![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0gerp | Structured version Visualization version GIF version |
Description: The arbitrary sum of nonnegative extended reals is greater than or equal to a given extended real number if this number can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0gerp.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
sge0gerp.f | ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
sge0gerp.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
sge0gerp.z | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝑋 ∩ Fin)𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) |
Ref | Expression |
---|---|
sge0gerp | ⊢ (𝜑 → 𝐴 ≤ (Σ^‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1873 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | simpr 477 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) | |
3 | sge0gerp.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) | |
4 | 3 | adantr 473 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,]+∞)) |
5 | elinel1 4061 | . . . . . . . . 9 ⊢ (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → 𝑧 ∈ 𝒫 𝑋) | |
6 | elpwi 4432 | . . . . . . . . 9 ⊢ (𝑧 ∈ 𝒫 𝑋 → 𝑧 ⊆ 𝑋) | |
7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → 𝑧 ⊆ 𝑋) |
8 | 7 | adantl 474 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑧 ⊆ 𝑋) |
9 | 4, 8 | fssresd 6374 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹 ↾ 𝑧):𝑧⟶(0[,]+∞)) |
10 | 2, 9 | sge0xrcl 42096 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹 ↾ 𝑧)) ∈ ℝ*) |
11 | 10 | ralrimiva 3133 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹 ↾ 𝑧)) ∈ ℝ*) |
12 | eqid 2779 | . . . . 5 ⊢ (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) = (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) | |
13 | 12 | rnmptss 6709 | . . . 4 ⊢ (∀𝑧 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹 ↾ 𝑧)) ∈ ℝ* → ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) ⊆ ℝ*) |
14 | 11, 13 | syl 17 | . . 3 ⊢ (𝜑 → ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) ⊆ ℝ*) |
15 | sge0gerp.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
16 | sge0gerp.z | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝑋 ∩ Fin)𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) | |
17 | nfv 1873 | . . . . 5 ⊢ Ⅎ𝑧(𝜑 ∧ 𝑥 ∈ ℝ+) | |
18 | nfmpt1 5025 | . . . . . . 7 ⊢ Ⅎ𝑧(𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) | |
19 | 18 | nfrn 5667 | . . . . . 6 ⊢ Ⅎ𝑧ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) |
20 | nfv 1873 | . . . . . 6 ⊢ Ⅎ𝑧 𝐴 ≤ (𝑦 +𝑒 𝑥) | |
21 | 19, 20 | nfrex 3254 | . . . . 5 ⊢ Ⅎ𝑧∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥) |
22 | id 22 | . . . . . . . . 9 ⊢ (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) | |
23 | fvexd 6514 | . . . . . . . . 9 ⊢ (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → (Σ^‘(𝐹 ↾ 𝑧)) ∈ V) | |
24 | 12 | elrnmpt1 5673 | . . . . . . . . 9 ⊢ ((𝑧 ∈ (𝒫 𝑋 ∩ Fin) ∧ (Σ^‘(𝐹 ↾ 𝑧)) ∈ V) → (Σ^‘(𝐹 ↾ 𝑧)) ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))) |
25 | 22, 23, 24 | syl2anc 576 | . . . . . . . 8 ⊢ (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → (Σ^‘(𝐹 ↾ 𝑧)) ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))) |
26 | 25 | 3ad2ant2 1114 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) → (Σ^‘(𝐹 ↾ 𝑧)) ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))) |
27 | simp3 1118 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) → 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) | |
28 | nfv 1873 | . . . . . . . 8 ⊢ Ⅎ𝑦 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥) | |
29 | oveq1 6983 | . . . . . . . . 9 ⊢ (𝑦 = (Σ^‘(𝐹 ↾ 𝑧)) → (𝑦 +𝑒 𝑥) = ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) | |
30 | 29 | breq2d 4941 | . . . . . . . 8 ⊢ (𝑦 = (Σ^‘(𝐹 ↾ 𝑧)) → (𝐴 ≤ (𝑦 +𝑒 𝑥) ↔ 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥))) |
31 | 28, 30 | rspce 3531 | . . . . . . 7 ⊢ (((Σ^‘(𝐹 ↾ 𝑧)) ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) ∧ 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥)) |
32 | 26, 27, 31 | syl2anc 576 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥)) |
33 | 32 | 3exp 1099 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → (𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥)))) |
34 | 17, 21, 33 | rexlimd 3261 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (∃𝑧 ∈ (𝒫 𝑋 ∩ Fin)𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥))) |
35 | 16, 34 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥)) |
36 | 1, 14, 15, 35 | supxrge 41033 | . 2 ⊢ (𝜑 → 𝐴 ≤ sup(ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))), ℝ*, < )) |
37 | sge0gerp.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
38 | 37, 3 | sge0sup 42102 | . . 3 ⊢ (𝜑 → (Σ^‘𝐹) = sup(ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))), ℝ*, < )) |
39 | 38 | eqcomd 2785 | . 2 ⊢ (𝜑 → sup(ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))), ℝ*, < ) = (Σ^‘𝐹)) |
40 | 36, 39 | breqtrd 4955 | 1 ⊢ (𝜑 → 𝐴 ≤ (Σ^‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 ∀wral 3089 ∃wrex 3090 Vcvv 3416 ∩ cin 3829 ⊆ wss 3830 𝒫 cpw 4422 class class class wbr 4929 ↦ cmpt 5008 ran crn 5408 ↾ cres 5409 ⟶wf 6184 ‘cfv 6188 (class class class)co 6976 Fincfn 8306 supcsup 8699 0cc0 10335 +∞cpnf 10471 ℝ*cxr 10473 < clt 10474 ≤ cle 10475 ℝ+crp 12204 +𝑒 cxad 12322 [,]cicc 12557 Σ^csumge0 42073 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-inf2 8898 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 ax-pre-sup 10413 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-se 5367 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-isom 6197 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-1st 7501 df-2nd 7502 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-oadd 7909 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-sup 8701 df-oi 8769 df-card 9162 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-div 11099 df-nn 11440 df-2 11503 df-3 11504 df-n0 11708 df-z 11794 df-uz 12059 df-rp 12205 df-xadd 12325 df-ico 12560 df-icc 12561 df-fz 12709 df-fzo 12850 df-seq 13185 df-exp 13245 df-hash 13506 df-cj 14319 df-re 14320 df-im 14321 df-sqrt 14455 df-abs 14456 df-clim 14706 df-sum 14904 df-sumge0 42074 |
This theorem is referenced by: sge0gerpmpt 42113 |
Copyright terms: Public domain | W3C validator |