Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupubuzlem Structured version   Visualization version   GIF version

Theorem limsupubuzlem 42795
Description: If the limsup is not +∞, then the function is bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupubuzlem.j 𝑗𝜑
limsupubuzlem.e 𝑗𝑋
limsupubuzlem.m (𝜑𝑀 ∈ ℤ)
limsupubuzlem.z 𝑍 = (ℤ𝑀)
limsupubuzlem.f (𝜑𝐹:𝑍⟶ℝ)
limsupubuzlem.y (𝜑𝑌 ∈ ℝ)
limsupubuzlem.k (𝜑𝐾 ∈ ℝ)
limsupubuzlem.b (𝜑 → ∀𝑗𝑍 (𝐾𝑗 → (𝐹𝑗) ≤ 𝑌))
limsupubuzlem.n 𝑁 = if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾))
limsupubuzlem.w 𝑊 = sup(ran (𝑗 ∈ (𝑀...𝑁) ↦ (𝐹𝑗)), ℝ, < )
limsupubuzlem.x 𝑋 = if(𝑊𝑌, 𝑌, 𝑊)
Assertion
Ref Expression
limsupubuzlem (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
Distinct variable groups:   𝑥,𝐹   𝑗,𝑀   𝑗,𝑁   𝑥,𝑋   𝑥,𝑍   𝑥,𝑗
Allowed substitution hints:   𝜑(𝑥,𝑗)   𝐹(𝑗)   𝐾(𝑥,𝑗)   𝑀(𝑥)   𝑁(𝑥)   𝑊(𝑥,𝑗)   𝑋(𝑗)   𝑌(𝑥,𝑗)   𝑍(𝑗)

Proof of Theorem limsupubuzlem
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 limsupubuzlem.x . . 3 𝑋 = if(𝑊𝑌, 𝑌, 𝑊)
2 limsupubuzlem.y . . . 4 (𝜑𝑌 ∈ ℝ)
3 limsupubuzlem.w . . . . . 6 𝑊 = sup(ran (𝑗 ∈ (𝑀...𝑁) ↦ (𝐹𝑗)), ℝ, < )
43a1i 11 . . . . 5 (𝜑𝑊 = sup(ran (𝑗 ∈ (𝑀...𝑁) ↦ (𝐹𝑗)), ℝ, < ))
5 limsupubuzlem.j . . . . . 6 𝑗𝜑
6 ltso 10799 . . . . . . 7 < Or ℝ
76a1i 11 . . . . . 6 (𝜑 → < Or ℝ)
8 fzfid 13432 . . . . . 6 (𝜑 → (𝑀...𝑁) ∈ Fin)
9 eqid 2738 . . . . . . . . 9 (ℤ𝑀) = (ℤ𝑀)
10 limsupubuzlem.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
11 limsupubuzlem.n . . . . . . . . . . 11 𝑁 = if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾))
1211a1i 11 . . . . . . . . . 10 (𝜑𝑁 = if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)))
13 limsupubuzlem.k . . . . . . . . . . . 12 (𝜑𝐾 ∈ ℝ)
14 ceilcl 13303 . . . . . . . . . . . 12 (𝐾 ∈ ℝ → (⌈‘𝐾) ∈ ℤ)
1513, 14syl 17 . . . . . . . . . . 11 (𝜑 → (⌈‘𝐾) ∈ ℤ)
1610, 15ifcld 4460 . . . . . . . . . 10 (𝜑 → if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)) ∈ ℤ)
1712, 16eqeltrd 2833 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
1815zred 12168 . . . . . . . . . . 11 (𝜑 → (⌈‘𝐾) ∈ ℝ)
1910zred 12168 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
20 max2 12663 . . . . . . . . . . 11 (((⌈‘𝐾) ∈ ℝ ∧ 𝑀 ∈ ℝ) → 𝑀 ≤ if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)))
2118, 19, 20syl2anc 587 . . . . . . . . . 10 (𝜑𝑀 ≤ if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)))
2212eqcomd 2744 . . . . . . . . . 10 (𝜑 → if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)) = 𝑁)
2321, 22breqtrd 5056 . . . . . . . . 9 (𝜑𝑀𝑁)
249, 10, 17, 23eluzd 42487 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
25 eluzfz2 13006 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
2624, 25syl 17 . . . . . . 7 (𝜑𝑁 ∈ (𝑀...𝑁))
2726ne0d 4224 . . . . . 6 (𝜑 → (𝑀...𝑁) ≠ ∅)
28 limsupubuzlem.f . . . . . . . 8 (𝜑𝐹:𝑍⟶ℝ)
2928adantr 484 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐹:𝑍⟶ℝ)
3010adantr 484 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ)
31 elfzelz 12998 . . . . . . . . . 10 (𝑗 ∈ (𝑀...𝑁) → 𝑗 ∈ ℤ)
3231adantl 485 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑗 ∈ ℤ)
33 elfzle1 13001 . . . . . . . . . 10 (𝑗 ∈ (𝑀...𝑁) → 𝑀𝑗)
3433adantl 485 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑀𝑗)
359, 30, 32, 34eluzd 42487 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑗 ∈ (ℤ𝑀))
36 limsupubuzlem.z . . . . . . . 8 𝑍 = (ℤ𝑀)
3735, 36eleqtrrdi 2844 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑗𝑍)
3829, 37ffvelrnd 6862 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ∈ ℝ)
395, 7, 8, 27, 38fisupclrnmpt 42476 . . . . 5 (𝜑 → sup(ran (𝑗 ∈ (𝑀...𝑁) ↦ (𝐹𝑗)), ℝ, < ) ∈ ℝ)
404, 39eqeltrd 2833 . . . 4 (𝜑𝑊 ∈ ℝ)
412, 40ifcld 4460 . . 3 (𝜑 → if(𝑊𝑌, 𝑌, 𝑊) ∈ ℝ)
421, 41eqeltrid 2837 . 2 (𝜑𝑋 ∈ ℝ)
4328ffvelrnda 6861 . . . . . . 7 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ)
4443adantr 484 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → (𝐹𝑗) ∈ ℝ)
4540ad2antrr 726 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑊 ∈ ℝ)
4642ad2antrr 726 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑋 ∈ ℝ)
47 simpll 767 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝜑)
4810ad2antrr 726 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑀 ∈ ℤ)
4917ad2antrr 726 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑁 ∈ ℤ)
5036eluzelz2 42481 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ ℤ)
5150ad2antlr 727 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑗 ∈ ℤ)
5236eleq2i 2824 . . . . . . . . . . 11 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
5352biimpi 219 . . . . . . . . . 10 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
54 eluzle 12337 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑀) → 𝑀𝑗)
5553, 54syl 17 . . . . . . . . 9 (𝑗𝑍𝑀𝑗)
5655ad2antlr 727 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑀𝑗)
57 simpr 488 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑗𝑁)
5848, 49, 51, 56, 57elfzd 12989 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑗 ∈ (𝑀...𝑁))
595, 8, 38fimaxre4 42479 . . . . . . . . 9 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑗 ∈ (𝑀...𝑁)(𝐹𝑗) ≤ 𝑏)
605, 38, 59suprubrnmpt 42336 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ≤ sup(ran (𝑗 ∈ (𝑀...𝑁) ↦ (𝐹𝑗)), ℝ, < ))
6160, 3breqtrrdi 5072 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ≤ 𝑊)
6247, 58, 61syl2anc 587 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → (𝐹𝑗) ≤ 𝑊)
63 max1 12661 . . . . . . . . 9 ((𝑊 ∈ ℝ ∧ 𝑌 ∈ ℝ) → 𝑊 ≤ if(𝑊𝑌, 𝑌, 𝑊))
6440, 2, 63syl2anc 587 . . . . . . . 8 (𝜑𝑊 ≤ if(𝑊𝑌, 𝑌, 𝑊))
6564, 1breqtrrdi 5072 . . . . . . 7 (𝜑𝑊𝑋)
6665ad2antrr 726 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑊𝑋)
6744, 45, 46, 62, 66letrd 10875 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → (𝐹𝑗) ≤ 𝑋)
6813ad2antrr 726 . . . . . . 7 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝐾 ∈ ℝ)
69 uzssre 12346 . . . . . . . . . 10 (ℤ𝑀) ⊆ ℝ
7036, 69eqsstri 3911 . . . . . . . . 9 𝑍 ⊆ ℝ
7170sseli 3873 . . . . . . . 8 (𝑗𝑍𝑗 ∈ ℝ)
7271ad2antlr 727 . . . . . . 7 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝑗 ∈ ℝ)
7369, 24sseldi 3875 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
7473ad2antrr 726 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝑁 ∈ ℝ)
75 ceilge 13305 . . . . . . . . . . 11 (𝐾 ∈ ℝ → 𝐾 ≤ (⌈‘𝐾))
7613, 75syl 17 . . . . . . . . . 10 (𝜑𝐾 ≤ (⌈‘𝐾))
77 max1 12661 . . . . . . . . . . . 12 (((⌈‘𝐾) ∈ ℝ ∧ 𝑀 ∈ ℝ) → (⌈‘𝐾) ≤ if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)))
7818, 19, 77syl2anc 587 . . . . . . . . . . 11 (𝜑 → (⌈‘𝐾) ≤ if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)))
7978, 22breqtrd 5056 . . . . . . . . . 10 (𝜑 → (⌈‘𝐾) ≤ 𝑁)
8013, 18, 73, 76, 79letrd 10875 . . . . . . . . 9 (𝜑𝐾𝑁)
8180ad2antrr 726 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝐾𝑁)
82 simpr 488 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → ¬ 𝑗𝑁)
8374, 72ltnled 10865 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → (𝑁 < 𝑗 ↔ ¬ 𝑗𝑁))
8482, 83mpbird 260 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝑁 < 𝑗)
8568, 74, 72, 81, 84lelttrd 10876 . . . . . . 7 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝐾 < 𝑗)
8668, 72, 85ltled 10866 . . . . . 6 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝐾𝑗)
8743adantr 484 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → (𝐹𝑗) ∈ ℝ)
882ad2antrr 726 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑌 ∈ ℝ)
8942ad2antrr 726 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑋 ∈ ℝ)
90 simpr 488 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝐾𝑗)
91 limsupubuzlem.b . . . . . . . . . 10 (𝜑 → ∀𝑗𝑍 (𝐾𝑗 → (𝐹𝑗) ≤ 𝑌))
9291r19.21bi 3121 . . . . . . . . 9 ((𝜑𝑗𝑍) → (𝐾𝑗 → (𝐹𝑗) ≤ 𝑌))
9392adantr 484 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → (𝐾𝑗 → (𝐹𝑗) ≤ 𝑌))
9490, 93mpd 15 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → (𝐹𝑗) ≤ 𝑌)
95 max2 12663 . . . . . . . . . 10 ((𝑊 ∈ ℝ ∧ 𝑌 ∈ ℝ) → 𝑌 ≤ if(𝑊𝑌, 𝑌, 𝑊))
9640, 2, 95syl2anc 587 . . . . . . . . 9 (𝜑𝑌 ≤ if(𝑊𝑌, 𝑌, 𝑊))
9796, 1breqtrrdi 5072 . . . . . . . 8 (𝜑𝑌𝑋)
9897ad2antrr 726 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑌𝑋)
9987, 88, 89, 94, 98letrd 10875 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → (𝐹𝑗) ≤ 𝑋)
10086, 99syldan 594 . . . . 5 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → (𝐹𝑗) ≤ 𝑋)
10167, 100pm2.61dan 813 . . . 4 ((𝜑𝑗𝑍) → (𝐹𝑗) ≤ 𝑋)
102101ex 416 . . 3 (𝜑 → (𝑗𝑍 → (𝐹𝑗) ≤ 𝑋))
1035, 102ralrimi 3128 . 2 (𝜑 → ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑋)
104 nfv 1921 . . 3 𝑥𝑗𝑍 (𝐹𝑗) ≤ 𝑋
105 nfcv 2899 . . . . 5 𝑗𝑥
106 limsupubuzlem.e . . . . 5 𝑗𝑋
107105, 106nfeq 2912 . . . 4 𝑗 𝑥 = 𝑋
108 breq2 5034 . . . 4 (𝑥 = 𝑋 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑋))
109107, 108ralbid 3145 . . 3 (𝑥 = 𝑋 → (∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥 ↔ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑋))
110104, 109rspce 3515 . 2 ((𝑋 ∈ ℝ ∧ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑋) → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
11142, 103, 110syl2anc 587 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1542  wnf 1790  wcel 2114  wnfc 2879  wral 3053  wrex 3054  ifcif 4414   class class class wbr 5030  cmpt 5110   Or wor 5441  ran crn 5526  wf 6335  cfv 6339  (class class class)co 7170  supcsup 8977  cr 10614   < clt 10753  cle 10754  cz 12062  cuz 12324  ...cfz 12981  cceil 13252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-sup 8979  df-inf 8980  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-n0 11977  df-z 12063  df-uz 12325  df-fz 12982  df-fl 13253  df-ceil 13254
This theorem is referenced by:  limsupubuz  42796
  Copyright terms: Public domain W3C validator