Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupubuzlem Structured version   Visualization version   GIF version

Theorem limsupubuzlem 45727
Description: If the limsup is not +∞, then the function is bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupubuzlem.j 𝑗𝜑
limsupubuzlem.e 𝑗𝑋
limsupubuzlem.m (𝜑𝑀 ∈ ℤ)
limsupubuzlem.z 𝑍 = (ℤ𝑀)
limsupubuzlem.f (𝜑𝐹:𝑍⟶ℝ)
limsupubuzlem.y (𝜑𝑌 ∈ ℝ)
limsupubuzlem.k (𝜑𝐾 ∈ ℝ)
limsupubuzlem.b (𝜑 → ∀𝑗𝑍 (𝐾𝑗 → (𝐹𝑗) ≤ 𝑌))
limsupubuzlem.n 𝑁 = if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾))
limsupubuzlem.w 𝑊 = sup(ran (𝑗 ∈ (𝑀...𝑁) ↦ (𝐹𝑗)), ℝ, < )
limsupubuzlem.x 𝑋 = if(𝑊𝑌, 𝑌, 𝑊)
Assertion
Ref Expression
limsupubuzlem (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
Distinct variable groups:   𝑥,𝐹   𝑗,𝑀   𝑗,𝑁   𝑥,𝑋   𝑥,𝑍   𝑥,𝑗
Allowed substitution hints:   𝜑(𝑥,𝑗)   𝐹(𝑗)   𝐾(𝑥,𝑗)   𝑀(𝑥)   𝑁(𝑥)   𝑊(𝑥,𝑗)   𝑋(𝑗)   𝑌(𝑥,𝑗)   𝑍(𝑗)

Proof of Theorem limsupubuzlem
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 limsupubuzlem.x . . 3 𝑋 = if(𝑊𝑌, 𝑌, 𝑊)
2 limsupubuzlem.y . . . 4 (𝜑𝑌 ∈ ℝ)
3 limsupubuzlem.w . . . . . 6 𝑊 = sup(ran (𝑗 ∈ (𝑀...𝑁) ↦ (𝐹𝑗)), ℝ, < )
43a1i 11 . . . . 5 (𝜑𝑊 = sup(ran (𝑗 ∈ (𝑀...𝑁) ↦ (𝐹𝑗)), ℝ, < ))
5 limsupubuzlem.j . . . . . 6 𝑗𝜑
6 ltso 11341 . . . . . . 7 < Or ℝ
76a1i 11 . . . . . 6 (𝜑 → < Or ℝ)
8 fzfid 14014 . . . . . 6 (𝜑 → (𝑀...𝑁) ∈ Fin)
9 eqid 2737 . . . . . . . . 9 (ℤ𝑀) = (ℤ𝑀)
10 limsupubuzlem.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
11 limsupubuzlem.n . . . . . . . . . . 11 𝑁 = if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾))
1211a1i 11 . . . . . . . . . 10 (𝜑𝑁 = if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)))
13 limsupubuzlem.k . . . . . . . . . . . 12 (𝜑𝐾 ∈ ℝ)
14 ceilcl 13882 . . . . . . . . . . . 12 (𝐾 ∈ ℝ → (⌈‘𝐾) ∈ ℤ)
1513, 14syl 17 . . . . . . . . . . 11 (𝜑 → (⌈‘𝐾) ∈ ℤ)
1610, 15ifcld 4572 . . . . . . . . . 10 (𝜑 → if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)) ∈ ℤ)
1712, 16eqeltrd 2841 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
1815zred 12722 . . . . . . . . . . 11 (𝜑 → (⌈‘𝐾) ∈ ℝ)
1910zred 12722 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
20 max2 13229 . . . . . . . . . . 11 (((⌈‘𝐾) ∈ ℝ ∧ 𝑀 ∈ ℝ) → 𝑀 ≤ if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)))
2118, 19, 20syl2anc 584 . . . . . . . . . 10 (𝜑𝑀 ≤ if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)))
2212eqcomd 2743 . . . . . . . . . 10 (𝜑 → if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)) = 𝑁)
2321, 22breqtrd 5169 . . . . . . . . 9 (𝜑𝑀𝑁)
249, 10, 17, 23eluzd 45420 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
25 eluzfz2 13572 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
2624, 25syl 17 . . . . . . 7 (𝜑𝑁 ∈ (𝑀...𝑁))
2726ne0d 4342 . . . . . 6 (𝜑 → (𝑀...𝑁) ≠ ∅)
28 limsupubuzlem.f . . . . . . . 8 (𝜑𝐹:𝑍⟶ℝ)
2928adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐹:𝑍⟶ℝ)
3010adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ)
31 elfzelz 13564 . . . . . . . . . 10 (𝑗 ∈ (𝑀...𝑁) → 𝑗 ∈ ℤ)
3231adantl 481 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑗 ∈ ℤ)
33 elfzle1 13567 . . . . . . . . . 10 (𝑗 ∈ (𝑀...𝑁) → 𝑀𝑗)
3433adantl 481 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑀𝑗)
359, 30, 32, 34eluzd 45420 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑗 ∈ (ℤ𝑀))
36 limsupubuzlem.z . . . . . . . 8 𝑍 = (ℤ𝑀)
3735, 36eleqtrrdi 2852 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑗𝑍)
3829, 37ffvelcdmd 7105 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ∈ ℝ)
395, 7, 8, 27, 38fisupclrnmpt 45409 . . . . 5 (𝜑 → sup(ran (𝑗 ∈ (𝑀...𝑁) ↦ (𝐹𝑗)), ℝ, < ) ∈ ℝ)
404, 39eqeltrd 2841 . . . 4 (𝜑𝑊 ∈ ℝ)
412, 40ifcld 4572 . . 3 (𝜑 → if(𝑊𝑌, 𝑌, 𝑊) ∈ ℝ)
421, 41eqeltrid 2845 . 2 (𝜑𝑋 ∈ ℝ)
4328ffvelcdmda 7104 . . . . . . 7 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ)
4443adantr 480 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → (𝐹𝑗) ∈ ℝ)
4540ad2antrr 726 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑊 ∈ ℝ)
4642ad2antrr 726 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑋 ∈ ℝ)
47 simpll 767 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝜑)
4810ad2antrr 726 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑀 ∈ ℤ)
4917ad2antrr 726 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑁 ∈ ℤ)
5036eluzelz2 45414 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ ℤ)
5150ad2antlr 727 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑗 ∈ ℤ)
5236eleq2i 2833 . . . . . . . . . . 11 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
5352biimpi 216 . . . . . . . . . 10 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
54 eluzle 12891 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑀) → 𝑀𝑗)
5553, 54syl 17 . . . . . . . . 9 (𝑗𝑍𝑀𝑗)
5655ad2antlr 727 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑀𝑗)
57 simpr 484 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑗𝑁)
5848, 49, 51, 56, 57elfzd 13555 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑗 ∈ (𝑀...𝑁))
595, 8, 38fimaxre4 45412 . . . . . . . . 9 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑗 ∈ (𝑀...𝑁)(𝐹𝑗) ≤ 𝑏)
605, 38, 59suprubrnmpt 45260 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ≤ sup(ran (𝑗 ∈ (𝑀...𝑁) ↦ (𝐹𝑗)), ℝ, < ))
6160, 3breqtrrdi 5185 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ≤ 𝑊)
6247, 58, 61syl2anc 584 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → (𝐹𝑗) ≤ 𝑊)
63 max1 13227 . . . . . . . . 9 ((𝑊 ∈ ℝ ∧ 𝑌 ∈ ℝ) → 𝑊 ≤ if(𝑊𝑌, 𝑌, 𝑊))
6440, 2, 63syl2anc 584 . . . . . . . 8 (𝜑𝑊 ≤ if(𝑊𝑌, 𝑌, 𝑊))
6564, 1breqtrrdi 5185 . . . . . . 7 (𝜑𝑊𝑋)
6665ad2antrr 726 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑊𝑋)
6744, 45, 46, 62, 66letrd 11418 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → (𝐹𝑗) ≤ 𝑋)
6813ad2antrr 726 . . . . . . 7 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝐾 ∈ ℝ)
69 uzssre 12900 . . . . . . . . . 10 (ℤ𝑀) ⊆ ℝ
7036, 69eqsstri 4030 . . . . . . . . 9 𝑍 ⊆ ℝ
7170sseli 3979 . . . . . . . 8 (𝑗𝑍𝑗 ∈ ℝ)
7271ad2antlr 727 . . . . . . 7 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝑗 ∈ ℝ)
7369, 24sselid 3981 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
7473ad2antrr 726 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝑁 ∈ ℝ)
75 ceilge 13885 . . . . . . . . . . 11 (𝐾 ∈ ℝ → 𝐾 ≤ (⌈‘𝐾))
7613, 75syl 17 . . . . . . . . . 10 (𝜑𝐾 ≤ (⌈‘𝐾))
77 max1 13227 . . . . . . . . . . . 12 (((⌈‘𝐾) ∈ ℝ ∧ 𝑀 ∈ ℝ) → (⌈‘𝐾) ≤ if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)))
7818, 19, 77syl2anc 584 . . . . . . . . . . 11 (𝜑 → (⌈‘𝐾) ≤ if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)))
7978, 22breqtrd 5169 . . . . . . . . . 10 (𝜑 → (⌈‘𝐾) ≤ 𝑁)
8013, 18, 73, 76, 79letrd 11418 . . . . . . . . 9 (𝜑𝐾𝑁)
8180ad2antrr 726 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝐾𝑁)
82 simpr 484 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → ¬ 𝑗𝑁)
8374, 72ltnled 11408 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → (𝑁 < 𝑗 ↔ ¬ 𝑗𝑁))
8482, 83mpbird 257 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝑁 < 𝑗)
8568, 74, 72, 81, 84lelttrd 11419 . . . . . . 7 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝐾 < 𝑗)
8668, 72, 85ltled 11409 . . . . . 6 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝐾𝑗)
8743adantr 480 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → (𝐹𝑗) ∈ ℝ)
882ad2antrr 726 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑌 ∈ ℝ)
8942ad2antrr 726 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑋 ∈ ℝ)
90 simpr 484 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝐾𝑗)
91 limsupubuzlem.b . . . . . . . . . 10 (𝜑 → ∀𝑗𝑍 (𝐾𝑗 → (𝐹𝑗) ≤ 𝑌))
9291r19.21bi 3251 . . . . . . . . 9 ((𝜑𝑗𝑍) → (𝐾𝑗 → (𝐹𝑗) ≤ 𝑌))
9392adantr 480 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → (𝐾𝑗 → (𝐹𝑗) ≤ 𝑌))
9490, 93mpd 15 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → (𝐹𝑗) ≤ 𝑌)
95 max2 13229 . . . . . . . . . 10 ((𝑊 ∈ ℝ ∧ 𝑌 ∈ ℝ) → 𝑌 ≤ if(𝑊𝑌, 𝑌, 𝑊))
9640, 2, 95syl2anc 584 . . . . . . . . 9 (𝜑𝑌 ≤ if(𝑊𝑌, 𝑌, 𝑊))
9796, 1breqtrrdi 5185 . . . . . . . 8 (𝜑𝑌𝑋)
9897ad2antrr 726 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑌𝑋)
9987, 88, 89, 94, 98letrd 11418 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → (𝐹𝑗) ≤ 𝑋)
10086, 99syldan 591 . . . . 5 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → (𝐹𝑗) ≤ 𝑋)
10167, 100pm2.61dan 813 . . . 4 ((𝜑𝑗𝑍) → (𝐹𝑗) ≤ 𝑋)
102101ex 412 . . 3 (𝜑 → (𝑗𝑍 → (𝐹𝑗) ≤ 𝑋))
1035, 102ralrimi 3257 . 2 (𝜑 → ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑋)
104 nfv 1914 . . 3 𝑥𝑗𝑍 (𝐹𝑗) ≤ 𝑋
105 nfcv 2905 . . . . 5 𝑗𝑥
106 limsupubuzlem.e . . . . 5 𝑗𝑋
107105, 106nfeq 2919 . . . 4 𝑗 𝑥 = 𝑋
108 breq2 5147 . . . 4 (𝑥 = 𝑋 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑋))
109107, 108ralbid 3273 . . 3 (𝑥 = 𝑋 → (∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥 ↔ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑋))
110104, 109rspce 3611 . 2 ((𝑋 ∈ ℝ ∧ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑋) → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
11142, 103, 110syl2anc 584 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2108  wnfc 2890  wral 3061  wrex 3070  ifcif 4525   class class class wbr 5143  cmpt 5225   Or wor 5591  ran crn 5686  wf 6557  cfv 6561  (class class class)co 7431  supcsup 9480  cr 11154   < clt 11295  cle 11296  cz 12613  cuz 12878  ...cfz 13547  cceil 13831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fl 13832  df-ceil 13833
This theorem is referenced by:  limsupubuz  45728
  Copyright terms: Public domain W3C validator