Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupubuzlem Structured version   Visualization version   GIF version

Theorem limsupubuzlem 45703
Description: If the limsup is not +∞, then the function is bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupubuzlem.j 𝑗𝜑
limsupubuzlem.e 𝑗𝑋
limsupubuzlem.m (𝜑𝑀 ∈ ℤ)
limsupubuzlem.z 𝑍 = (ℤ𝑀)
limsupubuzlem.f (𝜑𝐹:𝑍⟶ℝ)
limsupubuzlem.y (𝜑𝑌 ∈ ℝ)
limsupubuzlem.k (𝜑𝐾 ∈ ℝ)
limsupubuzlem.b (𝜑 → ∀𝑗𝑍 (𝐾𝑗 → (𝐹𝑗) ≤ 𝑌))
limsupubuzlem.n 𝑁 = if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾))
limsupubuzlem.w 𝑊 = sup(ran (𝑗 ∈ (𝑀...𝑁) ↦ (𝐹𝑗)), ℝ, < )
limsupubuzlem.x 𝑋 = if(𝑊𝑌, 𝑌, 𝑊)
Assertion
Ref Expression
limsupubuzlem (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
Distinct variable groups:   𝑥,𝐹   𝑗,𝑀   𝑗,𝑁   𝑥,𝑋   𝑥,𝑍   𝑥,𝑗
Allowed substitution hints:   𝜑(𝑥,𝑗)   𝐹(𝑗)   𝐾(𝑥,𝑗)   𝑀(𝑥)   𝑁(𝑥)   𝑊(𝑥,𝑗)   𝑋(𝑗)   𝑌(𝑥,𝑗)   𝑍(𝑗)

Proof of Theorem limsupubuzlem
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 limsupubuzlem.x . . 3 𝑋 = if(𝑊𝑌, 𝑌, 𝑊)
2 limsupubuzlem.y . . . 4 (𝜑𝑌 ∈ ℝ)
3 limsupubuzlem.w . . . . . 6 𝑊 = sup(ran (𝑗 ∈ (𝑀...𝑁) ↦ (𝐹𝑗)), ℝ, < )
43a1i 11 . . . . 5 (𝜑𝑊 = sup(ran (𝑗 ∈ (𝑀...𝑁) ↦ (𝐹𝑗)), ℝ, < ))
5 limsupubuzlem.j . . . . . 6 𝑗𝜑
6 ltso 11230 . . . . . . 7 < Or ℝ
76a1i 11 . . . . . 6 (𝜑 → < Or ℝ)
8 fzfid 13914 . . . . . 6 (𝜑 → (𝑀...𝑁) ∈ Fin)
9 eqid 2729 . . . . . . . . 9 (ℤ𝑀) = (ℤ𝑀)
10 limsupubuzlem.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
11 limsupubuzlem.n . . . . . . . . . . 11 𝑁 = if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾))
1211a1i 11 . . . . . . . . . 10 (𝜑𝑁 = if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)))
13 limsupubuzlem.k . . . . . . . . . . . 12 (𝜑𝐾 ∈ ℝ)
14 ceilcl 13780 . . . . . . . . . . . 12 (𝐾 ∈ ℝ → (⌈‘𝐾) ∈ ℤ)
1513, 14syl 17 . . . . . . . . . . 11 (𝜑 → (⌈‘𝐾) ∈ ℤ)
1610, 15ifcld 4531 . . . . . . . . . 10 (𝜑 → if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)) ∈ ℤ)
1712, 16eqeltrd 2828 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
1815zred 12614 . . . . . . . . . . 11 (𝜑 → (⌈‘𝐾) ∈ ℝ)
1910zred 12614 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
20 max2 13123 . . . . . . . . . . 11 (((⌈‘𝐾) ∈ ℝ ∧ 𝑀 ∈ ℝ) → 𝑀 ≤ if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)))
2118, 19, 20syl2anc 584 . . . . . . . . . 10 (𝜑𝑀 ≤ if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)))
2212eqcomd 2735 . . . . . . . . . 10 (𝜑 → if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)) = 𝑁)
2321, 22breqtrd 5128 . . . . . . . . 9 (𝜑𝑀𝑁)
249, 10, 17, 23eluzd 45398 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
25 eluzfz2 13469 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
2624, 25syl 17 . . . . . . 7 (𝜑𝑁 ∈ (𝑀...𝑁))
2726ne0d 4301 . . . . . 6 (𝜑 → (𝑀...𝑁) ≠ ∅)
28 limsupubuzlem.f . . . . . . . 8 (𝜑𝐹:𝑍⟶ℝ)
2928adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐹:𝑍⟶ℝ)
3010adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ)
31 elfzelz 13461 . . . . . . . . . 10 (𝑗 ∈ (𝑀...𝑁) → 𝑗 ∈ ℤ)
3231adantl 481 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑗 ∈ ℤ)
33 elfzle1 13464 . . . . . . . . . 10 (𝑗 ∈ (𝑀...𝑁) → 𝑀𝑗)
3433adantl 481 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑀𝑗)
359, 30, 32, 34eluzd 45398 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑗 ∈ (ℤ𝑀))
36 limsupubuzlem.z . . . . . . . 8 𝑍 = (ℤ𝑀)
3735, 36eleqtrrdi 2839 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑗𝑍)
3829, 37ffvelcdmd 7039 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ∈ ℝ)
395, 7, 8, 27, 38fisupclrnmpt 45387 . . . . 5 (𝜑 → sup(ran (𝑗 ∈ (𝑀...𝑁) ↦ (𝐹𝑗)), ℝ, < ) ∈ ℝ)
404, 39eqeltrd 2828 . . . 4 (𝜑𝑊 ∈ ℝ)
412, 40ifcld 4531 . . 3 (𝜑 → if(𝑊𝑌, 𝑌, 𝑊) ∈ ℝ)
421, 41eqeltrid 2832 . 2 (𝜑𝑋 ∈ ℝ)
4328ffvelcdmda 7038 . . . . . . 7 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ)
4443adantr 480 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → (𝐹𝑗) ∈ ℝ)
4540ad2antrr 726 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑊 ∈ ℝ)
4642ad2antrr 726 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑋 ∈ ℝ)
47 simpll 766 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝜑)
4810ad2antrr 726 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑀 ∈ ℤ)
4917ad2antrr 726 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑁 ∈ ℤ)
5036eluzelz2 45392 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ ℤ)
5150ad2antlr 727 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑗 ∈ ℤ)
5236eleq2i 2820 . . . . . . . . . . 11 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
5352biimpi 216 . . . . . . . . . 10 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
54 eluzle 12782 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑀) → 𝑀𝑗)
5553, 54syl 17 . . . . . . . . 9 (𝑗𝑍𝑀𝑗)
5655ad2antlr 727 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑀𝑗)
57 simpr 484 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑗𝑁)
5848, 49, 51, 56, 57elfzd 13452 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑗 ∈ (𝑀...𝑁))
595, 8, 38fimaxre4 45390 . . . . . . . . 9 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑗 ∈ (𝑀...𝑁)(𝐹𝑗) ≤ 𝑏)
605, 38, 59suprubrnmpt 45240 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ≤ sup(ran (𝑗 ∈ (𝑀...𝑁) ↦ (𝐹𝑗)), ℝ, < ))
6160, 3breqtrrdi 5144 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ≤ 𝑊)
6247, 58, 61syl2anc 584 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → (𝐹𝑗) ≤ 𝑊)
63 max1 13121 . . . . . . . . 9 ((𝑊 ∈ ℝ ∧ 𝑌 ∈ ℝ) → 𝑊 ≤ if(𝑊𝑌, 𝑌, 𝑊))
6440, 2, 63syl2anc 584 . . . . . . . 8 (𝜑𝑊 ≤ if(𝑊𝑌, 𝑌, 𝑊))
6564, 1breqtrrdi 5144 . . . . . . 7 (𝜑𝑊𝑋)
6665ad2antrr 726 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑊𝑋)
6744, 45, 46, 62, 66letrd 11307 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → (𝐹𝑗) ≤ 𝑋)
6813ad2antrr 726 . . . . . . 7 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝐾 ∈ ℝ)
69 uzssre 12791 . . . . . . . . . 10 (ℤ𝑀) ⊆ ℝ
7036, 69eqsstri 3990 . . . . . . . . 9 𝑍 ⊆ ℝ
7170sseli 3939 . . . . . . . 8 (𝑗𝑍𝑗 ∈ ℝ)
7271ad2antlr 727 . . . . . . 7 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝑗 ∈ ℝ)
7369, 24sselid 3941 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
7473ad2antrr 726 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝑁 ∈ ℝ)
75 ceilge 13783 . . . . . . . . . . 11 (𝐾 ∈ ℝ → 𝐾 ≤ (⌈‘𝐾))
7613, 75syl 17 . . . . . . . . . 10 (𝜑𝐾 ≤ (⌈‘𝐾))
77 max1 13121 . . . . . . . . . . . 12 (((⌈‘𝐾) ∈ ℝ ∧ 𝑀 ∈ ℝ) → (⌈‘𝐾) ≤ if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)))
7818, 19, 77syl2anc 584 . . . . . . . . . . 11 (𝜑 → (⌈‘𝐾) ≤ if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)))
7978, 22breqtrd 5128 . . . . . . . . . 10 (𝜑 → (⌈‘𝐾) ≤ 𝑁)
8013, 18, 73, 76, 79letrd 11307 . . . . . . . . 9 (𝜑𝐾𝑁)
8180ad2antrr 726 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝐾𝑁)
82 simpr 484 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → ¬ 𝑗𝑁)
8374, 72ltnled 11297 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → (𝑁 < 𝑗 ↔ ¬ 𝑗𝑁))
8482, 83mpbird 257 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝑁 < 𝑗)
8568, 74, 72, 81, 84lelttrd 11308 . . . . . . 7 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝐾 < 𝑗)
8668, 72, 85ltled 11298 . . . . . 6 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝐾𝑗)
8743adantr 480 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → (𝐹𝑗) ∈ ℝ)
882ad2antrr 726 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑌 ∈ ℝ)
8942ad2antrr 726 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑋 ∈ ℝ)
90 simpr 484 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝐾𝑗)
91 limsupubuzlem.b . . . . . . . . . 10 (𝜑 → ∀𝑗𝑍 (𝐾𝑗 → (𝐹𝑗) ≤ 𝑌))
9291r19.21bi 3227 . . . . . . . . 9 ((𝜑𝑗𝑍) → (𝐾𝑗 → (𝐹𝑗) ≤ 𝑌))
9392adantr 480 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → (𝐾𝑗 → (𝐹𝑗) ≤ 𝑌))
9490, 93mpd 15 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → (𝐹𝑗) ≤ 𝑌)
95 max2 13123 . . . . . . . . . 10 ((𝑊 ∈ ℝ ∧ 𝑌 ∈ ℝ) → 𝑌 ≤ if(𝑊𝑌, 𝑌, 𝑊))
9640, 2, 95syl2anc 584 . . . . . . . . 9 (𝜑𝑌 ≤ if(𝑊𝑌, 𝑌, 𝑊))
9796, 1breqtrrdi 5144 . . . . . . . 8 (𝜑𝑌𝑋)
9897ad2antrr 726 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑌𝑋)
9987, 88, 89, 94, 98letrd 11307 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → (𝐹𝑗) ≤ 𝑋)
10086, 99syldan 591 . . . . 5 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → (𝐹𝑗) ≤ 𝑋)
10167, 100pm2.61dan 812 . . . 4 ((𝜑𝑗𝑍) → (𝐹𝑗) ≤ 𝑋)
102101ex 412 . . 3 (𝜑 → (𝑗𝑍 → (𝐹𝑗) ≤ 𝑋))
1035, 102ralrimi 3233 . 2 (𝜑 → ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑋)
104 nfv 1914 . . 3 𝑥𝑗𝑍 (𝐹𝑗) ≤ 𝑋
105 nfcv 2891 . . . . 5 𝑗𝑥
106 limsupubuzlem.e . . . . 5 𝑗𝑋
107105, 106nfeq 2905 . . . 4 𝑗 𝑥 = 𝑋
108 breq2 5106 . . . 4 (𝑥 = 𝑋 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑋))
109107, 108ralbid 3248 . . 3 (𝑥 = 𝑋 → (∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥 ↔ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑋))
110104, 109rspce 3574 . 2 ((𝑋 ∈ ℝ ∧ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑋) → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
11142, 103, 110syl2anc 584 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wnfc 2876  wral 3044  wrex 3053  ifcif 4484   class class class wbr 5102  cmpt 5183   Or wor 5538  ran crn 5632  wf 6495  cfv 6499  (class class class)co 7369  supcsup 9367  cr 11043   < clt 11184  cle 11185  cz 12505  cuz 12769  ...cfz 13444  cceil 13729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fl 13730  df-ceil 13731
This theorem is referenced by:  limsupubuz  45704
  Copyright terms: Public domain W3C validator