MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunmbl2 Structured version   Visualization version   GIF version

Theorem iunmbl2 25611
Description: The measurable sets are closed under countable union. (Contributed by Mario Carneiro, 18-Mar-2014.)
Assertion
Ref Expression
iunmbl2 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → 𝑛𝐴 𝐵 ∈ dom vol)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐵(𝑛)

Proof of Theorem iunmbl2
Dummy variables 𝑓 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdom2 9042 . . 3 (𝐴 ≼ ℕ ↔ (𝐴 ≺ ℕ ∨ 𝐴 ≈ ℕ))
2 nnenom 14031 . . . . . 6 ℕ ≈ ω
3 sdomentr 9177 . . . . . 6 ((𝐴 ≺ ℕ ∧ ℕ ≈ ω) → 𝐴 ≺ ω)
42, 3mpan2 690 . . . . 5 (𝐴 ≺ ℕ → 𝐴 ≺ ω)
5 isfinite 9721 . . . . . 6 (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)
6 finiunmbl 25598 . . . . . . 7 ((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → 𝑛𝐴 𝐵 ∈ dom vol)
76ex 412 . . . . . 6 (𝐴 ∈ Fin → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑛𝐴 𝐵 ∈ dom vol))
85, 7sylbir 235 . . . . 5 (𝐴 ≺ ω → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑛𝐴 𝐵 ∈ dom vol))
94, 8syl 17 . . . 4 (𝐴 ≺ ℕ → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑛𝐴 𝐵 ∈ dom vol))
10 bren 9013 . . . . 5 (𝐴 ≈ ℕ ↔ ∃𝑓 𝑓:𝐴1-1-onto→ℕ)
11 nfv 1913 . . . . . . . . . . . . 13 𝑛 𝑓:𝐴1-1-onto→ℕ
12 nfcv 2908 . . . . . . . . . . . . . 14 𝑛
13 nfcsb1v 3946 . . . . . . . . . . . . . . 15 𝑛(𝑓𝑘) / 𝑛𝐵
1413nfcri 2900 . . . . . . . . . . . . . 14 𝑛 𝑥(𝑓𝑘) / 𝑛𝐵
1512, 14nfrexw 3319 . . . . . . . . . . . . 13 𝑛𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵
16 f1of 6862 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴1-1-onto→ℕ → 𝑓:𝐴⟶ℕ)
1716ffvelcdmda 7118 . . . . . . . . . . . . . . . 16 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴) → (𝑓𝑛) ∈ ℕ)
18173adant3 1132 . . . . . . . . . . . . . . 15 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴𝑥𝐵) → (𝑓𝑛) ∈ ℕ)
19 simp3 1138 . . . . . . . . . . . . . . . 16 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴𝑥𝐵) → 𝑥𝐵)
20 f1ocnvfv1 7312 . . . . . . . . . . . . . . . . . . 19 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴) → (𝑓‘(𝑓𝑛)) = 𝑛)
21203adant3 1132 . . . . . . . . . . . . . . . . . 18 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴𝑥𝐵) → (𝑓‘(𝑓𝑛)) = 𝑛)
2221eqcomd 2746 . . . . . . . . . . . . . . . . 17 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴𝑥𝐵) → 𝑛 = (𝑓‘(𝑓𝑛)))
23 csbeq1a 3935 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑓‘(𝑓𝑛)) → 𝐵 = (𝑓‘(𝑓𝑛)) / 𝑛𝐵)
2422, 23syl 17 . . . . . . . . . . . . . . . 16 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴𝑥𝐵) → 𝐵 = (𝑓‘(𝑓𝑛)) / 𝑛𝐵)
2519, 24eleqtrd 2846 . . . . . . . . . . . . . . 15 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴𝑥𝐵) → 𝑥(𝑓‘(𝑓𝑛)) / 𝑛𝐵)
26 fveq2 6920 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑓𝑛) → (𝑓𝑘) = (𝑓‘(𝑓𝑛)))
2726csbeq1d 3925 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑓𝑛) → (𝑓𝑘) / 𝑛𝐵 = (𝑓‘(𝑓𝑛)) / 𝑛𝐵)
2827eleq2d 2830 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑓𝑛) → (𝑥(𝑓𝑘) / 𝑛𝐵𝑥(𝑓‘(𝑓𝑛)) / 𝑛𝐵))
2928rspcev 3635 . . . . . . . . . . . . . . 15 (((𝑓𝑛) ∈ ℕ ∧ 𝑥(𝑓‘(𝑓𝑛)) / 𝑛𝐵) → ∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵)
3018, 25, 29syl2anc 583 . . . . . . . . . . . . . 14 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴𝑥𝐵) → ∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵)
31303exp 1119 . . . . . . . . . . . . 13 (𝑓:𝐴1-1-onto→ℕ → (𝑛𝐴 → (𝑥𝐵 → ∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵)))
3211, 15, 31rexlimd 3272 . . . . . . . . . . . 12 (𝑓:𝐴1-1-onto→ℕ → (∃𝑛𝐴 𝑥𝐵 → ∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵))
33 f1ocnvdm 7321 . . . . . . . . . . . . . 14 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ 𝐴)
34 csbeq1a 3935 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑓𝑘) → 𝐵 = (𝑓𝑘) / 𝑛𝐵)
3534eleq2d 2830 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑓𝑘) → (𝑥𝐵𝑥(𝑓𝑘) / 𝑛𝐵))
3614, 35rspce 3624 . . . . . . . . . . . . . . 15 (((𝑓𝑘) ∈ 𝐴𝑥(𝑓𝑘) / 𝑛𝐵) → ∃𝑛𝐴 𝑥𝐵)
3736ex 412 . . . . . . . . . . . . . 14 ((𝑓𝑘) ∈ 𝐴 → (𝑥(𝑓𝑘) / 𝑛𝐵 → ∃𝑛𝐴 𝑥𝐵))
3833, 37syl 17 . . . . . . . . . . . . 13 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑘 ∈ ℕ) → (𝑥(𝑓𝑘) / 𝑛𝐵 → ∃𝑛𝐴 𝑥𝐵))
3938rexlimdva 3161 . . . . . . . . . . . 12 (𝑓:𝐴1-1-onto→ℕ → (∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵 → ∃𝑛𝐴 𝑥𝐵))
4032, 39impbid 212 . . . . . . . . . . 11 (𝑓:𝐴1-1-onto→ℕ → (∃𝑛𝐴 𝑥𝐵 ↔ ∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵))
41 eliun 5019 . . . . . . . . . . 11 (𝑥 𝑛𝐴 𝐵 ↔ ∃𝑛𝐴 𝑥𝐵)
42 eliun 5019 . . . . . . . . . . 11 (𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ↔ ∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵)
4340, 41, 423bitr4g 314 . . . . . . . . . 10 (𝑓:𝐴1-1-onto→ℕ → (𝑥 𝑛𝐴 𝐵𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵))
4443eqrdv 2738 . . . . . . . . 9 (𝑓:𝐴1-1-onto→ℕ → 𝑛𝐴 𝐵 = 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵)
4544adantr 480 . . . . . . . 8 ((𝑓:𝐴1-1-onto→ℕ ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → 𝑛𝐴 𝐵 = 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵)
46 rspcsbela 4461 . . . . . . . . . . . 12 (((𝑓𝑘) ∈ 𝐴 ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → (𝑓𝑘) / 𝑛𝐵 ∈ dom vol)
4733, 46sylan 579 . . . . . . . . . . 11 (((𝑓:𝐴1-1-onto→ℕ ∧ 𝑘 ∈ ℕ) ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → (𝑓𝑘) / 𝑛𝐵 ∈ dom vol)
4847an32s 651 . . . . . . . . . 10 (((𝑓:𝐴1-1-onto→ℕ ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) / 𝑛𝐵 ∈ dom vol)
4948ralrimiva 3152 . . . . . . . . 9 ((𝑓:𝐴1-1-onto→ℕ ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → ∀𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ∈ dom vol)
50 iunmbl 25607 . . . . . . . . 9 (∀𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ∈ dom vol → 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ∈ dom vol)
5149, 50syl 17 . . . . . . . 8 ((𝑓:𝐴1-1-onto→ℕ ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ∈ dom vol)
5245, 51eqeltrd 2844 . . . . . . 7 ((𝑓:𝐴1-1-onto→ℕ ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → 𝑛𝐴 𝐵 ∈ dom vol)
5352ex 412 . . . . . 6 (𝑓:𝐴1-1-onto→ℕ → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑛𝐴 𝐵 ∈ dom vol))
5453exlimiv 1929 . . . . 5 (∃𝑓 𝑓:𝐴1-1-onto→ℕ → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑛𝐴 𝐵 ∈ dom vol))
5510, 54sylbi 217 . . . 4 (𝐴 ≈ ℕ → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑛𝐴 𝐵 ∈ dom vol))
569, 55jaoi 856 . . 3 ((𝐴 ≺ ℕ ∨ 𝐴 ≈ ℕ) → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑛𝐴 𝐵 ∈ dom vol))
571, 56sylbi 217 . 2 (𝐴 ≼ ℕ → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑛𝐴 𝐵 ∈ dom vol))
5857imp 406 1 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → 𝑛𝐴 𝐵 ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wral 3067  wrex 3076  csb 3921   ciun 5015   class class class wbr 5166  ccnv 5699  dom cdm 5700  1-1-ontowf1o 6572  cfv 6573  ωcom 7903  cen 9000  cdom 9001  csdm 9002  Fincfn 9003  cn 12293  volcvol 25517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xadd 13176  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-xmet 21380  df-met 21381  df-ovol 25518  df-vol 25519
This theorem is referenced by:  opnmblALT  25657  mbfimaopnlem  25709  mbfaddlem  25714  mbfsup  25718  dmvlsiga  34093
  Copyright terms: Public domain W3C validator