| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0gerp | Structured version Visualization version GIF version | ||
| Description: The arbitrary sum of nonnegative extended reals is greater than or equal to a given extended real number if this number can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| sge0gerp.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| sge0gerp.f | ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
| sge0gerp.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| sge0gerp.z | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝑋 ∩ Fin)𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) |
| Ref | Expression |
|---|---|
| sge0gerp | ⊢ (𝜑 → 𝐴 ≤ (Σ^‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) | |
| 3 | sge0gerp.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) | |
| 4 | 3 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,]+∞)) |
| 5 | elinel1 4148 | . . . . . . . . 9 ⊢ (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → 𝑧 ∈ 𝒫 𝑋) | |
| 6 | elpwi 4554 | . . . . . . . . 9 ⊢ (𝑧 ∈ 𝒫 𝑋 → 𝑧 ⊆ 𝑋) | |
| 7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → 𝑧 ⊆ 𝑋) |
| 8 | 7 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑧 ⊆ 𝑋) |
| 9 | 4, 8 | fssresd 6690 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹 ↾ 𝑧):𝑧⟶(0[,]+∞)) |
| 10 | 2, 9 | sge0xrcl 46431 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹 ↾ 𝑧)) ∈ ℝ*) |
| 11 | 10 | ralrimiva 3124 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹 ↾ 𝑧)) ∈ ℝ*) |
| 12 | eqid 2731 | . . . . 5 ⊢ (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) = (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) | |
| 13 | 12 | rnmptss 7056 | . . . 4 ⊢ (∀𝑧 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹 ↾ 𝑧)) ∈ ℝ* → ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) ⊆ ℝ*) |
| 14 | 11, 13 | syl 17 | . . 3 ⊢ (𝜑 → ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) ⊆ ℝ*) |
| 15 | sge0gerp.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 16 | sge0gerp.z | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝑋 ∩ Fin)𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) | |
| 17 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑧(𝜑 ∧ 𝑥 ∈ ℝ+) | |
| 18 | nfmpt1 5188 | . . . . . . 7 ⊢ Ⅎ𝑧(𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) | |
| 19 | 18 | nfrn 5891 | . . . . . 6 ⊢ Ⅎ𝑧ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) |
| 20 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑧 𝐴 ≤ (𝑦 +𝑒 𝑥) | |
| 21 | 19, 20 | nfrexw 3280 | . . . . 5 ⊢ Ⅎ𝑧∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥) |
| 22 | id 22 | . . . . . . . . 9 ⊢ (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → 𝑧 ∈ (𝒫 𝑋 ∩ Fin)) | |
| 23 | fvexd 6837 | . . . . . . . . 9 ⊢ (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → (Σ^‘(𝐹 ↾ 𝑧)) ∈ V) | |
| 24 | 12 | elrnmpt1 5899 | . . . . . . . . 9 ⊢ ((𝑧 ∈ (𝒫 𝑋 ∩ Fin) ∧ (Σ^‘(𝐹 ↾ 𝑧)) ∈ V) → (Σ^‘(𝐹 ↾ 𝑧)) ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))) |
| 25 | 22, 23, 24 | syl2anc 584 | . . . . . . . 8 ⊢ (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → (Σ^‘(𝐹 ↾ 𝑧)) ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))) |
| 26 | 25 | 3ad2ant2 1134 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) → (Σ^‘(𝐹 ↾ 𝑧)) ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))) |
| 27 | simp3 1138 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) → 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) | |
| 28 | nfv 1915 | . . . . . . . 8 ⊢ Ⅎ𝑦 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥) | |
| 29 | oveq1 7353 | . . . . . . . . 9 ⊢ (𝑦 = (Σ^‘(𝐹 ↾ 𝑧)) → (𝑦 +𝑒 𝑥) = ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) | |
| 30 | 29 | breq2d 5101 | . . . . . . . 8 ⊢ (𝑦 = (Σ^‘(𝐹 ↾ 𝑧)) → (𝐴 ≤ (𝑦 +𝑒 𝑥) ↔ 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥))) |
| 31 | 28, 30 | rspce 3561 | . . . . . . 7 ⊢ (((Σ^‘(𝐹 ↾ 𝑧)) ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))) ∧ 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥)) |
| 32 | 26, 27, 31 | syl2anc 584 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥)) |
| 33 | 32 | 3exp 1119 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → (𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥)))) |
| 34 | 17, 21, 33 | rexlimd 3239 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (∃𝑧 ∈ (𝒫 𝑋 ∩ Fin)𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥))) |
| 35 | 16, 34 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥)) |
| 36 | 1, 14, 15, 35 | supxrge 45385 | . 2 ⊢ (𝜑 → 𝐴 ≤ sup(ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))), ℝ*, < )) |
| 37 | sge0gerp.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 38 | 37, 3 | sge0sup 46437 | . . 3 ⊢ (𝜑 → (Σ^‘𝐹) = sup(ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))), ℝ*, < )) |
| 39 | 38 | eqcomd 2737 | . 2 ⊢ (𝜑 → sup(ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑧))), ℝ*, < ) = (Σ^‘𝐹)) |
| 40 | 36, 39 | breqtrd 5115 | 1 ⊢ (𝜑 → 𝐴 ≤ (Σ^‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 𝒫 cpw 4547 class class class wbr 5089 ↦ cmpt 5170 ran crn 5615 ↾ cres 5616 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 Fincfn 8869 supcsup 9324 0cc0 11006 +∞cpnf 11143 ℝ*cxr 11145 < clt 11146 ≤ cle 11147 ℝ+crp 12890 +𝑒 cxad 13009 [,]cicc 13248 Σ^csumge0 46408 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-xadd 13012 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-sumge0 46409 |
| This theorem is referenced by: sge0gerpmpt 46448 |
| Copyright terms: Public domain | W3C validator |