Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0gerp Structured version   Visualization version   GIF version

Theorem sge0gerp 43027
Description: The arbitrary sum of nonnegative extended reals is greater than or equal to a given extended real number if this number can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0gerp.x (𝜑𝑋𝑉)
sge0gerp.f (𝜑𝐹:𝑋⟶(0[,]+∞))
sge0gerp.a (𝜑𝐴 ∈ ℝ*)
sge0gerp.z ((𝜑𝑥 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝑋 ∩ Fin)𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥))
Assertion
Ref Expression
sge0gerp (𝜑𝐴 ≤ (Σ^𝐹))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑋,𝑧   𝜑,𝑥,𝑧
Allowed substitution hints:   𝑉(𝑥,𝑧)

Proof of Theorem sge0gerp
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . 3 𝑥𝜑
2 simpr 488 . . . . . 6 ((𝜑𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑧 ∈ (𝒫 𝑋 ∩ Fin))
3 sge0gerp.f . . . . . . . 8 (𝜑𝐹:𝑋⟶(0[,]+∞))
43adantr 484 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,]+∞))
5 elinel1 4125 . . . . . . . . 9 (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → 𝑧 ∈ 𝒫 𝑋)
6 elpwi 4509 . . . . . . . . 9 (𝑧 ∈ 𝒫 𝑋𝑧𝑋)
75, 6syl 17 . . . . . . . 8 (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → 𝑧𝑋)
87adantl 485 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑧𝑋)
94, 8fssresd 6523 . . . . . 6 ((𝜑𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑧):𝑧⟶(0[,]+∞))
102, 9sge0xrcl 43017 . . . . 5 ((𝜑𝑧 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑧)) ∈ ℝ*)
1110ralrimiva 3152 . . . 4 (𝜑 → ∀𝑧 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑧)) ∈ ℝ*)
12 eqid 2801 . . . . 5 (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧))) = (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧)))
1312rnmptss 6867 . . . 4 (∀𝑧 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑧)) ∈ ℝ* → ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧))) ⊆ ℝ*)
1411, 13syl 17 . . 3 (𝜑 → ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧))) ⊆ ℝ*)
15 sge0gerp.a . . 3 (𝜑𝐴 ∈ ℝ*)
16 sge0gerp.z . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝑋 ∩ Fin)𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥))
17 nfv 1915 . . . . 5 𝑧(𝜑𝑥 ∈ ℝ+)
18 nfmpt1 5131 . . . . . . 7 𝑧(𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧)))
1918nfrn 5792 . . . . . 6 𝑧ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧)))
20 nfv 1915 . . . . . 6 𝑧 𝐴 ≤ (𝑦 +𝑒 𝑥)
2119, 20nfrex 3271 . . . . 5 𝑧𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥)
22 id 22 . . . . . . . . 9 (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → 𝑧 ∈ (𝒫 𝑋 ∩ Fin))
23 fvexd 6664 . . . . . . . . 9 (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → (Σ^‘(𝐹𝑧)) ∈ V)
2412elrnmpt1 5798 . . . . . . . . 9 ((𝑧 ∈ (𝒫 𝑋 ∩ Fin) ∧ (Σ^‘(𝐹𝑧)) ∈ V) → (Σ^‘(𝐹𝑧)) ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧))))
2522, 23, 24syl2anc 587 . . . . . . . 8 (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → (Σ^‘(𝐹𝑧)) ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧))))
26253ad2ant2 1131 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥)) → (Σ^‘(𝐹𝑧)) ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧))))
27 simp3 1135 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥)) → 𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥))
28 nfv 1915 . . . . . . . 8 𝑦 𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥)
29 oveq1 7146 . . . . . . . . 9 (𝑦 = (Σ^‘(𝐹𝑧)) → (𝑦 +𝑒 𝑥) = ((Σ^‘(𝐹𝑧)) +𝑒 𝑥))
3029breq2d 5045 . . . . . . . 8 (𝑦 = (Σ^‘(𝐹𝑧)) → (𝐴 ≤ (𝑦 +𝑒 𝑥) ↔ 𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥)))
3128, 30rspce 3563 . . . . . . 7 (((Σ^‘(𝐹𝑧)) ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧))) ∧ 𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥)) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥))
3226, 27, 31syl2anc 587 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑧 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥)) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥))
33323exp 1116 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (𝑧 ∈ (𝒫 𝑋 ∩ Fin) → (𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥))))
3417, 21, 33rexlimd 3279 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑧 ∈ (𝒫 𝑋 ∩ Fin)𝐴 ≤ ((Σ^‘(𝐹𝑧)) +𝑒 𝑥) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥)))
3516, 34mpd 15 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧)))𝐴 ≤ (𝑦 +𝑒 𝑥))
361, 14, 15, 35supxrge 41963 . 2 (𝜑𝐴 ≤ sup(ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧))), ℝ*, < ))
37 sge0gerp.x . . . 4 (𝜑𝑋𝑉)
3837, 3sge0sup 43023 . . 3 (𝜑 → (Σ^𝐹) = sup(ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧))), ℝ*, < ))
3938eqcomd 2807 . 2 (𝜑 → sup(ran (𝑧 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑧))), ℝ*, < ) = (Σ^𝐹))
4036, 39breqtrd 5059 1 (𝜑𝐴 ≤ (Σ^𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2112  wral 3109  wrex 3110  Vcvv 3444  cin 3883  wss 3884  𝒫 cpw 4500   class class class wbr 5033  cmpt 5113  ran crn 5524  cres 5525  wf 6324  cfv 6328  (class class class)co 7139  Fincfn 8496  supcsup 8892  0cc0 10530  +∞cpnf 10665  *cxr 10667   < clt 10668  cle 10669  +crp 12381   +𝑒 cxad 12497  [,]cicc 12733  Σ^csumge0 42994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-xadd 12500  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841  df-sum 15039  df-sumge0 42995
This theorem is referenced by:  sge0gerpmpt  43034
  Copyright terms: Public domain W3C validator