Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzublem Structured version   Visualization version   GIF version

Theorem uzublem 45380
Description: A set of reals, indexed by upper integers, is bound if and only if any upper part is bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
uzublem.1 𝑗𝜑
uzublem.2 𝑗𝑋
uzublem.3 (𝜑𝑀 ∈ ℤ)
uzublem.4 𝑍 = (ℤ𝑀)
uzublem.5 (𝜑𝑌 ∈ ℝ)
uzublem.6 𝑊 = sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < )
uzublem.7 𝑋 = if(𝑊𝑌, 𝑌, 𝑊)
uzublem.8 (𝜑𝐾𝑍)
uzublem.9 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
uzublem.10 (𝜑 → ∀𝑗 ∈ (ℤ𝐾)𝐵𝑌)
Assertion
Ref Expression
uzublem (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
Distinct variable groups:   𝑥,𝐵   𝑗,𝐾   𝑗,𝑀   𝑥,𝑋   𝑥,𝑍   𝑥,𝑗
Allowed substitution hints:   𝜑(𝑥,𝑗)   𝐵(𝑗)   𝐾(𝑥)   𝑀(𝑥)   𝑊(𝑥,𝑗)   𝑋(𝑗)   𝑌(𝑥,𝑗)   𝑍(𝑗)

Proof of Theorem uzublem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 uzublem.7 . . 3 𝑋 = if(𝑊𝑌, 𝑌, 𝑊)
2 uzublem.5 . . . 4 (𝜑𝑌 ∈ ℝ)
3 uzublem.6 . . . . . 6 𝑊 = sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < )
43a1i 11 . . . . 5 (𝜑𝑊 = sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < ))
5 uzublem.1 . . . . . 6 𝑗𝜑
6 ltso 11339 . . . . . . 7 < Or ℝ
76a1i 11 . . . . . 6 (𝜑 → < Or ℝ)
8 fzfid 14011 . . . . . 6 (𝜑 → (𝑀...𝐾) ∈ Fin)
9 uzublem.3 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
10 uzublem.8 . . . . . . . . 9 (𝜑𝐾𝑍)
11 uzublem.4 . . . . . . . . . 10 𝑍 = (ℤ𝑀)
1211eluzelz2 45353 . . . . . . . . 9 (𝐾𝑍𝐾 ∈ ℤ)
1310, 12syl 17 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
149zred 12720 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
1514leidd 11827 . . . . . . . 8 (𝜑𝑀𝑀)
1610, 11eleqtrdi 2849 . . . . . . . . 9 (𝜑𝐾 ∈ (ℤ𝑀))
17 eluzle 12889 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → 𝑀𝐾)
1816, 17syl 17 . . . . . . . 8 (𝜑𝑀𝐾)
199, 13, 9, 15, 18elfzd 13552 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝐾))
2019ne0d 4348 . . . . . 6 (𝜑 → (𝑀...𝐾) ≠ ∅)
21 fzssuz 13602 . . . . . . . . 9 (𝑀...𝐾) ⊆ (ℤ𝑀)
2211eqcomi 2744 . . . . . . . . 9 (ℤ𝑀) = 𝑍
2321, 22sseqtri 4032 . . . . . . . 8 (𝑀...𝐾) ⊆ 𝑍
24 id 22 . . . . . . . 8 (𝑗 ∈ (𝑀...𝐾) → 𝑗 ∈ (𝑀...𝐾))
2523, 24sselid 3993 . . . . . . 7 (𝑗 ∈ (𝑀...𝐾) → 𝑗𝑍)
26 uzublem.9 . . . . . . 7 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
2725, 26sylan2 593 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝐾)) → 𝐵 ∈ ℝ)
285, 7, 8, 20, 27fisupclrnmpt 45348 . . . . 5 (𝜑 → sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < ) ∈ ℝ)
294, 28eqeltrd 2839 . . . 4 (𝜑𝑊 ∈ ℝ)
302, 29ifcld 4577 . . 3 (𝜑 → if(𝑊𝑌, 𝑌, 𝑊) ∈ ℝ)
311, 30eqeltrid 2843 . 2 (𝜑𝑋 ∈ ℝ)
3226adantr 480 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝐵 ∈ ℝ)
332ad2antrr 726 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑌 ∈ ℝ)
3431ad2antrr 726 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑋 ∈ ℝ)
35 uzublem.10 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ (ℤ𝐾)𝐵𝑌)
3635ad2antrr 726 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → ∀𝑗 ∈ (ℤ𝐾)𝐵𝑌)
37 eqid 2735 . . . . . . . 8 (ℤ𝐾) = (ℤ𝐾)
3813ad2antrr 726 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝐾 ∈ ℤ)
3911eluzelz2 45353 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ ℤ)
4039ad2antlr 727 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑗 ∈ ℤ)
41 simpr 484 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝐾𝑗)
4237, 38, 40, 41eluzd 45359 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑗 ∈ (ℤ𝐾))
43 rspa 3246 . . . . . . 7 ((∀𝑗 ∈ (ℤ𝐾)𝐵𝑌𝑗 ∈ (ℤ𝐾)) → 𝐵𝑌)
4436, 42, 43syl2anc 584 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝐵𝑌)
45 max2 13226 . . . . . . . . 9 ((𝑊 ∈ ℝ ∧ 𝑌 ∈ ℝ) → 𝑌 ≤ if(𝑊𝑌, 𝑌, 𝑊))
4629, 2, 45syl2anc 584 . . . . . . . 8 (𝜑𝑌 ≤ if(𝑊𝑌, 𝑌, 𝑊))
4746, 1breqtrrdi 5190 . . . . . . 7 (𝜑𝑌𝑋)
4847ad2antrr 726 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑌𝑋)
4932, 33, 34, 44, 48letrd 11416 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝐵𝑋)
50 simpr 484 . . . . . . 7 (((𝜑𝑗𝑍) ∧ ¬ 𝐾𝑗) → ¬ 𝐾𝑗)
51 uzssre 12898 . . . . . . . . . . 11 (ℤ𝑀) ⊆ ℝ
5211, 51eqsstri 4030 . . . . . . . . . 10 𝑍 ⊆ ℝ
5352sseli 3991 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ ℝ)
5453ad2antlr 727 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ¬ 𝐾𝑗) → 𝑗 ∈ ℝ)
5552, 10sselid 3993 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ)
5655ad2antrr 726 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ¬ 𝐾𝑗) → 𝐾 ∈ ℝ)
5754, 56ltnled 11406 . . . . . . 7 (((𝜑𝑗𝑍) ∧ ¬ 𝐾𝑗) → (𝑗 < 𝐾 ↔ ¬ 𝐾𝑗))
5850, 57mpbird 257 . . . . . 6 (((𝜑𝑗𝑍) ∧ ¬ 𝐾𝑗) → 𝑗 < 𝐾)
5926adantr 480 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝐵 ∈ ℝ)
603, 29eqeltrrid 2844 . . . . . . . . 9 (𝜑 → sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < ) ∈ ℝ)
613, 60eqeltrid 2843 . . . . . . . 8 (𝜑𝑊 ∈ ℝ)
6261ad2antrr 726 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑊 ∈ ℝ)
632, 61ifcld 4577 . . . . . . . . 9 (𝜑 → if(𝑊𝑌, 𝑌, 𝑊) ∈ ℝ)
641, 63eqeltrid 2843 . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
6564ad2antrr 726 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑋 ∈ ℝ)
66 simpll 767 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝜑)
679ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑀 ∈ ℤ)
6813ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝐾 ∈ ℤ)
6911eleq2i 2831 . . . . . . . . . . . . . 14 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
7069biimpi 216 . . . . . . . . . . . . 13 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
7170ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗 ∈ (ℤ𝑀))
72 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗 < 𝐾)
7371, 68, 72elfzod 45350 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗 ∈ (𝑀..^𝐾))
74 elfzouz 13700 . . . . . . . . . . . 12 (𝑗 ∈ (𝑀..^𝐾) → 𝑗 ∈ (ℤ𝑀))
7574, 22eleqtrdi 2849 . . . . . . . . . . 11 (𝑗 ∈ (𝑀..^𝐾) → 𝑗𝑍)
7673, 75, 393syl 18 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗 ∈ ℤ)
77 eluzle 12889 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 𝑀𝑗)
7870, 77syl 17 . . . . . . . . . . 11 (𝑗𝑍𝑀𝑗)
7978ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑀𝑗)
8073, 75, 533syl 18 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗 ∈ ℝ)
8155ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝐾 ∈ ℝ)
8280, 81, 72ltled 11407 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗𝐾)
8367, 68, 76, 79, 82elfzd 13552 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗 ∈ (𝑀...𝐾))
845, 27ralrimia 3256 . . . . . . . . . . 11 (𝜑 → ∀𝑗 ∈ (𝑀...𝐾)𝐵 ∈ ℝ)
85 fimaxre3 12212 . . . . . . . . . . 11 (((𝑀...𝐾) ∈ Fin ∧ ∀𝑗 ∈ (𝑀...𝐾)𝐵 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑗 ∈ (𝑀...𝐾)𝐵𝑦)
868, 84, 85syl2anc 584 . . . . . . . . . 10 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑗 ∈ (𝑀...𝐾)𝐵𝑦)
875, 27, 86suprubrnmpt 45198 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀...𝐾)) → 𝐵 ≤ sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < ))
8866, 83, 87syl2anc 584 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝐵 ≤ sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < ))
8988, 3breqtrrdi 5190 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝐵𝑊)
90 max1 13224 . . . . . . . . . 10 ((𝑊 ∈ ℝ ∧ 𝑌 ∈ ℝ) → 𝑊 ≤ if(𝑊𝑌, 𝑌, 𝑊))
9129, 2, 90syl2anc 584 . . . . . . . . 9 (𝜑𝑊 ≤ if(𝑊𝑌, 𝑌, 𝑊))
9291, 1breqtrrdi 5190 . . . . . . . 8 (𝜑𝑊𝑋)
9392ad2antrr 726 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑊𝑋)
9459, 62, 65, 89, 93letrd 11416 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝐵𝑋)
9558, 94syldan 591 . . . . 5 (((𝜑𝑗𝑍) ∧ ¬ 𝐾𝑗) → 𝐵𝑋)
9649, 95pm2.61dan 813 . . . 4 ((𝜑𝑗𝑍) → 𝐵𝑋)
9796ex 412 . . 3 (𝜑 → (𝑗𝑍𝐵𝑋))
985, 97ralrimi 3255 . 2 (𝜑 → ∀𝑗𝑍 𝐵𝑋)
99 nfv 1912 . . 3 𝑥𝑗𝑍 𝐵𝑋
100 nfcv 2903 . . . . 5 𝑗𝑥
101 uzublem.2 . . . . 5 𝑗𝑋
102100, 101nfeq 2917 . . . 4 𝑗 𝑥 = 𝑋
103 breq2 5152 . . . 4 (𝑥 = 𝑋 → (𝐵𝑥𝐵𝑋))
104102, 103ralbid 3271 . . 3 (𝑥 = 𝑋 → (∀𝑗𝑍 𝐵𝑥 ↔ ∀𝑗𝑍 𝐵𝑋))
10599, 104rspce 3611 . 2 ((𝑋 ∈ ℝ ∧ ∀𝑗𝑍 𝐵𝑋) → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
10631, 98, 105syl2anc 584 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wnf 1780  wcel 2106  wnfc 2888  wral 3059  wrex 3068  ifcif 4531   class class class wbr 5148  cmpt 5231   Or wor 5596  ran crn 5690  cfv 6563  (class class class)co 7431  Fincfn 8984  supcsup 9478  cr 11152   < clt 11293  cle 11294  cz 12611  cuz 12876  ...cfz 13544  ..^cfzo 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692
This theorem is referenced by:  uzub  45381
  Copyright terms: Public domain W3C validator