Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iuneqfzuzlem Structured version   Visualization version   GIF version

Theorem iuneqfzuzlem 45289
Description: Lemma for iuneqfzuz 45290: here, inclusion is proven; aiuneqfzuz uses this lemma twice, to prove equality. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
iuneqfzuzlem.z 𝑍 = (ℤ𝑁)
Assertion
Ref Expression
iuneqfzuzlem (∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵 𝑛𝑍 𝐴 𝑛𝑍 𝐵)
Distinct variable groups:   𝐴,𝑚   𝐵,𝑚   𝑛,𝑁   𝑚,𝑍,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)   𝑁(𝑚)

Proof of Theorem iuneqfzuzlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2897 . . . . . . . . 9 𝑚𝐴
2 nfcsb1v 3896 . . . . . . . . 9 𝑛𝑚 / 𝑛𝐴
3 csbeq1a 3886 . . . . . . . . 9 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
41, 2, 3cbviun 5009 . . . . . . . 8 𝑛𝑍 𝐴 = 𝑚𝑍 𝑚 / 𝑛𝐴
54eleq2i 2825 . . . . . . 7 (𝑥 𝑛𝑍 𝐴𝑥 𝑚𝑍 𝑚 / 𝑛𝐴)
6 eliun 4968 . . . . . . 7 (𝑥 𝑚𝑍 𝑚 / 𝑛𝐴 ↔ ∃𝑚𝑍 𝑥𝑚 / 𝑛𝐴)
75, 6bitri 275 . . . . . 6 (𝑥 𝑛𝑍 𝐴 ↔ ∃𝑚𝑍 𝑥𝑚 / 𝑛𝐴)
87biimpi 216 . . . . 5 (𝑥 𝑛𝑍 𝐴 → ∃𝑚𝑍 𝑥𝑚 / 𝑛𝐴)
98adantl 481 . . . 4 ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑥 𝑛𝑍 𝐴) → ∃𝑚𝑍 𝑥𝑚 / 𝑛𝐴)
10 nfra1 3264 . . . . . 6 𝑚𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵
11 nfv 1913 . . . . . 6 𝑚 𝑥 𝑛𝑍 𝐵
12 simp2 1137 . . . . . . . 8 ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑚𝑍𝑥𝑚 / 𝑛𝐴) → 𝑚𝑍)
13 rspa 3229 . . . . . . . . 9 ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑚𝑍) → 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵)
14133adant3 1132 . . . . . . . 8 ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑚𝑍𝑥𝑚 / 𝑛𝐴) → 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵)
15 simp3 1138 . . . . . . . 8 ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑚𝑍𝑥𝑚 / 𝑛𝐴) → 𝑥𝑚 / 𝑛𝐴)
16 id 22 . . . . . . . . . . 11 ( 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵)
17 fzssuz 13571 . . . . . . . . . . . . 13 (𝑁...𝑚) ⊆ (ℤ𝑁)
18 iuneqfzuzlem.z . . . . . . . . . . . . . 14 𝑍 = (ℤ𝑁)
1918eqcomi 2743 . . . . . . . . . . . . 13 (ℤ𝑁) = 𝑍
2017, 19sseqtri 4005 . . . . . . . . . . . 12 (𝑁...𝑚) ⊆ 𝑍
21 iunss1 4979 . . . . . . . . . . . 12 ((𝑁...𝑚) ⊆ 𝑍 𝑛 ∈ (𝑁...𝑚)𝐵 𝑛𝑍 𝐵)
2220, 21mp1i 13 . . . . . . . . . . 11 ( 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵 𝑛 ∈ (𝑁...𝑚)𝐵 𝑛𝑍 𝐵)
2316, 22eqsstrd 3991 . . . . . . . . . 10 ( 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵 𝑛 ∈ (𝑁...𝑚)𝐴 𝑛𝑍 𝐵)
24233ad2ant2 1134 . . . . . . . . 9 ((𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑥𝑚 / 𝑛𝐴) → 𝑛 ∈ (𝑁...𝑚)𝐴 𝑛𝑍 𝐵)
2518eleq2i 2825 . . . . . . . . . . . . . . 15 (𝑚𝑍𝑚 ∈ (ℤ𝑁))
2625biimpi 216 . . . . . . . . . . . . . 14 (𝑚𝑍𝑚 ∈ (ℤ𝑁))
27 eluzel2 12849 . . . . . . . . . . . . . 14 (𝑚 ∈ (ℤ𝑁) → 𝑁 ∈ ℤ)
2826, 27syl 17 . . . . . . . . . . . . 13 (𝑚𝑍𝑁 ∈ ℤ)
29 eluzelz 12854 . . . . . . . . . . . . . 14 (𝑚 ∈ (ℤ𝑁) → 𝑚 ∈ ℤ)
3026, 29syl 17 . . . . . . . . . . . . 13 (𝑚𝑍𝑚 ∈ ℤ)
31 eluzle 12857 . . . . . . . . . . . . . 14 (𝑚 ∈ (ℤ𝑁) → 𝑁𝑚)
3226, 31syl 17 . . . . . . . . . . . . 13 (𝑚𝑍𝑁𝑚)
3330zred 12689 . . . . . . . . . . . . . 14 (𝑚𝑍𝑚 ∈ ℝ)
34 leid 11323 . . . . . . . . . . . . . 14 (𝑚 ∈ ℝ → 𝑚𝑚)
3533, 34syl 17 . . . . . . . . . . . . 13 (𝑚𝑍𝑚𝑚)
3628, 30, 30, 32, 35elfzd 13521 . . . . . . . . . . . 12 (𝑚𝑍𝑚 ∈ (𝑁...𝑚))
37 nfcv 2897 . . . . . . . . . . . . . 14 𝑛𝑥
3837, 2nfel 2912 . . . . . . . . . . . . 13 𝑛 𝑥𝑚 / 𝑛𝐴
393eleq2d 2819 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (𝑥𝐴𝑥𝑚 / 𝑛𝐴))
4038, 39rspce 3588 . . . . . . . . . . . 12 ((𝑚 ∈ (𝑁...𝑚) ∧ 𝑥𝑚 / 𝑛𝐴) → ∃𝑛 ∈ (𝑁...𝑚)𝑥𝐴)
4136, 40sylan 580 . . . . . . . . . . 11 ((𝑚𝑍𝑥𝑚 / 𝑛𝐴) → ∃𝑛 ∈ (𝑁...𝑚)𝑥𝐴)
42 eliun 4968 . . . . . . . . . . 11 (𝑥 𝑛 ∈ (𝑁...𝑚)𝐴 ↔ ∃𝑛 ∈ (𝑁...𝑚)𝑥𝐴)
4341, 42sylibr 234 . . . . . . . . . 10 ((𝑚𝑍𝑥𝑚 / 𝑛𝐴) → 𝑥 𝑛 ∈ (𝑁...𝑚)𝐴)
44433adant2 1131 . . . . . . . . 9 ((𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑥𝑚 / 𝑛𝐴) → 𝑥 𝑛 ∈ (𝑁...𝑚)𝐴)
4524, 44sseldd 3957 . . . . . . . 8 ((𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑥𝑚 / 𝑛𝐴) → 𝑥 𝑛𝑍 𝐵)
4612, 14, 15, 45syl3anc 1372 . . . . . . 7 ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑚𝑍𝑥𝑚 / 𝑛𝐴) → 𝑥 𝑛𝑍 𝐵)
47463exp 1119 . . . . . 6 (∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵 → (𝑚𝑍 → (𝑥𝑚 / 𝑛𝐴𝑥 𝑛𝑍 𝐵)))
4810, 11, 47rexlimd 3247 . . . . 5 (∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵 → (∃𝑚𝑍 𝑥𝑚 / 𝑛𝐴𝑥 𝑛𝑍 𝐵))
4948adantr 480 . . . 4 ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑥 𝑛𝑍 𝐴) → (∃𝑚𝑍 𝑥𝑚 / 𝑛𝐴𝑥 𝑛𝑍 𝐵))
509, 49mpd 15 . . 3 ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑥 𝑛𝑍 𝐴) → 𝑥 𝑛𝑍 𝐵)
5150ralrimiva 3130 . 2 (∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵 → ∀𝑥 𝑛𝑍 𝐴𝑥 𝑛𝑍 𝐵)
52 dfss3 3945 . 2 ( 𝑛𝑍 𝐴 𝑛𝑍 𝐵 ↔ ∀𝑥 𝑛𝑍 𝐴𝑥 𝑛𝑍 𝐵)
5351, 52sylibr 234 1 (∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵 𝑛𝑍 𝐴 𝑛𝑍 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  wrex 3059  csb 3872  wss 3924   ciun 4964   class class class wbr 5116  cfv 6527  (class class class)co 7399  cr 11120  cle 11262  cz 12580  cuz 12844  ...cfz 13513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-pre-lttri 11195
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-ov 7402  df-oprab 7403  df-mpo 7404  df-1st 7982  df-2nd 7983  df-er 8713  df-en 8954  df-dom 8955  df-sdom 8956  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-neg 11461  df-z 12581  df-uz 12845  df-fz 13514
This theorem is referenced by:  iuneqfzuz  45290
  Copyright terms: Public domain W3C validator