Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iuneqfzuzlem Structured version   Visualization version   GIF version

Theorem iuneqfzuzlem 44044
Description: Lemma for iuneqfzuz 44045: here, inclusion is proven; aiuneqfzuz uses this lemma twice, to prove equality. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
iuneqfzuzlem.z 𝑍 = (ℤ𝑁)
Assertion
Ref Expression
iuneqfzuzlem (∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵 𝑛𝑍 𝐴 𝑛𝑍 𝐵)
Distinct variable groups:   𝐴,𝑚   𝐵,𝑚   𝑛,𝑁   𝑚,𝑍,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)   𝑁(𝑚)

Proof of Theorem iuneqfzuzlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2904 . . . . . . . . 9 𝑚𝐴
2 nfcsb1v 3919 . . . . . . . . 9 𝑛𝑚 / 𝑛𝐴
3 csbeq1a 3908 . . . . . . . . 9 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
41, 2, 3cbviun 5040 . . . . . . . 8 𝑛𝑍 𝐴 = 𝑚𝑍 𝑚 / 𝑛𝐴
54eleq2i 2826 . . . . . . 7 (𝑥 𝑛𝑍 𝐴𝑥 𝑚𝑍 𝑚 / 𝑛𝐴)
6 eliun 5002 . . . . . . 7 (𝑥 𝑚𝑍 𝑚 / 𝑛𝐴 ↔ ∃𝑚𝑍 𝑥𝑚 / 𝑛𝐴)
75, 6bitri 275 . . . . . 6 (𝑥 𝑛𝑍 𝐴 ↔ ∃𝑚𝑍 𝑥𝑚 / 𝑛𝐴)
87biimpi 215 . . . . 5 (𝑥 𝑛𝑍 𝐴 → ∃𝑚𝑍 𝑥𝑚 / 𝑛𝐴)
98adantl 483 . . . 4 ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑥 𝑛𝑍 𝐴) → ∃𝑚𝑍 𝑥𝑚 / 𝑛𝐴)
10 nfra1 3282 . . . . . 6 𝑚𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵
11 nfv 1918 . . . . . 6 𝑚 𝑥 𝑛𝑍 𝐵
12 simp2 1138 . . . . . . . 8 ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑚𝑍𝑥𝑚 / 𝑛𝐴) → 𝑚𝑍)
13 rspa 3246 . . . . . . . . 9 ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑚𝑍) → 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵)
14133adant3 1133 . . . . . . . 8 ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑚𝑍𝑥𝑚 / 𝑛𝐴) → 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵)
15 simp3 1139 . . . . . . . 8 ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑚𝑍𝑥𝑚 / 𝑛𝐴) → 𝑥𝑚 / 𝑛𝐴)
16 id 22 . . . . . . . . . . 11 ( 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵)
17 fzssuz 13542 . . . . . . . . . . . . 13 (𝑁...𝑚) ⊆ (ℤ𝑁)
18 iuneqfzuzlem.z . . . . . . . . . . . . . 14 𝑍 = (ℤ𝑁)
1918eqcomi 2742 . . . . . . . . . . . . 13 (ℤ𝑁) = 𝑍
2017, 19sseqtri 4019 . . . . . . . . . . . 12 (𝑁...𝑚) ⊆ 𝑍
21 iunss1 5012 . . . . . . . . . . . 12 ((𝑁...𝑚) ⊆ 𝑍 𝑛 ∈ (𝑁...𝑚)𝐵 𝑛𝑍 𝐵)
2220, 21mp1i 13 . . . . . . . . . . 11 ( 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵 𝑛 ∈ (𝑁...𝑚)𝐵 𝑛𝑍 𝐵)
2316, 22eqsstrd 4021 . . . . . . . . . 10 ( 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵 𝑛 ∈ (𝑁...𝑚)𝐴 𝑛𝑍 𝐵)
24233ad2ant2 1135 . . . . . . . . 9 ((𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑥𝑚 / 𝑛𝐴) → 𝑛 ∈ (𝑁...𝑚)𝐴 𝑛𝑍 𝐵)
2518eleq2i 2826 . . . . . . . . . . . . . . 15 (𝑚𝑍𝑚 ∈ (ℤ𝑁))
2625biimpi 215 . . . . . . . . . . . . . 14 (𝑚𝑍𝑚 ∈ (ℤ𝑁))
27 eluzel2 12827 . . . . . . . . . . . . . 14 (𝑚 ∈ (ℤ𝑁) → 𝑁 ∈ ℤ)
2826, 27syl 17 . . . . . . . . . . . . 13 (𝑚𝑍𝑁 ∈ ℤ)
29 eluzelz 12832 . . . . . . . . . . . . . 14 (𝑚 ∈ (ℤ𝑁) → 𝑚 ∈ ℤ)
3026, 29syl 17 . . . . . . . . . . . . 13 (𝑚𝑍𝑚 ∈ ℤ)
31 eluzle 12835 . . . . . . . . . . . . . 14 (𝑚 ∈ (ℤ𝑁) → 𝑁𝑚)
3226, 31syl 17 . . . . . . . . . . . . 13 (𝑚𝑍𝑁𝑚)
3330zred 12666 . . . . . . . . . . . . . 14 (𝑚𝑍𝑚 ∈ ℝ)
34 leid 11310 . . . . . . . . . . . . . 14 (𝑚 ∈ ℝ → 𝑚𝑚)
3533, 34syl 17 . . . . . . . . . . . . 13 (𝑚𝑍𝑚𝑚)
3628, 30, 30, 32, 35elfzd 13492 . . . . . . . . . . . 12 (𝑚𝑍𝑚 ∈ (𝑁...𝑚))
37 nfcv 2904 . . . . . . . . . . . . . 14 𝑛𝑥
3837, 2nfel 2918 . . . . . . . . . . . . 13 𝑛 𝑥𝑚 / 𝑛𝐴
393eleq2d 2820 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (𝑥𝐴𝑥𝑚 / 𝑛𝐴))
4038, 39rspce 3602 . . . . . . . . . . . 12 ((𝑚 ∈ (𝑁...𝑚) ∧ 𝑥𝑚 / 𝑛𝐴) → ∃𝑛 ∈ (𝑁...𝑚)𝑥𝐴)
4136, 40sylan 581 . . . . . . . . . . 11 ((𝑚𝑍𝑥𝑚 / 𝑛𝐴) → ∃𝑛 ∈ (𝑁...𝑚)𝑥𝐴)
42 eliun 5002 . . . . . . . . . . 11 (𝑥 𝑛 ∈ (𝑁...𝑚)𝐴 ↔ ∃𝑛 ∈ (𝑁...𝑚)𝑥𝐴)
4341, 42sylibr 233 . . . . . . . . . 10 ((𝑚𝑍𝑥𝑚 / 𝑛𝐴) → 𝑥 𝑛 ∈ (𝑁...𝑚)𝐴)
44433adant2 1132 . . . . . . . . 9 ((𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑥𝑚 / 𝑛𝐴) → 𝑥 𝑛 ∈ (𝑁...𝑚)𝐴)
4524, 44sseldd 3984 . . . . . . . 8 ((𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑥𝑚 / 𝑛𝐴) → 𝑥 𝑛𝑍 𝐵)
4612, 14, 15, 45syl3anc 1372 . . . . . . 7 ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑚𝑍𝑥𝑚 / 𝑛𝐴) → 𝑥 𝑛𝑍 𝐵)
47463exp 1120 . . . . . 6 (∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵 → (𝑚𝑍 → (𝑥𝑚 / 𝑛𝐴𝑥 𝑛𝑍 𝐵)))
4810, 11, 47rexlimd 3264 . . . . 5 (∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵 → (∃𝑚𝑍 𝑥𝑚 / 𝑛𝐴𝑥 𝑛𝑍 𝐵))
4948adantr 482 . . . 4 ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑥 𝑛𝑍 𝐴) → (∃𝑚𝑍 𝑥𝑚 / 𝑛𝐴𝑥 𝑛𝑍 𝐵))
509, 49mpd 15 . . 3 ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑥 𝑛𝑍 𝐴) → 𝑥 𝑛𝑍 𝐵)
5150ralrimiva 3147 . 2 (∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵 → ∀𝑥 𝑛𝑍 𝐴𝑥 𝑛𝑍 𝐵)
52 dfss3 3971 . 2 ( 𝑛𝑍 𝐴 𝑛𝑍 𝐵 ↔ ∀𝑥 𝑛𝑍 𝐴𝑥 𝑛𝑍 𝐵)
5351, 52sylibr 233 1 (∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵 𝑛𝑍 𝐴 𝑛𝑍 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  wrex 3071  csb 3894  wss 3949   ciun 4998   class class class wbr 5149  cfv 6544  (class class class)co 7409  cr 11109  cle 11249  cz 12558  cuz 12822  ...cfz 13484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-pre-lttri 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-neg 11447  df-z 12559  df-uz 12823  df-fz 13485
This theorem is referenced by:  iuneqfzuz  44045
  Copyright terms: Public domain W3C validator