Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzublem Structured version   Visualization version   GIF version

Theorem uzublem 45426
Description: A set of reals, indexed by upper integers, is bound if and only if any upper part is bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
uzublem.1 𝑗𝜑
uzublem.2 𝑗𝑋
uzublem.3 (𝜑𝑀 ∈ ℤ)
uzublem.4 𝑍 = (ℤ𝑀)
uzublem.5 (𝜑𝑌 ∈ ℝ)
uzublem.6 𝑊 = sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < )
uzublem.7 𝑋 = if(𝑊𝑌, 𝑌, 𝑊)
uzublem.8 (𝜑𝐾𝑍)
uzublem.9 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
uzublem.10 (𝜑 → ∀𝑗 ∈ (ℤ𝐾)𝐵𝑌)
Assertion
Ref Expression
uzublem (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
Distinct variable groups:   𝑥,𝐵   𝑗,𝐾   𝑗,𝑀   𝑥,𝑋   𝑥,𝑍   𝑥,𝑗
Allowed substitution hints:   𝜑(𝑥,𝑗)   𝐵(𝑗)   𝐾(𝑥)   𝑀(𝑥)   𝑊(𝑥,𝑗)   𝑋(𝑗)   𝑌(𝑥,𝑗)   𝑍(𝑗)

Proof of Theorem uzublem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 uzublem.7 . . 3 𝑋 = if(𝑊𝑌, 𝑌, 𝑊)
2 uzublem.5 . . . 4 (𝜑𝑌 ∈ ℝ)
3 uzublem.6 . . . . . 6 𝑊 = sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < )
43a1i 11 . . . . 5 (𝜑𝑊 = sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < ))
5 uzublem.1 . . . . . 6 𝑗𝜑
6 ltso 11254 . . . . . . 7 < Or ℝ
76a1i 11 . . . . . 6 (𝜑 → < Or ℝ)
8 fzfid 13938 . . . . . 6 (𝜑 → (𝑀...𝐾) ∈ Fin)
9 uzublem.3 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
10 uzublem.8 . . . . . . . . 9 (𝜑𝐾𝑍)
11 uzublem.4 . . . . . . . . . 10 𝑍 = (ℤ𝑀)
1211eluzelz2 45399 . . . . . . . . 9 (𝐾𝑍𝐾 ∈ ℤ)
1310, 12syl 17 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
149zred 12638 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
1514leidd 11744 . . . . . . . 8 (𝜑𝑀𝑀)
1610, 11eleqtrdi 2838 . . . . . . . . 9 (𝜑𝐾 ∈ (ℤ𝑀))
17 eluzle 12806 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → 𝑀𝐾)
1816, 17syl 17 . . . . . . . 8 (𝜑𝑀𝐾)
199, 13, 9, 15, 18elfzd 13476 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝐾))
2019ne0d 4305 . . . . . 6 (𝜑 → (𝑀...𝐾) ≠ ∅)
21 fzssuz 13526 . . . . . . . . 9 (𝑀...𝐾) ⊆ (ℤ𝑀)
2211eqcomi 2738 . . . . . . . . 9 (ℤ𝑀) = 𝑍
2321, 22sseqtri 3995 . . . . . . . 8 (𝑀...𝐾) ⊆ 𝑍
24 id 22 . . . . . . . 8 (𝑗 ∈ (𝑀...𝐾) → 𝑗 ∈ (𝑀...𝐾))
2523, 24sselid 3944 . . . . . . 7 (𝑗 ∈ (𝑀...𝐾) → 𝑗𝑍)
26 uzublem.9 . . . . . . 7 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
2725, 26sylan2 593 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝐾)) → 𝐵 ∈ ℝ)
285, 7, 8, 20, 27fisupclrnmpt 45394 . . . . 5 (𝜑 → sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < ) ∈ ℝ)
294, 28eqeltrd 2828 . . . 4 (𝜑𝑊 ∈ ℝ)
302, 29ifcld 4535 . . 3 (𝜑 → if(𝑊𝑌, 𝑌, 𝑊) ∈ ℝ)
311, 30eqeltrid 2832 . 2 (𝜑𝑋 ∈ ℝ)
3226adantr 480 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝐵 ∈ ℝ)
332ad2antrr 726 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑌 ∈ ℝ)
3431ad2antrr 726 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑋 ∈ ℝ)
35 uzublem.10 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ (ℤ𝐾)𝐵𝑌)
3635ad2antrr 726 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → ∀𝑗 ∈ (ℤ𝐾)𝐵𝑌)
37 eqid 2729 . . . . . . . 8 (ℤ𝐾) = (ℤ𝐾)
3813ad2antrr 726 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝐾 ∈ ℤ)
3911eluzelz2 45399 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ ℤ)
4039ad2antlr 727 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑗 ∈ ℤ)
41 simpr 484 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝐾𝑗)
4237, 38, 40, 41eluzd 45405 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑗 ∈ (ℤ𝐾))
43 rspa 3226 . . . . . . 7 ((∀𝑗 ∈ (ℤ𝐾)𝐵𝑌𝑗 ∈ (ℤ𝐾)) → 𝐵𝑌)
4436, 42, 43syl2anc 584 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝐵𝑌)
45 max2 13147 . . . . . . . . 9 ((𝑊 ∈ ℝ ∧ 𝑌 ∈ ℝ) → 𝑌 ≤ if(𝑊𝑌, 𝑌, 𝑊))
4629, 2, 45syl2anc 584 . . . . . . . 8 (𝜑𝑌 ≤ if(𝑊𝑌, 𝑌, 𝑊))
4746, 1breqtrrdi 5149 . . . . . . 7 (𝜑𝑌𝑋)
4847ad2antrr 726 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑌𝑋)
4932, 33, 34, 44, 48letrd 11331 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝐵𝑋)
50 simpr 484 . . . . . . 7 (((𝜑𝑗𝑍) ∧ ¬ 𝐾𝑗) → ¬ 𝐾𝑗)
51 uzssre 12815 . . . . . . . . . . 11 (ℤ𝑀) ⊆ ℝ
5211, 51eqsstri 3993 . . . . . . . . . 10 𝑍 ⊆ ℝ
5352sseli 3942 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ ℝ)
5453ad2antlr 727 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ¬ 𝐾𝑗) → 𝑗 ∈ ℝ)
5552, 10sselid 3944 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ)
5655ad2antrr 726 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ¬ 𝐾𝑗) → 𝐾 ∈ ℝ)
5754, 56ltnled 11321 . . . . . . 7 (((𝜑𝑗𝑍) ∧ ¬ 𝐾𝑗) → (𝑗 < 𝐾 ↔ ¬ 𝐾𝑗))
5850, 57mpbird 257 . . . . . 6 (((𝜑𝑗𝑍) ∧ ¬ 𝐾𝑗) → 𝑗 < 𝐾)
5926adantr 480 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝐵 ∈ ℝ)
603, 29eqeltrrid 2833 . . . . . . . . 9 (𝜑 → sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < ) ∈ ℝ)
613, 60eqeltrid 2832 . . . . . . . 8 (𝜑𝑊 ∈ ℝ)
6261ad2antrr 726 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑊 ∈ ℝ)
632, 61ifcld 4535 . . . . . . . . 9 (𝜑 → if(𝑊𝑌, 𝑌, 𝑊) ∈ ℝ)
641, 63eqeltrid 2832 . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
6564ad2antrr 726 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑋 ∈ ℝ)
66 simpll 766 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝜑)
679ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑀 ∈ ℤ)
6813ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝐾 ∈ ℤ)
6911eleq2i 2820 . . . . . . . . . . . . . 14 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
7069biimpi 216 . . . . . . . . . . . . 13 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
7170ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗 ∈ (ℤ𝑀))
72 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗 < 𝐾)
7371, 68, 72elfzod 45396 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗 ∈ (𝑀..^𝐾))
74 elfzouz 13624 . . . . . . . . . . . 12 (𝑗 ∈ (𝑀..^𝐾) → 𝑗 ∈ (ℤ𝑀))
7574, 22eleqtrdi 2838 . . . . . . . . . . 11 (𝑗 ∈ (𝑀..^𝐾) → 𝑗𝑍)
7673, 75, 393syl 18 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗 ∈ ℤ)
77 eluzle 12806 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 𝑀𝑗)
7870, 77syl 17 . . . . . . . . . . 11 (𝑗𝑍𝑀𝑗)
7978ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑀𝑗)
8073, 75, 533syl 18 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗 ∈ ℝ)
8155ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝐾 ∈ ℝ)
8280, 81, 72ltled 11322 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗𝐾)
8367, 68, 76, 79, 82elfzd 13476 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗 ∈ (𝑀...𝐾))
845, 27ralrimia 3236 . . . . . . . . . . 11 (𝜑 → ∀𝑗 ∈ (𝑀...𝐾)𝐵 ∈ ℝ)
85 fimaxre3 12129 . . . . . . . . . . 11 (((𝑀...𝐾) ∈ Fin ∧ ∀𝑗 ∈ (𝑀...𝐾)𝐵 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑗 ∈ (𝑀...𝐾)𝐵𝑦)
868, 84, 85syl2anc 584 . . . . . . . . . 10 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑗 ∈ (𝑀...𝐾)𝐵𝑦)
875, 27, 86suprubrnmpt 45247 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀...𝐾)) → 𝐵 ≤ sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < ))
8866, 83, 87syl2anc 584 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝐵 ≤ sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < ))
8988, 3breqtrrdi 5149 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝐵𝑊)
90 max1 13145 . . . . . . . . . 10 ((𝑊 ∈ ℝ ∧ 𝑌 ∈ ℝ) → 𝑊 ≤ if(𝑊𝑌, 𝑌, 𝑊))
9129, 2, 90syl2anc 584 . . . . . . . . 9 (𝜑𝑊 ≤ if(𝑊𝑌, 𝑌, 𝑊))
9291, 1breqtrrdi 5149 . . . . . . . 8 (𝜑𝑊𝑋)
9392ad2antrr 726 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑊𝑋)
9459, 62, 65, 89, 93letrd 11331 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝐵𝑋)
9558, 94syldan 591 . . . . 5 (((𝜑𝑗𝑍) ∧ ¬ 𝐾𝑗) → 𝐵𝑋)
9649, 95pm2.61dan 812 . . . 4 ((𝜑𝑗𝑍) → 𝐵𝑋)
9796ex 412 . . 3 (𝜑 → (𝑗𝑍𝐵𝑋))
985, 97ralrimi 3235 . 2 (𝜑 → ∀𝑗𝑍 𝐵𝑋)
99 nfv 1914 . . 3 𝑥𝑗𝑍 𝐵𝑋
100 nfcv 2891 . . . . 5 𝑗𝑥
101 uzublem.2 . . . . 5 𝑗𝑋
102100, 101nfeq 2905 . . . 4 𝑗 𝑥 = 𝑋
103 breq2 5111 . . . 4 (𝑥 = 𝑋 → (𝐵𝑥𝐵𝑋))
104102, 103ralbid 3250 . . 3 (𝑥 = 𝑋 → (∀𝑗𝑍 𝐵𝑥 ↔ ∀𝑗𝑍 𝐵𝑋))
10599, 104rspce 3577 . 2 ((𝑋 ∈ ℝ ∧ ∀𝑗𝑍 𝐵𝑋) → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
10631, 98, 105syl2anc 584 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wnfc 2876  wral 3044  wrex 3053  ifcif 4488   class class class wbr 5107  cmpt 5188   Or wor 5545  ran crn 5639  cfv 6511  (class class class)co 7387  Fincfn 8918  supcsup 9391  cr 11067   < clt 11208  cle 11209  cz 12529  cuz 12793  ...cfz 13468  ..^cfzo 13615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616
This theorem is referenced by:  uzub  45427
  Copyright terms: Public domain W3C validator