MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunmbl2 Structured version   Visualization version   GIF version

Theorem iunmbl2 24626
Description: The measurable sets are closed under countable union. (Contributed by Mario Carneiro, 18-Mar-2014.)
Assertion
Ref Expression
iunmbl2 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → 𝑛𝐴 𝐵 ∈ dom vol)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐵(𝑛)

Proof of Theorem iunmbl2
Dummy variables 𝑓 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdom2 8725 . . 3 (𝐴 ≼ ℕ ↔ (𝐴 ≺ ℕ ∨ 𝐴 ≈ ℕ))
2 nnenom 13628 . . . . . 6 ℕ ≈ ω
3 sdomentr 8847 . . . . . 6 ((𝐴 ≺ ℕ ∧ ℕ ≈ ω) → 𝐴 ≺ ω)
42, 3mpan2 687 . . . . 5 (𝐴 ≺ ℕ → 𝐴 ≺ ω)
5 isfinite 9340 . . . . . 6 (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)
6 finiunmbl 24613 . . . . . . 7 ((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → 𝑛𝐴 𝐵 ∈ dom vol)
76ex 412 . . . . . 6 (𝐴 ∈ Fin → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑛𝐴 𝐵 ∈ dom vol))
85, 7sylbir 234 . . . . 5 (𝐴 ≺ ω → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑛𝐴 𝐵 ∈ dom vol))
94, 8syl 17 . . . 4 (𝐴 ≺ ℕ → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑛𝐴 𝐵 ∈ dom vol))
10 bren 8701 . . . . 5 (𝐴 ≈ ℕ ↔ ∃𝑓 𝑓:𝐴1-1-onto→ℕ)
11 nfv 1918 . . . . . . . . . . . . 13 𝑛 𝑓:𝐴1-1-onto→ℕ
12 nfcv 2906 . . . . . . . . . . . . . 14 𝑛
13 nfcsb1v 3853 . . . . . . . . . . . . . . 15 𝑛(𝑓𝑘) / 𝑛𝐵
1413nfcri 2893 . . . . . . . . . . . . . 14 𝑛 𝑥(𝑓𝑘) / 𝑛𝐵
1512, 14nfrex 3237 . . . . . . . . . . . . 13 𝑛𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵
16 f1of 6700 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴1-1-onto→ℕ → 𝑓:𝐴⟶ℕ)
1716ffvelrnda 6943 . . . . . . . . . . . . . . . 16 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴) → (𝑓𝑛) ∈ ℕ)
18173adant3 1130 . . . . . . . . . . . . . . 15 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴𝑥𝐵) → (𝑓𝑛) ∈ ℕ)
19 simp3 1136 . . . . . . . . . . . . . . . 16 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴𝑥𝐵) → 𝑥𝐵)
20 f1ocnvfv1 7129 . . . . . . . . . . . . . . . . . . 19 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴) → (𝑓‘(𝑓𝑛)) = 𝑛)
21203adant3 1130 . . . . . . . . . . . . . . . . . 18 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴𝑥𝐵) → (𝑓‘(𝑓𝑛)) = 𝑛)
2221eqcomd 2744 . . . . . . . . . . . . . . . . 17 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴𝑥𝐵) → 𝑛 = (𝑓‘(𝑓𝑛)))
23 csbeq1a 3842 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑓‘(𝑓𝑛)) → 𝐵 = (𝑓‘(𝑓𝑛)) / 𝑛𝐵)
2422, 23syl 17 . . . . . . . . . . . . . . . 16 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴𝑥𝐵) → 𝐵 = (𝑓‘(𝑓𝑛)) / 𝑛𝐵)
2519, 24eleqtrd 2841 . . . . . . . . . . . . . . 15 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴𝑥𝐵) → 𝑥(𝑓‘(𝑓𝑛)) / 𝑛𝐵)
26 fveq2 6756 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑓𝑛) → (𝑓𝑘) = (𝑓‘(𝑓𝑛)))
2726csbeq1d 3832 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑓𝑛) → (𝑓𝑘) / 𝑛𝐵 = (𝑓‘(𝑓𝑛)) / 𝑛𝐵)
2827eleq2d 2824 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑓𝑛) → (𝑥(𝑓𝑘) / 𝑛𝐵𝑥(𝑓‘(𝑓𝑛)) / 𝑛𝐵))
2928rspcev 3552 . . . . . . . . . . . . . . 15 (((𝑓𝑛) ∈ ℕ ∧ 𝑥(𝑓‘(𝑓𝑛)) / 𝑛𝐵) → ∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵)
3018, 25, 29syl2anc 583 . . . . . . . . . . . . . 14 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴𝑥𝐵) → ∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵)
31303exp 1117 . . . . . . . . . . . . 13 (𝑓:𝐴1-1-onto→ℕ → (𝑛𝐴 → (𝑥𝐵 → ∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵)))
3211, 15, 31rexlimd 3245 . . . . . . . . . . . 12 (𝑓:𝐴1-1-onto→ℕ → (∃𝑛𝐴 𝑥𝐵 → ∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵))
33 f1ocnvdm 7137 . . . . . . . . . . . . . 14 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ 𝐴)
34 csbeq1a 3842 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑓𝑘) → 𝐵 = (𝑓𝑘) / 𝑛𝐵)
3534eleq2d 2824 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑓𝑘) → (𝑥𝐵𝑥(𝑓𝑘) / 𝑛𝐵))
3614, 35rspce 3540 . . . . . . . . . . . . . . 15 (((𝑓𝑘) ∈ 𝐴𝑥(𝑓𝑘) / 𝑛𝐵) → ∃𝑛𝐴 𝑥𝐵)
3736ex 412 . . . . . . . . . . . . . 14 ((𝑓𝑘) ∈ 𝐴 → (𝑥(𝑓𝑘) / 𝑛𝐵 → ∃𝑛𝐴 𝑥𝐵))
3833, 37syl 17 . . . . . . . . . . . . 13 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑘 ∈ ℕ) → (𝑥(𝑓𝑘) / 𝑛𝐵 → ∃𝑛𝐴 𝑥𝐵))
3938rexlimdva 3212 . . . . . . . . . . . 12 (𝑓:𝐴1-1-onto→ℕ → (∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵 → ∃𝑛𝐴 𝑥𝐵))
4032, 39impbid 211 . . . . . . . . . . 11 (𝑓:𝐴1-1-onto→ℕ → (∃𝑛𝐴 𝑥𝐵 ↔ ∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵))
41 eliun 4925 . . . . . . . . . . 11 (𝑥 𝑛𝐴 𝐵 ↔ ∃𝑛𝐴 𝑥𝐵)
42 eliun 4925 . . . . . . . . . . 11 (𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ↔ ∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵)
4340, 41, 423bitr4g 313 . . . . . . . . . 10 (𝑓:𝐴1-1-onto→ℕ → (𝑥 𝑛𝐴 𝐵𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵))
4443eqrdv 2736 . . . . . . . . 9 (𝑓:𝐴1-1-onto→ℕ → 𝑛𝐴 𝐵 = 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵)
4544adantr 480 . . . . . . . 8 ((𝑓:𝐴1-1-onto→ℕ ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → 𝑛𝐴 𝐵 = 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵)
46 rspcsbela 4366 . . . . . . . . . . . 12 (((𝑓𝑘) ∈ 𝐴 ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → (𝑓𝑘) / 𝑛𝐵 ∈ dom vol)
4733, 46sylan 579 . . . . . . . . . . 11 (((𝑓:𝐴1-1-onto→ℕ ∧ 𝑘 ∈ ℕ) ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → (𝑓𝑘) / 𝑛𝐵 ∈ dom vol)
4847an32s 648 . . . . . . . . . 10 (((𝑓:𝐴1-1-onto→ℕ ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) / 𝑛𝐵 ∈ dom vol)
4948ralrimiva 3107 . . . . . . . . 9 ((𝑓:𝐴1-1-onto→ℕ ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → ∀𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ∈ dom vol)
50 iunmbl 24622 . . . . . . . . 9 (∀𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ∈ dom vol → 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ∈ dom vol)
5149, 50syl 17 . . . . . . . 8 ((𝑓:𝐴1-1-onto→ℕ ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ∈ dom vol)
5245, 51eqeltrd 2839 . . . . . . 7 ((𝑓:𝐴1-1-onto→ℕ ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → 𝑛𝐴 𝐵 ∈ dom vol)
5352ex 412 . . . . . 6 (𝑓:𝐴1-1-onto→ℕ → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑛𝐴 𝐵 ∈ dom vol))
5453exlimiv 1934 . . . . 5 (∃𝑓 𝑓:𝐴1-1-onto→ℕ → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑛𝐴 𝐵 ∈ dom vol))
5510, 54sylbi 216 . . . 4 (𝐴 ≈ ℕ → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑛𝐴 𝐵 ∈ dom vol))
569, 55jaoi 853 . . 3 ((𝐴 ≺ ℕ ∨ 𝐴 ≈ ℕ) → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑛𝐴 𝐵 ∈ dom vol))
571, 56sylbi 216 . 2 (𝐴 ≼ ℕ → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑛𝐴 𝐵 ∈ dom vol))
5857imp 406 1 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → 𝑛𝐴 𝐵 ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wral 3063  wrex 3064  csb 3828   ciun 4921   class class class wbr 5070  ccnv 5579  dom cdm 5580  1-1-ontowf1o 6417  cfv 6418  ωcom 7687  cen 8688  cdom 8689  csdm 8690  Fincfn 8691  cn 11903  volcvol 24532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xadd 12778  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-xmet 20503  df-met 20504  df-ovol 24533  df-vol 24534
This theorem is referenced by:  opnmblALT  24672  mbfimaopnlem  24724  mbfaddlem  24729  mbfsup  24733  dmvlsiga  31997
  Copyright terms: Public domain W3C validator