Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzublem Structured version   Visualization version   GIF version

Theorem uzublem 41702
Description: A set of reals, indexed by upper integers, is bound if and only if any upper part is bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
uzublem.1 𝑗𝜑
uzublem.2 𝑗𝑋
uzublem.3 (𝜑𝑀 ∈ ℤ)
uzublem.4 𝑍 = (ℤ𝑀)
uzublem.5 (𝜑𝑌 ∈ ℝ)
uzublem.6 𝑊 = sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < )
uzublem.7 𝑋 = if(𝑊𝑌, 𝑌, 𝑊)
uzublem.8 (𝜑𝐾𝑍)
uzublem.9 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
uzublem.10 (𝜑 → ∀𝑗 ∈ (ℤ𝐾)𝐵𝑌)
Assertion
Ref Expression
uzublem (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
Distinct variable groups:   𝑥,𝐵   𝑗,𝐾   𝑗,𝑀   𝑥,𝑋   𝑥,𝑍   𝑥,𝑗
Allowed substitution hints:   𝜑(𝑥,𝑗)   𝐵(𝑗)   𝐾(𝑥)   𝑀(𝑥)   𝑊(𝑥,𝑗)   𝑋(𝑗)   𝑌(𝑥,𝑗)   𝑍(𝑗)

Proof of Theorem uzublem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 uzublem.7 . . 3 𝑋 = if(𝑊𝑌, 𝑌, 𝑊)
2 uzublem.5 . . . 4 (𝜑𝑌 ∈ ℝ)
3 uzublem.6 . . . . . 6 𝑊 = sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < )
43a1i 11 . . . . 5 (𝜑𝑊 = sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < ))
5 uzublem.1 . . . . . 6 𝑗𝜑
6 ltso 10720 . . . . . . 7 < Or ℝ
76a1i 11 . . . . . 6 (𝜑 → < Or ℝ)
8 fzfid 13340 . . . . . 6 (𝜑 → (𝑀...𝐾) ∈ Fin)
9 uzublem.3 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
10 uzublem.8 . . . . . . . . 9 (𝜑𝐾𝑍)
11 uzublem.4 . . . . . . . . . 10 𝑍 = (ℤ𝑀)
1211eluzelz2 41674 . . . . . . . . 9 (𝐾𝑍𝐾 ∈ ℤ)
1310, 12syl 17 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
149zred 12086 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
1514leidd 11205 . . . . . . . 8 (𝜑𝑀𝑀)
1610, 11eleqtrdi 2923 . . . . . . . . 9 (𝜑𝐾 ∈ (ℤ𝑀))
17 eluzle 12255 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → 𝑀𝐾)
1816, 17syl 17 . . . . . . . 8 (𝜑𝑀𝐾)
199, 13, 9, 15, 18elfzd 41681 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝐾))
2019ne0d 4300 . . . . . 6 (𝜑 → (𝑀...𝐾) ≠ ∅)
21 fzssuz 12947 . . . . . . . . 9 (𝑀...𝐾) ⊆ (ℤ𝑀)
2211eqcomi 2830 . . . . . . . . 9 (ℤ𝑀) = 𝑍
2321, 22sseqtri 4002 . . . . . . . 8 (𝑀...𝐾) ⊆ 𝑍
24 id 22 . . . . . . . 8 (𝑗 ∈ (𝑀...𝐾) → 𝑗 ∈ (𝑀...𝐾))
2523, 24sseldi 3964 . . . . . . 7 (𝑗 ∈ (𝑀...𝐾) → 𝑗𝑍)
26 uzublem.9 . . . . . . 7 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
2725, 26sylan2 594 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝐾)) → 𝐵 ∈ ℝ)
285, 7, 8, 20, 27fisupclrnmpt 41669 . . . . 5 (𝜑 → sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < ) ∈ ℝ)
294, 28eqeltrd 2913 . . . 4 (𝜑𝑊 ∈ ℝ)
302, 29ifcld 4511 . . 3 (𝜑 → if(𝑊𝑌, 𝑌, 𝑊) ∈ ℝ)
311, 30eqeltrid 2917 . 2 (𝜑𝑋 ∈ ℝ)
3226adantr 483 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝐵 ∈ ℝ)
332ad2antrr 724 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑌 ∈ ℝ)
3431ad2antrr 724 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑋 ∈ ℝ)
35 uzublem.10 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ (ℤ𝐾)𝐵𝑌)
3635ad2antrr 724 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → ∀𝑗 ∈ (ℤ𝐾)𝐵𝑌)
37 eqid 2821 . . . . . . . 8 (ℤ𝐾) = (ℤ𝐾)
3813ad2antrr 724 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝐾 ∈ ℤ)
3911eluzelz2 41674 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ ℤ)
4039ad2antlr 725 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑗 ∈ ℤ)
41 simpr 487 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝐾𝑗)
4237, 38, 40, 41eluzd 41680 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑗 ∈ (ℤ𝐾))
43 rspa 3206 . . . . . . 7 ((∀𝑗 ∈ (ℤ𝐾)𝐵𝑌𝑗 ∈ (ℤ𝐾)) → 𝐵𝑌)
4436, 42, 43syl2anc 586 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝐵𝑌)
45 max2 12579 . . . . . . . . 9 ((𝑊 ∈ ℝ ∧ 𝑌 ∈ ℝ) → 𝑌 ≤ if(𝑊𝑌, 𝑌, 𝑊))
4629, 2, 45syl2anc 586 . . . . . . . 8 (𝜑𝑌 ≤ if(𝑊𝑌, 𝑌, 𝑊))
4746, 1breqtrrdi 5107 . . . . . . 7 (𝜑𝑌𝑋)
4847ad2antrr 724 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑌𝑋)
4932, 33, 34, 44, 48letrd 10796 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝐵𝑋)
50 simpr 487 . . . . . . 7 (((𝜑𝑗𝑍) ∧ ¬ 𝐾𝑗) → ¬ 𝐾𝑗)
51 uzssre 41667 . . . . . . . . . . 11 (ℤ𝑀) ⊆ ℝ
5211, 51eqsstri 4000 . . . . . . . . . 10 𝑍 ⊆ ℝ
5352sseli 3962 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ ℝ)
5453ad2antlr 725 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ¬ 𝐾𝑗) → 𝑗 ∈ ℝ)
5552, 10sseldi 3964 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ)
5655ad2antrr 724 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ¬ 𝐾𝑗) → 𝐾 ∈ ℝ)
5754, 56ltnled 10786 . . . . . . 7 (((𝜑𝑗𝑍) ∧ ¬ 𝐾𝑗) → (𝑗 < 𝐾 ↔ ¬ 𝐾𝑗))
5850, 57mpbird 259 . . . . . 6 (((𝜑𝑗𝑍) ∧ ¬ 𝐾𝑗) → 𝑗 < 𝐾)
5926adantr 483 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝐵 ∈ ℝ)
603, 29eqeltrrid 2918 . . . . . . . . 9 (𝜑 → sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < ) ∈ ℝ)
613, 60eqeltrid 2917 . . . . . . . 8 (𝜑𝑊 ∈ ℝ)
6261ad2antrr 724 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑊 ∈ ℝ)
632, 61ifcld 4511 . . . . . . . . 9 (𝜑 → if(𝑊𝑌, 𝑌, 𝑊) ∈ ℝ)
641, 63eqeltrid 2917 . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
6564ad2antrr 724 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑋 ∈ ℝ)
66 simpll 765 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝜑)
679ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑀 ∈ ℤ)
6813ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝐾 ∈ ℤ)
6911eleq2i 2904 . . . . . . . . . . . . . 14 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
7069biimpi 218 . . . . . . . . . . . . 13 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
7170ad2antlr 725 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗 ∈ (ℤ𝑀))
72 simpr 487 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗 < 𝐾)
7371, 68, 72elfzod 41671 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗 ∈ (𝑀..^𝐾))
74 elfzouz 13041 . . . . . . . . . . . 12 (𝑗 ∈ (𝑀..^𝐾) → 𝑗 ∈ (ℤ𝑀))
7574, 22eleqtrdi 2923 . . . . . . . . . . 11 (𝑗 ∈ (𝑀..^𝐾) → 𝑗𝑍)
7673, 75, 393syl 18 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗 ∈ ℤ)
77 eluzle 12255 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 𝑀𝑗)
7870, 77syl 17 . . . . . . . . . . 11 (𝑗𝑍𝑀𝑗)
7978ad2antlr 725 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑀𝑗)
8073, 75, 533syl 18 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗 ∈ ℝ)
8155ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝐾 ∈ ℝ)
8280, 81, 72ltled 10787 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗𝐾)
8367, 68, 76, 79, 82elfzd 41681 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗 ∈ (𝑀...𝐾))
845, 27ralrimia 41396 . . . . . . . . . . 11 (𝜑 → ∀𝑗 ∈ (𝑀...𝐾)𝐵 ∈ ℝ)
85 fimaxre3 11586 . . . . . . . . . . 11 (((𝑀...𝐾) ∈ Fin ∧ ∀𝑗 ∈ (𝑀...𝐾)𝐵 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑗 ∈ (𝑀...𝐾)𝐵𝑦)
868, 84, 85syl2anc 586 . . . . . . . . . 10 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑗 ∈ (𝑀...𝐾)𝐵𝑦)
875, 27, 86suprubrnmpt 41523 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀...𝐾)) → 𝐵 ≤ sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < ))
8866, 83, 87syl2anc 586 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝐵 ≤ sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < ))
8988, 3breqtrrdi 5107 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝐵𝑊)
90 max1 12577 . . . . . . . . . 10 ((𝑊 ∈ ℝ ∧ 𝑌 ∈ ℝ) → 𝑊 ≤ if(𝑊𝑌, 𝑌, 𝑊))
9129, 2, 90syl2anc 586 . . . . . . . . 9 (𝜑𝑊 ≤ if(𝑊𝑌, 𝑌, 𝑊))
9291, 1breqtrrdi 5107 . . . . . . . 8 (𝜑𝑊𝑋)
9392ad2antrr 724 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑊𝑋)
9459, 62, 65, 89, 93letrd 10796 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝐵𝑋)
9558, 94syldan 593 . . . . 5 (((𝜑𝑗𝑍) ∧ ¬ 𝐾𝑗) → 𝐵𝑋)
9649, 95pm2.61dan 811 . . . 4 ((𝜑𝑗𝑍) → 𝐵𝑋)
9796ex 415 . . 3 (𝜑 → (𝑗𝑍𝐵𝑋))
985, 97ralrimi 3216 . 2 (𝜑 → ∀𝑗𝑍 𝐵𝑋)
99 nfv 1911 . . 3 𝑥𝑗𝑍 𝐵𝑋
100 nfcv 2977 . . . . 5 𝑗𝑥
101 uzublem.2 . . . . 5 𝑗𝑋
102100, 101nfeq 2991 . . . 4 𝑗 𝑥 = 𝑋
103 breq2 5069 . . . 4 (𝑥 = 𝑋 → (𝐵𝑥𝐵𝑋))
104102, 103ralbid 3231 . . 3 (𝑥 = 𝑋 → (∀𝑗𝑍 𝐵𝑥 ↔ ∀𝑗𝑍 𝐵𝑋))
10599, 104rspce 3611 . 2 ((𝑋 ∈ ℝ ∧ ∀𝑗𝑍 𝐵𝑋) → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
10631, 98, 105syl2anc 586 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1533  wnf 1780  wcel 2110  wnfc 2961  wral 3138  wrex 3139  ifcif 4466   class class class wbr 5065  cmpt 5145   Or wor 5472  ran crn 5555  cfv 6354  (class class class)co 7155  Fincfn 8508  supcsup 8903  cr 10535   < clt 10674  cle 10675  cz 11980  cuz 12242  ...cfz 12891  ..^cfzo 13032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12892  df-fzo 13033
This theorem is referenced by:  uzub  41703
  Copyright terms: Public domain W3C validator