Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupubuzlem Structured version   Visualization version   GIF version

Theorem limsupubuzlem 45820
Description: If the limsup is not +∞, then the function is bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupubuzlem.j 𝑗𝜑
limsupubuzlem.e 𝑗𝑋
limsupubuzlem.m (𝜑𝑀 ∈ ℤ)
limsupubuzlem.z 𝑍 = (ℤ𝑀)
limsupubuzlem.f (𝜑𝐹:𝑍⟶ℝ)
limsupubuzlem.y (𝜑𝑌 ∈ ℝ)
limsupubuzlem.k (𝜑𝐾 ∈ ℝ)
limsupubuzlem.b (𝜑 → ∀𝑗𝑍 (𝐾𝑗 → (𝐹𝑗) ≤ 𝑌))
limsupubuzlem.n 𝑁 = if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾))
limsupubuzlem.w 𝑊 = sup(ran (𝑗 ∈ (𝑀...𝑁) ↦ (𝐹𝑗)), ℝ, < )
limsupubuzlem.x 𝑋 = if(𝑊𝑌, 𝑌, 𝑊)
Assertion
Ref Expression
limsupubuzlem (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
Distinct variable groups:   𝑥,𝐹   𝑗,𝑀   𝑗,𝑁   𝑥,𝑋   𝑥,𝑍   𝑥,𝑗
Allowed substitution hints:   𝜑(𝑥,𝑗)   𝐹(𝑗)   𝐾(𝑥,𝑗)   𝑀(𝑥)   𝑁(𝑥)   𝑊(𝑥,𝑗)   𝑋(𝑗)   𝑌(𝑥,𝑗)   𝑍(𝑗)

Proof of Theorem limsupubuzlem
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 limsupubuzlem.x . . 3 𝑋 = if(𝑊𝑌, 𝑌, 𝑊)
2 limsupubuzlem.y . . . 4 (𝜑𝑌 ∈ ℝ)
3 limsupubuzlem.w . . . . . 6 𝑊 = sup(ran (𝑗 ∈ (𝑀...𝑁) ↦ (𝐹𝑗)), ℝ, < )
43a1i 11 . . . . 5 (𝜑𝑊 = sup(ran (𝑗 ∈ (𝑀...𝑁) ↦ (𝐹𝑗)), ℝ, < ))
5 limsupubuzlem.j . . . . . 6 𝑗𝜑
6 ltso 11193 . . . . . . 7 < Or ℝ
76a1i 11 . . . . . 6 (𝜑 → < Or ℝ)
8 fzfid 13880 . . . . . 6 (𝜑 → (𝑀...𝑁) ∈ Fin)
9 eqid 2731 . . . . . . . . 9 (ℤ𝑀) = (ℤ𝑀)
10 limsupubuzlem.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
11 limsupubuzlem.n . . . . . . . . . . 11 𝑁 = if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾))
1211a1i 11 . . . . . . . . . 10 (𝜑𝑁 = if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)))
13 limsupubuzlem.k . . . . . . . . . . . 12 (𝜑𝐾 ∈ ℝ)
14 ceilcl 13746 . . . . . . . . . . . 12 (𝐾 ∈ ℝ → (⌈‘𝐾) ∈ ℤ)
1513, 14syl 17 . . . . . . . . . . 11 (𝜑 → (⌈‘𝐾) ∈ ℤ)
1610, 15ifcld 4519 . . . . . . . . . 10 (𝜑 → if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)) ∈ ℤ)
1712, 16eqeltrd 2831 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
1815zred 12577 . . . . . . . . . . 11 (𝜑 → (⌈‘𝐾) ∈ ℝ)
1910zred 12577 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
20 max2 13086 . . . . . . . . . . 11 (((⌈‘𝐾) ∈ ℝ ∧ 𝑀 ∈ ℝ) → 𝑀 ≤ if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)))
2118, 19, 20syl2anc 584 . . . . . . . . . 10 (𝜑𝑀 ≤ if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)))
2212eqcomd 2737 . . . . . . . . . 10 (𝜑 → if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)) = 𝑁)
2321, 22breqtrd 5115 . . . . . . . . 9 (𝜑𝑀𝑁)
249, 10, 17, 23eluzd 45517 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
25 eluzfz2 13432 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
2624, 25syl 17 . . . . . . 7 (𝜑𝑁 ∈ (𝑀...𝑁))
2726ne0d 4289 . . . . . 6 (𝜑 → (𝑀...𝑁) ≠ ∅)
28 limsupubuzlem.f . . . . . . . 8 (𝜑𝐹:𝑍⟶ℝ)
2928adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐹:𝑍⟶ℝ)
3010adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ)
31 elfzelz 13424 . . . . . . . . . 10 (𝑗 ∈ (𝑀...𝑁) → 𝑗 ∈ ℤ)
3231adantl 481 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑗 ∈ ℤ)
33 elfzle1 13427 . . . . . . . . . 10 (𝑗 ∈ (𝑀...𝑁) → 𝑀𝑗)
3433adantl 481 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑀𝑗)
359, 30, 32, 34eluzd 45517 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑗 ∈ (ℤ𝑀))
36 limsupubuzlem.z . . . . . . . 8 𝑍 = (ℤ𝑀)
3735, 36eleqtrrdi 2842 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑗𝑍)
3829, 37ffvelcdmd 7018 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ∈ ℝ)
395, 7, 8, 27, 38fisupclrnmpt 45506 . . . . 5 (𝜑 → sup(ran (𝑗 ∈ (𝑀...𝑁) ↦ (𝐹𝑗)), ℝ, < ) ∈ ℝ)
404, 39eqeltrd 2831 . . . 4 (𝜑𝑊 ∈ ℝ)
412, 40ifcld 4519 . . 3 (𝜑 → if(𝑊𝑌, 𝑌, 𝑊) ∈ ℝ)
421, 41eqeltrid 2835 . 2 (𝜑𝑋 ∈ ℝ)
4328ffvelcdmda 7017 . . . . . . 7 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ)
4443adantr 480 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → (𝐹𝑗) ∈ ℝ)
4540ad2antrr 726 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑊 ∈ ℝ)
4642ad2antrr 726 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑋 ∈ ℝ)
47 simpll 766 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝜑)
4810ad2antrr 726 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑀 ∈ ℤ)
4917ad2antrr 726 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑁 ∈ ℤ)
5036eluzelz2 45511 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ ℤ)
5150ad2antlr 727 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑗 ∈ ℤ)
5236eleq2i 2823 . . . . . . . . . . 11 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
5352biimpi 216 . . . . . . . . . 10 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
54 eluzle 12745 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑀) → 𝑀𝑗)
5553, 54syl 17 . . . . . . . . 9 (𝑗𝑍𝑀𝑗)
5655ad2antlr 727 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑀𝑗)
57 simpr 484 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑗𝑁)
5848, 49, 51, 56, 57elfzd 13415 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑗 ∈ (𝑀...𝑁))
595, 8, 38fimaxre4 45509 . . . . . . . . 9 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑗 ∈ (𝑀...𝑁)(𝐹𝑗) ≤ 𝑏)
605, 38, 59suprubrnmpt 45360 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ≤ sup(ran (𝑗 ∈ (𝑀...𝑁) ↦ (𝐹𝑗)), ℝ, < ))
6160, 3breqtrrdi 5131 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ≤ 𝑊)
6247, 58, 61syl2anc 584 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → (𝐹𝑗) ≤ 𝑊)
63 max1 13084 . . . . . . . . 9 ((𝑊 ∈ ℝ ∧ 𝑌 ∈ ℝ) → 𝑊 ≤ if(𝑊𝑌, 𝑌, 𝑊))
6440, 2, 63syl2anc 584 . . . . . . . 8 (𝜑𝑊 ≤ if(𝑊𝑌, 𝑌, 𝑊))
6564, 1breqtrrdi 5131 . . . . . . 7 (𝜑𝑊𝑋)
6665ad2antrr 726 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑊𝑋)
6744, 45, 46, 62, 66letrd 11270 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → (𝐹𝑗) ≤ 𝑋)
6813ad2antrr 726 . . . . . . 7 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝐾 ∈ ℝ)
69 uzssre 12754 . . . . . . . . . 10 (ℤ𝑀) ⊆ ℝ
7036, 69eqsstri 3976 . . . . . . . . 9 𝑍 ⊆ ℝ
7170sseli 3925 . . . . . . . 8 (𝑗𝑍𝑗 ∈ ℝ)
7271ad2antlr 727 . . . . . . 7 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝑗 ∈ ℝ)
7369, 24sselid 3927 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
7473ad2antrr 726 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝑁 ∈ ℝ)
75 ceilge 13749 . . . . . . . . . . 11 (𝐾 ∈ ℝ → 𝐾 ≤ (⌈‘𝐾))
7613, 75syl 17 . . . . . . . . . 10 (𝜑𝐾 ≤ (⌈‘𝐾))
77 max1 13084 . . . . . . . . . . . 12 (((⌈‘𝐾) ∈ ℝ ∧ 𝑀 ∈ ℝ) → (⌈‘𝐾) ≤ if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)))
7818, 19, 77syl2anc 584 . . . . . . . . . . 11 (𝜑 → (⌈‘𝐾) ≤ if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)))
7978, 22breqtrd 5115 . . . . . . . . . 10 (𝜑 → (⌈‘𝐾) ≤ 𝑁)
8013, 18, 73, 76, 79letrd 11270 . . . . . . . . 9 (𝜑𝐾𝑁)
8180ad2antrr 726 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝐾𝑁)
82 simpr 484 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → ¬ 𝑗𝑁)
8374, 72ltnled 11260 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → (𝑁 < 𝑗 ↔ ¬ 𝑗𝑁))
8482, 83mpbird 257 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝑁 < 𝑗)
8568, 74, 72, 81, 84lelttrd 11271 . . . . . . 7 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝐾 < 𝑗)
8668, 72, 85ltled 11261 . . . . . 6 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝐾𝑗)
8743adantr 480 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → (𝐹𝑗) ∈ ℝ)
882ad2antrr 726 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑌 ∈ ℝ)
8942ad2antrr 726 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑋 ∈ ℝ)
90 simpr 484 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝐾𝑗)
91 limsupubuzlem.b . . . . . . . . . 10 (𝜑 → ∀𝑗𝑍 (𝐾𝑗 → (𝐹𝑗) ≤ 𝑌))
9291r19.21bi 3224 . . . . . . . . 9 ((𝜑𝑗𝑍) → (𝐾𝑗 → (𝐹𝑗) ≤ 𝑌))
9392adantr 480 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → (𝐾𝑗 → (𝐹𝑗) ≤ 𝑌))
9490, 93mpd 15 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → (𝐹𝑗) ≤ 𝑌)
95 max2 13086 . . . . . . . . . 10 ((𝑊 ∈ ℝ ∧ 𝑌 ∈ ℝ) → 𝑌 ≤ if(𝑊𝑌, 𝑌, 𝑊))
9640, 2, 95syl2anc 584 . . . . . . . . 9 (𝜑𝑌 ≤ if(𝑊𝑌, 𝑌, 𝑊))
9796, 1breqtrrdi 5131 . . . . . . . 8 (𝜑𝑌𝑋)
9897ad2antrr 726 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑌𝑋)
9987, 88, 89, 94, 98letrd 11270 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → (𝐹𝑗) ≤ 𝑋)
10086, 99syldan 591 . . . . 5 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → (𝐹𝑗) ≤ 𝑋)
10167, 100pm2.61dan 812 . . . 4 ((𝜑𝑗𝑍) → (𝐹𝑗) ≤ 𝑋)
102101ex 412 . . 3 (𝜑 → (𝑗𝑍 → (𝐹𝑗) ≤ 𝑋))
1035, 102ralrimi 3230 . 2 (𝜑 → ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑋)
104 nfv 1915 . . 3 𝑥𝑗𝑍 (𝐹𝑗) ≤ 𝑋
105 nfcv 2894 . . . . 5 𝑗𝑥
106 limsupubuzlem.e . . . . 5 𝑗𝑋
107105, 106nfeq 2908 . . . 4 𝑗 𝑥 = 𝑋
108 breq2 5093 . . . 4 (𝑥 = 𝑋 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑋))
109107, 108ralbid 3245 . . 3 (𝑥 = 𝑋 → (∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥 ↔ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑋))
110104, 109rspce 3561 . 2 ((𝑋 ∈ ℝ ∧ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑋) → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
11142, 103, 110syl2anc 584 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2111  wnfc 2879  wral 3047  wrex 3056  ifcif 4472   class class class wbr 5089  cmpt 5170   Or wor 5521  ran crn 5615  wf 6477  cfv 6481  (class class class)co 7346  supcsup 9324  cr 11005   < clt 11146  cle 11147  cz 12468  cuz 12732  ...cfz 13407  cceil 13695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fl 13696  df-ceil 13697
This theorem is referenced by:  limsupubuz  45821
  Copyright terms: Public domain W3C validator