| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0gerp | Structured version Visualization version GIF version | ||
| Description: The arbitrary sum of nonnegative extended reals is greater than or equal to a given extended real number if this number can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| sge0gerp.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| sge0gerp.f | ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
| sge0gerp.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| sge0gerp.z | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝑋 ∩ Fin)𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) |
| Ref | Expression |
|---|---|
| sge0gerp | ⊢ (𝜑 → 𝐴 ≤ (Σ^‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) | |
| 3 | sge0gerp.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) | |
| 4 | 3 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,]+∞)) |
| 5 | elinel1 4164 | . . . . . . . . 9 ⊢ (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → 𝑧 ∈ 𝒫 𝑋) | |
| 6 | elpwi 4570 | . . . . . . . . 9 ⊢ (𝑧 ∈ 𝒫 𝑋 → 𝑧 ⊆ 𝑋) | |
| 7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → 𝑧 ⊆ 𝑋) |
| 8 | 7 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑧 ⊆ 𝑋) |
| 9 | 4, 8 | fssresd 6727 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹 ↾ 𝑧):𝑧⟶(0[,]+∞)) |
| 10 | 2, 9 | sge0xrcl 46383 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹 ↾ 𝑧)) ∈ ℝ*) |
| 11 | 10 | ralrimiva 3125 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹 ↾ 𝑧)) ∈ ℝ*) |
| 12 | eqid 2729 | . . . . 5 ⊢ (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) = (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) | |
| 13 | 12 | rnmptss 7095 | . . . 4 ⊢ (∀𝑧 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹 ↾ 𝑧)) ∈ ℝ* → ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) ⊆ ℝ*) |
| 14 | 11, 13 | syl 17 | . . 3 ⊢ (𝜑 → ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) ⊆ ℝ*) |
| 15 | sge0gerp.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 16 | sge0gerp.z | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝑋 ∩ Fin)𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) | |
| 17 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑧(𝜑 ∧ 𝑥 ∈ ℝ+) | |
| 18 | nfmpt1 5206 | . . . . . . 7 ⊢ Ⅎ𝑧(𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) | |
| 19 | 18 | nfrn 5916 | . . . . . 6 ⊢ Ⅎ𝑧ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) |
| 20 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑧 𝐴 ≤ (𝑦 +𝑒 𝑥) | |
| 21 | 19, 20 | nfrexw 3287 | . . . . 5 ⊢ Ⅎ𝑧∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥) |
| 22 | id 22 | . . . . . . . . 9 ⊢ (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) | |
| 23 | fvexd 6873 | . . . . . . . . 9 ⊢ (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → (Σ^‘(𝐹 ↾ 𝑧)) ∈ V) | |
| 24 | 12 | elrnmpt1 5924 | . . . . . . . . 9 ⊢ ((𝑧 ∈ (𝒫 𝑋 ∩ Fin) ∧ (Σ^‘(𝐹 ↾ 𝑧)) ∈ V) → (Σ^‘(𝐹 ↾ 𝑧)) ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))) |
| 25 | 22, 23, 24 | syl2anc 584 | . . . . . . . 8 ⊢ (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → (Σ^‘(𝐹 ↾ 𝑧)) ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))) |
| 26 | 25 | 3ad2ant2 1134 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) → (Σ^‘(𝐹 ↾ 𝑧)) ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))) |
| 27 | simp3 1138 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) → 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) | |
| 28 | nfv 1914 | . . . . . . . 8 ⊢ Ⅎ𝑦 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥) | |
| 29 | oveq1 7394 | . . . . . . . . 9 ⊢ (𝑦 = (Σ^‘(𝐹 ↾ 𝑧)) → (𝑦 +𝑒 𝑥) = ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) | |
| 30 | 29 | breq2d 5119 | . . . . . . . 8 ⊢ (𝑦 = (Σ^‘(𝐹 ↾ 𝑧)) → (𝐴 ≤ (𝑦 +𝑒 𝑥) ↔ 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥))) |
| 31 | 28, 30 | rspce 3577 | . . . . . . 7 ⊢ (((Σ^‘(𝐹 ↾ 𝑧)) ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) ∧ 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥)) |
| 32 | 26, 27, 31 | syl2anc 584 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥)) |
| 33 | 32 | 3exp 1119 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → (𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥)))) |
| 34 | 17, 21, 33 | rexlimd 3244 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (∃𝑧 ∈ (𝒫 𝑋 ∩ Fin)𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥))) |
| 35 | 16, 34 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥)) |
| 36 | 1, 14, 15, 35 | supxrge 45334 | . 2 ⊢ (𝜑 → 𝐴 ≤ sup(ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))), ℝ*, < )) |
| 37 | sge0gerp.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 38 | 37, 3 | sge0sup 46389 | . . 3 ⊢ (𝜑 → (Σ^‘𝐹) = sup(ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))), ℝ*, < )) |
| 39 | 38 | eqcomd 2735 | . 2 ⊢ (𝜑 → sup(ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))), ℝ*, < ) = (Σ^‘𝐹)) |
| 40 | 36, 39 | breqtrd 5133 | 1 ⊢ (𝜑 → 𝐴 ≤ (Σ^‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3447 ∩ cin 3913 ⊆ wss 3914 𝒫 cpw 4563 class class class wbr 5107 ↦ cmpt 5188 ran crn 5639 ↾ cres 5640 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 supcsup 9391 0cc0 11068 +∞cpnf 11205 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 ℝ+crp 12951 +𝑒 cxad 13070 [,]cicc 13309 Σ^csumge0 46360 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-xadd 13073 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 df-sumge0 46361 |
| This theorem is referenced by: sge0gerpmpt 46400 |
| Copyright terms: Public domain | W3C validator |