Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzublem Structured version   Visualization version   GIF version

Theorem uzublem 45433
Description: A set of reals, indexed by upper integers, is bound if and only if any upper part is bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
uzublem.1 𝑗𝜑
uzublem.2 𝑗𝑋
uzublem.3 (𝜑𝑀 ∈ ℤ)
uzublem.4 𝑍 = (ℤ𝑀)
uzublem.5 (𝜑𝑌 ∈ ℝ)
uzublem.6 𝑊 = sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < )
uzublem.7 𝑋 = if(𝑊𝑌, 𝑌, 𝑊)
uzublem.8 (𝜑𝐾𝑍)
uzublem.9 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
uzublem.10 (𝜑 → ∀𝑗 ∈ (ℤ𝐾)𝐵𝑌)
Assertion
Ref Expression
uzublem (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
Distinct variable groups:   𝑥,𝐵   𝑗,𝐾   𝑗,𝑀   𝑥,𝑋   𝑥,𝑍   𝑥,𝑗
Allowed substitution hints:   𝜑(𝑥,𝑗)   𝐵(𝑗)   𝐾(𝑥)   𝑀(𝑥)   𝑊(𝑥,𝑗)   𝑋(𝑗)   𝑌(𝑥,𝑗)   𝑍(𝑗)

Proof of Theorem uzublem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 uzublem.7 . . 3 𝑋 = if(𝑊𝑌, 𝑌, 𝑊)
2 uzublem.5 . . . 4 (𝜑𝑌 ∈ ℝ)
3 uzublem.6 . . . . . 6 𝑊 = sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < )
43a1i 11 . . . . 5 (𝜑𝑊 = sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < ))
5 uzublem.1 . . . . . 6 𝑗𝜑
6 ltso 11261 . . . . . . 7 < Or ℝ
76a1i 11 . . . . . 6 (𝜑 → < Or ℝ)
8 fzfid 13945 . . . . . 6 (𝜑 → (𝑀...𝐾) ∈ Fin)
9 uzublem.3 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
10 uzublem.8 . . . . . . . . 9 (𝜑𝐾𝑍)
11 uzublem.4 . . . . . . . . . 10 𝑍 = (ℤ𝑀)
1211eluzelz2 45406 . . . . . . . . 9 (𝐾𝑍𝐾 ∈ ℤ)
1310, 12syl 17 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
149zred 12645 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
1514leidd 11751 . . . . . . . 8 (𝜑𝑀𝑀)
1610, 11eleqtrdi 2839 . . . . . . . . 9 (𝜑𝐾 ∈ (ℤ𝑀))
17 eluzle 12813 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → 𝑀𝐾)
1816, 17syl 17 . . . . . . . 8 (𝜑𝑀𝐾)
199, 13, 9, 15, 18elfzd 13483 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝐾))
2019ne0d 4308 . . . . . 6 (𝜑 → (𝑀...𝐾) ≠ ∅)
21 fzssuz 13533 . . . . . . . . 9 (𝑀...𝐾) ⊆ (ℤ𝑀)
2211eqcomi 2739 . . . . . . . . 9 (ℤ𝑀) = 𝑍
2321, 22sseqtri 3998 . . . . . . . 8 (𝑀...𝐾) ⊆ 𝑍
24 id 22 . . . . . . . 8 (𝑗 ∈ (𝑀...𝐾) → 𝑗 ∈ (𝑀...𝐾))
2523, 24sselid 3947 . . . . . . 7 (𝑗 ∈ (𝑀...𝐾) → 𝑗𝑍)
26 uzublem.9 . . . . . . 7 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
2725, 26sylan2 593 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝐾)) → 𝐵 ∈ ℝ)
285, 7, 8, 20, 27fisupclrnmpt 45401 . . . . 5 (𝜑 → sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < ) ∈ ℝ)
294, 28eqeltrd 2829 . . . 4 (𝜑𝑊 ∈ ℝ)
302, 29ifcld 4538 . . 3 (𝜑 → if(𝑊𝑌, 𝑌, 𝑊) ∈ ℝ)
311, 30eqeltrid 2833 . 2 (𝜑𝑋 ∈ ℝ)
3226adantr 480 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝐵 ∈ ℝ)
332ad2antrr 726 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑌 ∈ ℝ)
3431ad2antrr 726 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑋 ∈ ℝ)
35 uzublem.10 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ (ℤ𝐾)𝐵𝑌)
3635ad2antrr 726 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → ∀𝑗 ∈ (ℤ𝐾)𝐵𝑌)
37 eqid 2730 . . . . . . . 8 (ℤ𝐾) = (ℤ𝐾)
3813ad2antrr 726 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝐾 ∈ ℤ)
3911eluzelz2 45406 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ ℤ)
4039ad2antlr 727 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑗 ∈ ℤ)
41 simpr 484 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝐾𝑗)
4237, 38, 40, 41eluzd 45412 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑗 ∈ (ℤ𝐾))
43 rspa 3227 . . . . . . 7 ((∀𝑗 ∈ (ℤ𝐾)𝐵𝑌𝑗 ∈ (ℤ𝐾)) → 𝐵𝑌)
4436, 42, 43syl2anc 584 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝐵𝑌)
45 max2 13154 . . . . . . . . 9 ((𝑊 ∈ ℝ ∧ 𝑌 ∈ ℝ) → 𝑌 ≤ if(𝑊𝑌, 𝑌, 𝑊))
4629, 2, 45syl2anc 584 . . . . . . . 8 (𝜑𝑌 ≤ if(𝑊𝑌, 𝑌, 𝑊))
4746, 1breqtrrdi 5152 . . . . . . 7 (𝜑𝑌𝑋)
4847ad2antrr 726 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑌𝑋)
4932, 33, 34, 44, 48letrd 11338 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝐵𝑋)
50 simpr 484 . . . . . . 7 (((𝜑𝑗𝑍) ∧ ¬ 𝐾𝑗) → ¬ 𝐾𝑗)
51 uzssre 12822 . . . . . . . . . . 11 (ℤ𝑀) ⊆ ℝ
5211, 51eqsstri 3996 . . . . . . . . . 10 𝑍 ⊆ ℝ
5352sseli 3945 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ ℝ)
5453ad2antlr 727 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ¬ 𝐾𝑗) → 𝑗 ∈ ℝ)
5552, 10sselid 3947 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ)
5655ad2antrr 726 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ¬ 𝐾𝑗) → 𝐾 ∈ ℝ)
5754, 56ltnled 11328 . . . . . . 7 (((𝜑𝑗𝑍) ∧ ¬ 𝐾𝑗) → (𝑗 < 𝐾 ↔ ¬ 𝐾𝑗))
5850, 57mpbird 257 . . . . . 6 (((𝜑𝑗𝑍) ∧ ¬ 𝐾𝑗) → 𝑗 < 𝐾)
5926adantr 480 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝐵 ∈ ℝ)
603, 29eqeltrrid 2834 . . . . . . . . 9 (𝜑 → sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < ) ∈ ℝ)
613, 60eqeltrid 2833 . . . . . . . 8 (𝜑𝑊 ∈ ℝ)
6261ad2antrr 726 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑊 ∈ ℝ)
632, 61ifcld 4538 . . . . . . . . 9 (𝜑 → if(𝑊𝑌, 𝑌, 𝑊) ∈ ℝ)
641, 63eqeltrid 2833 . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
6564ad2antrr 726 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑋 ∈ ℝ)
66 simpll 766 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝜑)
679ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑀 ∈ ℤ)
6813ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝐾 ∈ ℤ)
6911eleq2i 2821 . . . . . . . . . . . . . 14 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
7069biimpi 216 . . . . . . . . . . . . 13 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
7170ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗 ∈ (ℤ𝑀))
72 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗 < 𝐾)
7371, 68, 72elfzod 45403 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗 ∈ (𝑀..^𝐾))
74 elfzouz 13631 . . . . . . . . . . . 12 (𝑗 ∈ (𝑀..^𝐾) → 𝑗 ∈ (ℤ𝑀))
7574, 22eleqtrdi 2839 . . . . . . . . . . 11 (𝑗 ∈ (𝑀..^𝐾) → 𝑗𝑍)
7673, 75, 393syl 18 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗 ∈ ℤ)
77 eluzle 12813 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 𝑀𝑗)
7870, 77syl 17 . . . . . . . . . . 11 (𝑗𝑍𝑀𝑗)
7978ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑀𝑗)
8073, 75, 533syl 18 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗 ∈ ℝ)
8155ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝐾 ∈ ℝ)
8280, 81, 72ltled 11329 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗𝐾)
8367, 68, 76, 79, 82elfzd 13483 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗 ∈ (𝑀...𝐾))
845, 27ralrimia 3237 . . . . . . . . . . 11 (𝜑 → ∀𝑗 ∈ (𝑀...𝐾)𝐵 ∈ ℝ)
85 fimaxre3 12136 . . . . . . . . . . 11 (((𝑀...𝐾) ∈ Fin ∧ ∀𝑗 ∈ (𝑀...𝐾)𝐵 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑗 ∈ (𝑀...𝐾)𝐵𝑦)
868, 84, 85syl2anc 584 . . . . . . . . . 10 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑗 ∈ (𝑀...𝐾)𝐵𝑦)
875, 27, 86suprubrnmpt 45254 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀...𝐾)) → 𝐵 ≤ sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < ))
8866, 83, 87syl2anc 584 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝐵 ≤ sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < ))
8988, 3breqtrrdi 5152 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝐵𝑊)
90 max1 13152 . . . . . . . . . 10 ((𝑊 ∈ ℝ ∧ 𝑌 ∈ ℝ) → 𝑊 ≤ if(𝑊𝑌, 𝑌, 𝑊))
9129, 2, 90syl2anc 584 . . . . . . . . 9 (𝜑𝑊 ≤ if(𝑊𝑌, 𝑌, 𝑊))
9291, 1breqtrrdi 5152 . . . . . . . 8 (𝜑𝑊𝑋)
9392ad2antrr 726 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑊𝑋)
9459, 62, 65, 89, 93letrd 11338 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝐵𝑋)
9558, 94syldan 591 . . . . 5 (((𝜑𝑗𝑍) ∧ ¬ 𝐾𝑗) → 𝐵𝑋)
9649, 95pm2.61dan 812 . . . 4 ((𝜑𝑗𝑍) → 𝐵𝑋)
9796ex 412 . . 3 (𝜑 → (𝑗𝑍𝐵𝑋))
985, 97ralrimi 3236 . 2 (𝜑 → ∀𝑗𝑍 𝐵𝑋)
99 nfv 1914 . . 3 𝑥𝑗𝑍 𝐵𝑋
100 nfcv 2892 . . . . 5 𝑗𝑥
101 uzublem.2 . . . . 5 𝑗𝑋
102100, 101nfeq 2906 . . . 4 𝑗 𝑥 = 𝑋
103 breq2 5114 . . . 4 (𝑥 = 𝑋 → (𝐵𝑥𝐵𝑋))
104102, 103ralbid 3251 . . 3 (𝑥 = 𝑋 → (∀𝑗𝑍 𝐵𝑥 ↔ ∀𝑗𝑍 𝐵𝑋))
10599, 104rspce 3580 . 2 ((𝑋 ∈ ℝ ∧ ∀𝑗𝑍 𝐵𝑋) → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
10631, 98, 105syl2anc 584 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wnfc 2877  wral 3045  wrex 3054  ifcif 4491   class class class wbr 5110  cmpt 5191   Or wor 5548  ran crn 5642  cfv 6514  (class class class)co 7390  Fincfn 8921  supcsup 9398  cr 11074   < clt 11215  cle 11216  cz 12536  cuz 12800  ...cfz 13475  ..^cfzo 13622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623
This theorem is referenced by:  uzub  45434
  Copyright terms: Public domain W3C validator