MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunmbl2 Structured version   Visualization version   GIF version

Theorem iunmbl2 25535
Description: The measurable sets are closed under countable union. (Contributed by Mario Carneiro, 18-Mar-2014.)
Assertion
Ref Expression
iunmbl2 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → 𝑛𝐴 𝐵 ∈ dom vol)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐵(𝑛)

Proof of Theorem iunmbl2
Dummy variables 𝑓 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdom2 9003 . . 3 (𝐴 ≼ ℕ ↔ (𝐴 ≺ ℕ ∨ 𝐴 ≈ ℕ))
2 nnenom 13986 . . . . . 6 ℕ ≈ ω
3 sdomentr 9139 . . . . . 6 ((𝐴 ≺ ℕ ∧ ℕ ≈ ω) → 𝐴 ≺ ω)
42, 3mpan2 689 . . . . 5 (𝐴 ≺ ℕ → 𝐴 ≺ ω)
5 isfinite 9682 . . . . . 6 (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)
6 finiunmbl 25522 . . . . . . 7 ((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → 𝑛𝐴 𝐵 ∈ dom vol)
76ex 411 . . . . . 6 (𝐴 ∈ Fin → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑛𝐴 𝐵 ∈ dom vol))
85, 7sylbir 234 . . . . 5 (𝐴 ≺ ω → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑛𝐴 𝐵 ∈ dom vol))
94, 8syl 17 . . . 4 (𝐴 ≺ ℕ → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑛𝐴 𝐵 ∈ dom vol))
10 bren 8974 . . . . 5 (𝐴 ≈ ℕ ↔ ∃𝑓 𝑓:𝐴1-1-onto→ℕ)
11 nfv 1909 . . . . . . . . . . . . 13 𝑛 𝑓:𝐴1-1-onto→ℕ
12 nfcv 2891 . . . . . . . . . . . . . 14 𝑛
13 nfcsb1v 3914 . . . . . . . . . . . . . . 15 𝑛(𝑓𝑘) / 𝑛𝐵
1413nfcri 2882 . . . . . . . . . . . . . 14 𝑛 𝑥(𝑓𝑘) / 𝑛𝐵
1512, 14nfrexw 3300 . . . . . . . . . . . . 13 𝑛𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵
16 f1of 6838 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴1-1-onto→ℕ → 𝑓:𝐴⟶ℕ)
1716ffvelcdmda 7093 . . . . . . . . . . . . . . . 16 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴) → (𝑓𝑛) ∈ ℕ)
18173adant3 1129 . . . . . . . . . . . . . . 15 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴𝑥𝐵) → (𝑓𝑛) ∈ ℕ)
19 simp3 1135 . . . . . . . . . . . . . . . 16 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴𝑥𝐵) → 𝑥𝐵)
20 f1ocnvfv1 7285 . . . . . . . . . . . . . . . . . . 19 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴) → (𝑓‘(𝑓𝑛)) = 𝑛)
21203adant3 1129 . . . . . . . . . . . . . . . . . 18 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴𝑥𝐵) → (𝑓‘(𝑓𝑛)) = 𝑛)
2221eqcomd 2731 . . . . . . . . . . . . . . . . 17 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴𝑥𝐵) → 𝑛 = (𝑓‘(𝑓𝑛)))
23 csbeq1a 3903 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑓‘(𝑓𝑛)) → 𝐵 = (𝑓‘(𝑓𝑛)) / 𝑛𝐵)
2422, 23syl 17 . . . . . . . . . . . . . . . 16 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴𝑥𝐵) → 𝐵 = (𝑓‘(𝑓𝑛)) / 𝑛𝐵)
2519, 24eleqtrd 2827 . . . . . . . . . . . . . . 15 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴𝑥𝐵) → 𝑥(𝑓‘(𝑓𝑛)) / 𝑛𝐵)
26 fveq2 6896 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑓𝑛) → (𝑓𝑘) = (𝑓‘(𝑓𝑛)))
2726csbeq1d 3893 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑓𝑛) → (𝑓𝑘) / 𝑛𝐵 = (𝑓‘(𝑓𝑛)) / 𝑛𝐵)
2827eleq2d 2811 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑓𝑛) → (𝑥(𝑓𝑘) / 𝑛𝐵𝑥(𝑓‘(𝑓𝑛)) / 𝑛𝐵))
2928rspcev 3606 . . . . . . . . . . . . . . 15 (((𝑓𝑛) ∈ ℕ ∧ 𝑥(𝑓‘(𝑓𝑛)) / 𝑛𝐵) → ∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵)
3018, 25, 29syl2anc 582 . . . . . . . . . . . . . 14 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴𝑥𝐵) → ∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵)
31303exp 1116 . . . . . . . . . . . . 13 (𝑓:𝐴1-1-onto→ℕ → (𝑛𝐴 → (𝑥𝐵 → ∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵)))
3211, 15, 31rexlimd 3253 . . . . . . . . . . . 12 (𝑓:𝐴1-1-onto→ℕ → (∃𝑛𝐴 𝑥𝐵 → ∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵))
33 f1ocnvdm 7294 . . . . . . . . . . . . . 14 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ 𝐴)
34 csbeq1a 3903 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑓𝑘) → 𝐵 = (𝑓𝑘) / 𝑛𝐵)
3534eleq2d 2811 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑓𝑘) → (𝑥𝐵𝑥(𝑓𝑘) / 𝑛𝐵))
3614, 35rspce 3595 . . . . . . . . . . . . . . 15 (((𝑓𝑘) ∈ 𝐴𝑥(𝑓𝑘) / 𝑛𝐵) → ∃𝑛𝐴 𝑥𝐵)
3736ex 411 . . . . . . . . . . . . . 14 ((𝑓𝑘) ∈ 𝐴 → (𝑥(𝑓𝑘) / 𝑛𝐵 → ∃𝑛𝐴 𝑥𝐵))
3833, 37syl 17 . . . . . . . . . . . . 13 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑘 ∈ ℕ) → (𝑥(𝑓𝑘) / 𝑛𝐵 → ∃𝑛𝐴 𝑥𝐵))
3938rexlimdva 3144 . . . . . . . . . . . 12 (𝑓:𝐴1-1-onto→ℕ → (∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵 → ∃𝑛𝐴 𝑥𝐵))
4032, 39impbid 211 . . . . . . . . . . 11 (𝑓:𝐴1-1-onto→ℕ → (∃𝑛𝐴 𝑥𝐵 ↔ ∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵))
41 eliun 5001 . . . . . . . . . . 11 (𝑥 𝑛𝐴 𝐵 ↔ ∃𝑛𝐴 𝑥𝐵)
42 eliun 5001 . . . . . . . . . . 11 (𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ↔ ∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵)
4340, 41, 423bitr4g 313 . . . . . . . . . 10 (𝑓:𝐴1-1-onto→ℕ → (𝑥 𝑛𝐴 𝐵𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵))
4443eqrdv 2723 . . . . . . . . 9 (𝑓:𝐴1-1-onto→ℕ → 𝑛𝐴 𝐵 = 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵)
4544adantr 479 . . . . . . . 8 ((𝑓:𝐴1-1-onto→ℕ ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → 𝑛𝐴 𝐵 = 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵)
46 rspcsbela 4437 . . . . . . . . . . . 12 (((𝑓𝑘) ∈ 𝐴 ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → (𝑓𝑘) / 𝑛𝐵 ∈ dom vol)
4733, 46sylan 578 . . . . . . . . . . 11 (((𝑓:𝐴1-1-onto→ℕ ∧ 𝑘 ∈ ℕ) ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → (𝑓𝑘) / 𝑛𝐵 ∈ dom vol)
4847an32s 650 . . . . . . . . . 10 (((𝑓:𝐴1-1-onto→ℕ ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) / 𝑛𝐵 ∈ dom vol)
4948ralrimiva 3135 . . . . . . . . 9 ((𝑓:𝐴1-1-onto→ℕ ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → ∀𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ∈ dom vol)
50 iunmbl 25531 . . . . . . . . 9 (∀𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ∈ dom vol → 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ∈ dom vol)
5149, 50syl 17 . . . . . . . 8 ((𝑓:𝐴1-1-onto→ℕ ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ∈ dom vol)
5245, 51eqeltrd 2825 . . . . . . 7 ((𝑓:𝐴1-1-onto→ℕ ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → 𝑛𝐴 𝐵 ∈ dom vol)
5352ex 411 . . . . . 6 (𝑓:𝐴1-1-onto→ℕ → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑛𝐴 𝐵 ∈ dom vol))
5453exlimiv 1925 . . . . 5 (∃𝑓 𝑓:𝐴1-1-onto→ℕ → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑛𝐴 𝐵 ∈ dom vol))
5510, 54sylbi 216 . . . 4 (𝐴 ≈ ℕ → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑛𝐴 𝐵 ∈ dom vol))
569, 55jaoi 855 . . 3 ((𝐴 ≺ ℕ ∨ 𝐴 ≈ ℕ) → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑛𝐴 𝐵 ∈ dom vol))
571, 56sylbi 216 . 2 (𝐴 ≼ ℕ → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑛𝐴 𝐵 ∈ dom vol))
5857imp 405 1 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → 𝑛𝐴 𝐵 ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845  w3a 1084   = wceq 1533  wex 1773  wcel 2098  wral 3050  wrex 3059  csb 3889   ciun 4997   class class class wbr 5149  ccnv 5677  dom cdm 5678  1-1-ontowf1o 6548  cfv 6549  ωcom 7871  cen 8961  cdom 8962  csdm 8963  Fincfn 8964  cn 12250  volcvol 25441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9671  ax-cc 10465  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222  ax-pre-sup 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9472  df-inf 9473  df-oi 9540  df-dju 9931  df-card 9969  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-div 11909  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-z 12597  df-uz 12861  df-q 12971  df-rp 13015  df-xadd 13133  df-ioo 13368  df-ico 13370  df-icc 13371  df-fz 13525  df-fzo 13668  df-fl 13798  df-seq 14008  df-exp 14068  df-hash 14331  df-cj 15087  df-re 15088  df-im 15089  df-sqrt 15223  df-abs 15224  df-clim 15473  df-rlim 15474  df-sum 15674  df-xmet 21294  df-met 21295  df-ovol 25442  df-vol 25443
This theorem is referenced by:  opnmblALT  25581  mbfimaopnlem  25633  mbfaddlem  25638  mbfsup  25642  dmvlsiga  33881
  Copyright terms: Public domain W3C validator