MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunmbl2 Structured version   Visualization version   GIF version

Theorem iunmbl2 24719
Description: The measurable sets are closed under countable union. (Contributed by Mario Carneiro, 18-Mar-2014.)
Assertion
Ref Expression
iunmbl2 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → 𝑛𝐴 𝐵 ∈ dom vol)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐵(𝑛)

Proof of Theorem iunmbl2
Dummy variables 𝑓 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdom2 8753 . . 3 (𝐴 ≼ ℕ ↔ (𝐴 ≺ ℕ ∨ 𝐴 ≈ ℕ))
2 nnenom 13698 . . . . . 6 ℕ ≈ ω
3 sdomentr 8880 . . . . . 6 ((𝐴 ≺ ℕ ∧ ℕ ≈ ω) → 𝐴 ≺ ω)
42, 3mpan2 688 . . . . 5 (𝐴 ≺ ℕ → 𝐴 ≺ ω)
5 isfinite 9388 . . . . . 6 (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)
6 finiunmbl 24706 . . . . . . 7 ((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → 𝑛𝐴 𝐵 ∈ dom vol)
76ex 413 . . . . . 6 (𝐴 ∈ Fin → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑛𝐴 𝐵 ∈ dom vol))
85, 7sylbir 234 . . . . 5 (𝐴 ≺ ω → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑛𝐴 𝐵 ∈ dom vol))
94, 8syl 17 . . . 4 (𝐴 ≺ ℕ → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑛𝐴 𝐵 ∈ dom vol))
10 bren 8726 . . . . 5 (𝐴 ≈ ℕ ↔ ∃𝑓 𝑓:𝐴1-1-onto→ℕ)
11 nfv 1921 . . . . . . . . . . . . 13 𝑛 𝑓:𝐴1-1-onto→ℕ
12 nfcv 2909 . . . . . . . . . . . . . 14 𝑛
13 nfcsb1v 3862 . . . . . . . . . . . . . . 15 𝑛(𝑓𝑘) / 𝑛𝐵
1413nfcri 2896 . . . . . . . . . . . . . 14 𝑛 𝑥(𝑓𝑘) / 𝑛𝐵
1512, 14nfrex 3240 . . . . . . . . . . . . 13 𝑛𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵
16 f1of 6714 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴1-1-onto→ℕ → 𝑓:𝐴⟶ℕ)
1716ffvelrnda 6958 . . . . . . . . . . . . . . . 16 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴) → (𝑓𝑛) ∈ ℕ)
18173adant3 1131 . . . . . . . . . . . . . . 15 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴𝑥𝐵) → (𝑓𝑛) ∈ ℕ)
19 simp3 1137 . . . . . . . . . . . . . . . 16 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴𝑥𝐵) → 𝑥𝐵)
20 f1ocnvfv1 7145 . . . . . . . . . . . . . . . . . . 19 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴) → (𝑓‘(𝑓𝑛)) = 𝑛)
21203adant3 1131 . . . . . . . . . . . . . . . . . 18 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴𝑥𝐵) → (𝑓‘(𝑓𝑛)) = 𝑛)
2221eqcomd 2746 . . . . . . . . . . . . . . . . 17 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴𝑥𝐵) → 𝑛 = (𝑓‘(𝑓𝑛)))
23 csbeq1a 3851 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑓‘(𝑓𝑛)) → 𝐵 = (𝑓‘(𝑓𝑛)) / 𝑛𝐵)
2422, 23syl 17 . . . . . . . . . . . . . . . 16 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴𝑥𝐵) → 𝐵 = (𝑓‘(𝑓𝑛)) / 𝑛𝐵)
2519, 24eleqtrd 2843 . . . . . . . . . . . . . . 15 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴𝑥𝐵) → 𝑥(𝑓‘(𝑓𝑛)) / 𝑛𝐵)
26 fveq2 6771 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑓𝑛) → (𝑓𝑘) = (𝑓‘(𝑓𝑛)))
2726csbeq1d 3841 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑓𝑛) → (𝑓𝑘) / 𝑛𝐵 = (𝑓‘(𝑓𝑛)) / 𝑛𝐵)
2827eleq2d 2826 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑓𝑛) → (𝑥(𝑓𝑘) / 𝑛𝐵𝑥(𝑓‘(𝑓𝑛)) / 𝑛𝐵))
2928rspcev 3561 . . . . . . . . . . . . . . 15 (((𝑓𝑛) ∈ ℕ ∧ 𝑥(𝑓‘(𝑓𝑛)) / 𝑛𝐵) → ∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵)
3018, 25, 29syl2anc 584 . . . . . . . . . . . . . 14 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑛𝐴𝑥𝐵) → ∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵)
31303exp 1118 . . . . . . . . . . . . 13 (𝑓:𝐴1-1-onto→ℕ → (𝑛𝐴 → (𝑥𝐵 → ∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵)))
3211, 15, 31rexlimd 3248 . . . . . . . . . . . 12 (𝑓:𝐴1-1-onto→ℕ → (∃𝑛𝐴 𝑥𝐵 → ∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵))
33 f1ocnvdm 7153 . . . . . . . . . . . . . 14 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ 𝐴)
34 csbeq1a 3851 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑓𝑘) → 𝐵 = (𝑓𝑘) / 𝑛𝐵)
3534eleq2d 2826 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑓𝑘) → (𝑥𝐵𝑥(𝑓𝑘) / 𝑛𝐵))
3614, 35rspce 3549 . . . . . . . . . . . . . . 15 (((𝑓𝑘) ∈ 𝐴𝑥(𝑓𝑘) / 𝑛𝐵) → ∃𝑛𝐴 𝑥𝐵)
3736ex 413 . . . . . . . . . . . . . 14 ((𝑓𝑘) ∈ 𝐴 → (𝑥(𝑓𝑘) / 𝑛𝐵 → ∃𝑛𝐴 𝑥𝐵))
3833, 37syl 17 . . . . . . . . . . . . 13 ((𝑓:𝐴1-1-onto→ℕ ∧ 𝑘 ∈ ℕ) → (𝑥(𝑓𝑘) / 𝑛𝐵 → ∃𝑛𝐴 𝑥𝐵))
3938rexlimdva 3215 . . . . . . . . . . . 12 (𝑓:𝐴1-1-onto→ℕ → (∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵 → ∃𝑛𝐴 𝑥𝐵))
4032, 39impbid 211 . . . . . . . . . . 11 (𝑓:𝐴1-1-onto→ℕ → (∃𝑛𝐴 𝑥𝐵 ↔ ∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵))
41 eliun 4934 . . . . . . . . . . 11 (𝑥 𝑛𝐴 𝐵 ↔ ∃𝑛𝐴 𝑥𝐵)
42 eliun 4934 . . . . . . . . . . 11 (𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ↔ ∃𝑘 ∈ ℕ 𝑥(𝑓𝑘) / 𝑛𝐵)
4340, 41, 423bitr4g 314 . . . . . . . . . 10 (𝑓:𝐴1-1-onto→ℕ → (𝑥 𝑛𝐴 𝐵𝑥 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵))
4443eqrdv 2738 . . . . . . . . 9 (𝑓:𝐴1-1-onto→ℕ → 𝑛𝐴 𝐵 = 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵)
4544adantr 481 . . . . . . . 8 ((𝑓:𝐴1-1-onto→ℕ ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → 𝑛𝐴 𝐵 = 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵)
46 rspcsbela 4375 . . . . . . . . . . . 12 (((𝑓𝑘) ∈ 𝐴 ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → (𝑓𝑘) / 𝑛𝐵 ∈ dom vol)
4733, 46sylan 580 . . . . . . . . . . 11 (((𝑓:𝐴1-1-onto→ℕ ∧ 𝑘 ∈ ℕ) ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → (𝑓𝑘) / 𝑛𝐵 ∈ dom vol)
4847an32s 649 . . . . . . . . . 10 (((𝑓:𝐴1-1-onto→ℕ ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) / 𝑛𝐵 ∈ dom vol)
4948ralrimiva 3110 . . . . . . . . 9 ((𝑓:𝐴1-1-onto→ℕ ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → ∀𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ∈ dom vol)
50 iunmbl 24715 . . . . . . . . 9 (∀𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ∈ dom vol → 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ∈ dom vol)
5149, 50syl 17 . . . . . . . 8 ((𝑓:𝐴1-1-onto→ℕ ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → 𝑘 ∈ ℕ (𝑓𝑘) / 𝑛𝐵 ∈ dom vol)
5245, 51eqeltrd 2841 . . . . . . 7 ((𝑓:𝐴1-1-onto→ℕ ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → 𝑛𝐴 𝐵 ∈ dom vol)
5352ex 413 . . . . . 6 (𝑓:𝐴1-1-onto→ℕ → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑛𝐴 𝐵 ∈ dom vol))
5453exlimiv 1937 . . . . 5 (∃𝑓 𝑓:𝐴1-1-onto→ℕ → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑛𝐴 𝐵 ∈ dom vol))
5510, 54sylbi 216 . . . 4 (𝐴 ≈ ℕ → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑛𝐴 𝐵 ∈ dom vol))
569, 55jaoi 854 . . 3 ((𝐴 ≺ ℕ ∨ 𝐴 ≈ ℕ) → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑛𝐴 𝐵 ∈ dom vol))
571, 56sylbi 216 . 2 (𝐴 ≼ ℕ → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑛𝐴 𝐵 ∈ dom vol))
5857imp 407 1 ((𝐴 ≼ ℕ ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → 𝑛𝐴 𝐵 ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  w3a 1086   = wceq 1542  wex 1786  wcel 2110  wral 3066  wrex 3067  csb 3837   ciun 4930   class class class wbr 5079  ccnv 5589  dom cdm 5590  1-1-ontowf1o 6431  cfv 6432  ωcom 7706  cen 8713  cdom 8714  csdm 8715  Fincfn 8716  cn 11973  volcvol 24625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cc 10192  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-disj 5045  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-er 8481  df-map 8600  df-pm 8601  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-sup 9179  df-inf 9180  df-oi 9247  df-dju 9660  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12582  df-q 12688  df-rp 12730  df-xadd 12848  df-ioo 13082  df-ico 13084  df-icc 13085  df-fz 13239  df-fzo 13382  df-fl 13510  df-seq 13720  df-exp 13781  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-clim 15195  df-rlim 15196  df-sum 15396  df-xmet 20588  df-met 20589  df-ovol 24626  df-vol 24627
This theorem is referenced by:  opnmblALT  24765  mbfimaopnlem  24817  mbfaddlem  24822  mbfsup  24826  dmvlsiga  32093
  Copyright terms: Public domain W3C validator