Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iuneqfzuzlem Structured version   Visualization version   GIF version

Theorem iuneqfzuzlem 45324
Description: Lemma for iuneqfzuz 45325: here, inclusion is proven; aiuneqfzuz uses this lemma twice, to prove equality. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
iuneqfzuzlem.z 𝑍 = (ℤ𝑁)
Assertion
Ref Expression
iuneqfzuzlem (∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵 𝑛𝑍 𝐴 𝑛𝑍 𝐵)
Distinct variable groups:   𝐴,𝑚   𝐵,𝑚   𝑛,𝑁   𝑚,𝑍,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)   𝑁(𝑚)

Proof of Theorem iuneqfzuzlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2891 . . . . . . . . 9 𝑚𝐴
2 nfcsb1v 3883 . . . . . . . . 9 𝑛𝑚 / 𝑛𝐴
3 csbeq1a 3873 . . . . . . . . 9 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
41, 2, 3cbviun 4995 . . . . . . . 8 𝑛𝑍 𝐴 = 𝑚𝑍 𝑚 / 𝑛𝐴
54eleq2i 2820 . . . . . . 7 (𝑥 𝑛𝑍 𝐴𝑥 𝑚𝑍 𝑚 / 𝑛𝐴)
6 eliun 4955 . . . . . . 7 (𝑥 𝑚𝑍 𝑚 / 𝑛𝐴 ↔ ∃𝑚𝑍 𝑥𝑚 / 𝑛𝐴)
75, 6bitri 275 . . . . . 6 (𝑥 𝑛𝑍 𝐴 ↔ ∃𝑚𝑍 𝑥𝑚 / 𝑛𝐴)
87biimpi 216 . . . . 5 (𝑥 𝑛𝑍 𝐴 → ∃𝑚𝑍 𝑥𝑚 / 𝑛𝐴)
98adantl 481 . . . 4 ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑥 𝑛𝑍 𝐴) → ∃𝑚𝑍 𝑥𝑚 / 𝑛𝐴)
10 nfra1 3259 . . . . . 6 𝑚𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵
11 nfv 1914 . . . . . 6 𝑚 𝑥 𝑛𝑍 𝐵
12 simp2 1137 . . . . . . . 8 ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑚𝑍𝑥𝑚 / 𝑛𝐴) → 𝑚𝑍)
13 rspa 3224 . . . . . . . . 9 ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑚𝑍) → 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵)
14133adant3 1132 . . . . . . . 8 ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑚𝑍𝑥𝑚 / 𝑛𝐴) → 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵)
15 simp3 1138 . . . . . . . 8 ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑚𝑍𝑥𝑚 / 𝑛𝐴) → 𝑥𝑚 / 𝑛𝐴)
16 id 22 . . . . . . . . . . 11 ( 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵)
17 fzssuz 13504 . . . . . . . . . . . . 13 (𝑁...𝑚) ⊆ (ℤ𝑁)
18 iuneqfzuzlem.z . . . . . . . . . . . . . 14 𝑍 = (ℤ𝑁)
1918eqcomi 2738 . . . . . . . . . . . . 13 (ℤ𝑁) = 𝑍
2017, 19sseqtri 3992 . . . . . . . . . . . 12 (𝑁...𝑚) ⊆ 𝑍
21 iunss1 4966 . . . . . . . . . . . 12 ((𝑁...𝑚) ⊆ 𝑍 𝑛 ∈ (𝑁...𝑚)𝐵 𝑛𝑍 𝐵)
2220, 21mp1i 13 . . . . . . . . . . 11 ( 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵 𝑛 ∈ (𝑁...𝑚)𝐵 𝑛𝑍 𝐵)
2316, 22eqsstrd 3978 . . . . . . . . . 10 ( 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵 𝑛 ∈ (𝑁...𝑚)𝐴 𝑛𝑍 𝐵)
24233ad2ant2 1134 . . . . . . . . 9 ((𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑥𝑚 / 𝑛𝐴) → 𝑛 ∈ (𝑁...𝑚)𝐴 𝑛𝑍 𝐵)
2518eleq2i 2820 . . . . . . . . . . . . . . 15 (𝑚𝑍𝑚 ∈ (ℤ𝑁))
2625biimpi 216 . . . . . . . . . . . . . 14 (𝑚𝑍𝑚 ∈ (ℤ𝑁))
27 eluzel2 12776 . . . . . . . . . . . . . 14 (𝑚 ∈ (ℤ𝑁) → 𝑁 ∈ ℤ)
2826, 27syl 17 . . . . . . . . . . . . 13 (𝑚𝑍𝑁 ∈ ℤ)
29 eluzelz 12781 . . . . . . . . . . . . . 14 (𝑚 ∈ (ℤ𝑁) → 𝑚 ∈ ℤ)
3026, 29syl 17 . . . . . . . . . . . . 13 (𝑚𝑍𝑚 ∈ ℤ)
31 eluzle 12784 . . . . . . . . . . . . . 14 (𝑚 ∈ (ℤ𝑁) → 𝑁𝑚)
3226, 31syl 17 . . . . . . . . . . . . 13 (𝑚𝑍𝑁𝑚)
3330zred 12616 . . . . . . . . . . . . . 14 (𝑚𝑍𝑚 ∈ ℝ)
34 leid 11248 . . . . . . . . . . . . . 14 (𝑚 ∈ ℝ → 𝑚𝑚)
3533, 34syl 17 . . . . . . . . . . . . 13 (𝑚𝑍𝑚𝑚)
3628, 30, 30, 32, 35elfzd 13454 . . . . . . . . . . . 12 (𝑚𝑍𝑚 ∈ (𝑁...𝑚))
37 nfcv 2891 . . . . . . . . . . . . . 14 𝑛𝑥
3837, 2nfel 2906 . . . . . . . . . . . . 13 𝑛 𝑥𝑚 / 𝑛𝐴
393eleq2d 2814 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (𝑥𝐴𝑥𝑚 / 𝑛𝐴))
4038, 39rspce 3574 . . . . . . . . . . . 12 ((𝑚 ∈ (𝑁...𝑚) ∧ 𝑥𝑚 / 𝑛𝐴) → ∃𝑛 ∈ (𝑁...𝑚)𝑥𝐴)
4136, 40sylan 580 . . . . . . . . . . 11 ((𝑚𝑍𝑥𝑚 / 𝑛𝐴) → ∃𝑛 ∈ (𝑁...𝑚)𝑥𝐴)
42 eliun 4955 . . . . . . . . . . 11 (𝑥 𝑛 ∈ (𝑁...𝑚)𝐴 ↔ ∃𝑛 ∈ (𝑁...𝑚)𝑥𝐴)
4341, 42sylibr 234 . . . . . . . . . 10 ((𝑚𝑍𝑥𝑚 / 𝑛𝐴) → 𝑥 𝑛 ∈ (𝑁...𝑚)𝐴)
44433adant2 1131 . . . . . . . . 9 ((𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑥𝑚 / 𝑛𝐴) → 𝑥 𝑛 ∈ (𝑁...𝑚)𝐴)
4524, 44sseldd 3944 . . . . . . . 8 ((𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑥𝑚 / 𝑛𝐴) → 𝑥 𝑛𝑍 𝐵)
4612, 14, 15, 45syl3anc 1373 . . . . . . 7 ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑚𝑍𝑥𝑚 / 𝑛𝐴) → 𝑥 𝑛𝑍 𝐵)
47463exp 1119 . . . . . 6 (∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵 → (𝑚𝑍 → (𝑥𝑚 / 𝑛𝐴𝑥 𝑛𝑍 𝐵)))
4810, 11, 47rexlimd 3242 . . . . 5 (∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵 → (∃𝑚𝑍 𝑥𝑚 / 𝑛𝐴𝑥 𝑛𝑍 𝐵))
4948adantr 480 . . . 4 ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑥 𝑛𝑍 𝐴) → (∃𝑚𝑍 𝑥𝑚 / 𝑛𝐴𝑥 𝑛𝑍 𝐵))
509, 49mpd 15 . . 3 ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵𝑥 𝑛𝑍 𝐴) → 𝑥 𝑛𝑍 𝐵)
5150ralrimiva 3125 . 2 (∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵 → ∀𝑥 𝑛𝑍 𝐴𝑥 𝑛𝑍 𝐵)
52 dfss3 3932 . 2 ( 𝑛𝑍 𝐴 𝑛𝑍 𝐵 ↔ ∀𝑥 𝑛𝑍 𝐴𝑥 𝑛𝑍 𝐵)
5351, 52sylibr 234 1 (∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)𝐴 = 𝑛 ∈ (𝑁...𝑚)𝐵 𝑛𝑍 𝐴 𝑛𝑍 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  csb 3859  wss 3911   ciun 4951   class class class wbr 5102  cfv 6499  (class class class)co 7369  cr 11045  cle 11187  cz 12507  cuz 12771  ...cfz 13446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-pre-lttri 11120
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-neg 11386  df-z 12508  df-uz 12772  df-fz 13447
This theorem is referenced by:  iuneqfzuz  45325
  Copyright terms: Public domain W3C validator