋)
87adantl 482 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑧𝑋)
94, 8fssresd 6641 . . . . . 6 ((𝜑𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑧):𝑧⟶(0[,]+∞))
102, 9sge0xrcl 43923 . . . . 5 ((𝜑𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑧)) ∈ ℝ*)
1110ralrimiva 3103 . . . 4 (𝜑 → ∀𝑧 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑧)) ∈ ℝ*)
12 eqid 2738 . . . . 5 (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧))) = (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧)))
1312rnmptss 6996 . . . 4 (∀𝑧 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑧)) ∈ ℝ* → ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧))) ⊆ ℝ*)
1411, 13syl 17 . . 3 (𝜑 → ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧))) ⊆ ℝ*)
15 sge0gerp.a . . 3 (𝜑𝐴 ∈ ℝ*)
16 sge0gerp.z . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝑋 ∩ Fin)𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥))
17 nfv 1917 . . . . 5 𝑧(𝜑𝑥 ∈ ℝ+)
18 nfmpt1 5182 . . . . . . 7 𝑧(𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧)))
1918nfrn 5861 . . . . . 6 𝑧ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧)))
20 nfv 1917 . . . . . 6 𝑧 𝐴 ≤ (𝑦 +𝑒 𝑥)
2119, 20nfrex 3242 . . . . 5 𝑧𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥)
22 id 22 . . . . . . . . 9 (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → 𝑧 ∈ (𝒫 𝑋 ∩ Fin))
23 fvexd 6789 . . . . . . . . 9 (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → (Σ^‘(𝐹𝑧)) ∈ V)
2412elrnmpt1 5867 . . . . . . . . 9 ((𝑧 ∈ (𝒫 𝑋 ∩ Fin) ∧ (Σ^‘(𝐹𝑧)) ∈ V) → (Σ^‘(𝐹𝑧)) ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧))))
2522, 23, 24syl2anc 584 . . . . . . . 8 (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → (Σ^‘(𝐹𝑧)) ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧))))
26253ad2ant2 1133 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥)) → (Σ^‘(𝐹𝑧)) ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧))))
27 simp3 1137 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥)) → 𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥))
28 nfv 1917 . . . . . . . 8 𝑦 𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥)
29 oveq1 7282 . . . . . . . . 9 (𝑦 = (Σ^‘(𝐹𝑧)) → (𝑦 +𝑒 𝑥) = ((Σ^‘(𝐹𝑧)) +𝑒 𝑥))
3029breq2d 5086 . . . . . . . 8 (𝑦 = (Σ^‘(𝐹𝑧)) → (𝐴 ≤ (𝑦 +𝑒 𝑥) ↔ 𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥)))
3128, 30rspce 3550 . . . . . . 7 (((Σ^‘(𝐹𝑧)) ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧))) ∧ 𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥)) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥))
3226, 27, 31syl2anc 584 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥)) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥))
33323exp 1118 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → (𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥))))
3417, 21, 33rexlimd 3250 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑧 ∈ (𝒫 𝑋 ∩ Fin)𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥)))
3516, 34mpd 15 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥))
361, 14, 15, 35supxrge 42877 . 2 (𝜑𝐴 ≤ sup(ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧))), ℝ*, < ))
37 sge0gerp.x . . . 4 (𝜑𝑋𝑉)
3837, 3sge0sup 43929 . . 3 (𝜑 → (Σ^𝐹) = sup(ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧))), ℝ*, < ))
3938eqcomd 2744 . 2 (𝜑 → sup(ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧))), ℝ*, < ) = (Σ^𝐹))
4036, 39breqtrd 5100 1 (𝜑𝐴 ≤ (Σ^𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  cin 3886  wss 3887  𝒫 cpw 4533   class class class wbr 5074  cmpt 5157  ran crn 5590  cres 5591  wf 6429  cfv 6433  (class class class)co 7275  Fincfn 8733  supcsup 9199  0cc0 10871  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010  +crp 12730   +𝑒 cxad 12846  [,]cicc 13082  Σ^csumge0 43900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-xadd 12849  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-sumge0 43901
This theorem is referenced by:  sge0gerpmpt  43940
  Copyright terms: Public domain W3C validator