Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzublem Structured version   Visualization version   GIF version

Theorem uzublem 42860
Description: A set of reals, indexed by upper integers, is bound if and only if any upper part is bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
uzublem.1 𝑗𝜑
uzublem.2 𝑗𝑋
uzublem.3 (𝜑𝑀 ∈ ℤ)
uzublem.4 𝑍 = (ℤ𝑀)
uzublem.5 (𝜑𝑌 ∈ ℝ)
uzublem.6 𝑊 = sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < )
uzublem.7 𝑋 = if(𝑊𝑌, 𝑌, 𝑊)
uzublem.8 (𝜑𝐾𝑍)
uzublem.9 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
uzublem.10 (𝜑 → ∀𝑗 ∈ (ℤ𝐾)𝐵𝑌)
Assertion
Ref Expression
uzublem (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
Distinct variable groups:   𝑥,𝐵   𝑗,𝐾   𝑗,𝑀   𝑥,𝑋   𝑥,𝑍   𝑥,𝑗
Allowed substitution hints:   𝜑(𝑥,𝑗)   𝐵(𝑗)   𝐾(𝑥)   𝑀(𝑥)   𝑊(𝑥,𝑗)   𝑋(𝑗)   𝑌(𝑥,𝑗)   𝑍(𝑗)

Proof of Theorem uzublem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 uzublem.7 . . 3 𝑋 = if(𝑊𝑌, 𝑌, 𝑊)
2 uzublem.5 . . . 4 (𝜑𝑌 ∈ ℝ)
3 uzublem.6 . . . . . 6 𝑊 = sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < )
43a1i 11 . . . . 5 (𝜑𝑊 = sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < ))
5 uzublem.1 . . . . . 6 𝑗𝜑
6 ltso 10986 . . . . . . 7 < Or ℝ
76a1i 11 . . . . . 6 (𝜑 → < Or ℝ)
8 fzfid 13621 . . . . . 6 (𝜑 → (𝑀...𝐾) ∈ Fin)
9 uzublem.3 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
10 uzublem.8 . . . . . . . . 9 (𝜑𝐾𝑍)
11 uzublem.4 . . . . . . . . . 10 𝑍 = (ℤ𝑀)
1211eluzelz2 42833 . . . . . . . . 9 (𝐾𝑍𝐾 ∈ ℤ)
1310, 12syl 17 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
149zred 12355 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
1514leidd 11471 . . . . . . . 8 (𝜑𝑀𝑀)
1610, 11eleqtrdi 2849 . . . . . . . . 9 (𝜑𝐾 ∈ (ℤ𝑀))
17 eluzle 12524 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → 𝑀𝐾)
1816, 17syl 17 . . . . . . . 8 (𝜑𝑀𝐾)
199, 13, 9, 15, 18elfzd 13176 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝐾))
2019ne0d 4266 . . . . . 6 (𝜑 → (𝑀...𝐾) ≠ ∅)
21 fzssuz 13226 . . . . . . . . 9 (𝑀...𝐾) ⊆ (ℤ𝑀)
2211eqcomi 2747 . . . . . . . . 9 (ℤ𝑀) = 𝑍
2321, 22sseqtri 3953 . . . . . . . 8 (𝑀...𝐾) ⊆ 𝑍
24 id 22 . . . . . . . 8 (𝑗 ∈ (𝑀...𝐾) → 𝑗 ∈ (𝑀...𝐾))
2523, 24sselid 3915 . . . . . . 7 (𝑗 ∈ (𝑀...𝐾) → 𝑗𝑍)
26 uzublem.9 . . . . . . 7 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
2725, 26sylan2 592 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝐾)) → 𝐵 ∈ ℝ)
285, 7, 8, 20, 27fisupclrnmpt 42828 . . . . 5 (𝜑 → sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < ) ∈ ℝ)
294, 28eqeltrd 2839 . . . 4 (𝜑𝑊 ∈ ℝ)
302, 29ifcld 4502 . . 3 (𝜑 → if(𝑊𝑌, 𝑌, 𝑊) ∈ ℝ)
311, 30eqeltrid 2843 . 2 (𝜑𝑋 ∈ ℝ)
3226adantr 480 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝐵 ∈ ℝ)
332ad2antrr 722 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑌 ∈ ℝ)
3431ad2antrr 722 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑋 ∈ ℝ)
35 uzublem.10 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ (ℤ𝐾)𝐵𝑌)
3635ad2antrr 722 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → ∀𝑗 ∈ (ℤ𝐾)𝐵𝑌)
37 eqid 2738 . . . . . . . 8 (ℤ𝐾) = (ℤ𝐾)
3813ad2antrr 722 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝐾 ∈ ℤ)
3911eluzelz2 42833 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ ℤ)
4039ad2antlr 723 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑗 ∈ ℤ)
41 simpr 484 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝐾𝑗)
4237, 38, 40, 41eluzd 42839 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑗 ∈ (ℤ𝐾))
43 rspa 3130 . . . . . . 7 ((∀𝑗 ∈ (ℤ𝐾)𝐵𝑌𝑗 ∈ (ℤ𝐾)) → 𝐵𝑌)
4436, 42, 43syl2anc 583 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝐵𝑌)
45 max2 12850 . . . . . . . . 9 ((𝑊 ∈ ℝ ∧ 𝑌 ∈ ℝ) → 𝑌 ≤ if(𝑊𝑌, 𝑌, 𝑊))
4629, 2, 45syl2anc 583 . . . . . . . 8 (𝜑𝑌 ≤ if(𝑊𝑌, 𝑌, 𝑊))
4746, 1breqtrrdi 5112 . . . . . . 7 (𝜑𝑌𝑋)
4847ad2antrr 722 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑌𝑋)
4932, 33, 34, 44, 48letrd 11062 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝐵𝑋)
50 simpr 484 . . . . . . 7 (((𝜑𝑗𝑍) ∧ ¬ 𝐾𝑗) → ¬ 𝐾𝑗)
51 uzssre 12533 . . . . . . . . . . 11 (ℤ𝑀) ⊆ ℝ
5211, 51eqsstri 3951 . . . . . . . . . 10 𝑍 ⊆ ℝ
5352sseli 3913 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ ℝ)
5453ad2antlr 723 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ¬ 𝐾𝑗) → 𝑗 ∈ ℝ)
5552, 10sselid 3915 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ)
5655ad2antrr 722 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ¬ 𝐾𝑗) → 𝐾 ∈ ℝ)
5754, 56ltnled 11052 . . . . . . 7 (((𝜑𝑗𝑍) ∧ ¬ 𝐾𝑗) → (𝑗 < 𝐾 ↔ ¬ 𝐾𝑗))
5850, 57mpbird 256 . . . . . 6 (((𝜑𝑗𝑍) ∧ ¬ 𝐾𝑗) → 𝑗 < 𝐾)
5926adantr 480 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝐵 ∈ ℝ)
603, 29eqeltrrid 2844 . . . . . . . . 9 (𝜑 → sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < ) ∈ ℝ)
613, 60eqeltrid 2843 . . . . . . . 8 (𝜑𝑊 ∈ ℝ)
6261ad2antrr 722 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑊 ∈ ℝ)
632, 61ifcld 4502 . . . . . . . . 9 (𝜑 → if(𝑊𝑌, 𝑌, 𝑊) ∈ ℝ)
641, 63eqeltrid 2843 . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
6564ad2antrr 722 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑋 ∈ ℝ)
66 simpll 763 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝜑)
679ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑀 ∈ ℤ)
6813ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝐾 ∈ ℤ)
6911eleq2i 2830 . . . . . . . . . . . . . 14 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
7069biimpi 215 . . . . . . . . . . . . 13 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
7170ad2antlr 723 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗 ∈ (ℤ𝑀))
72 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗 < 𝐾)
7371, 68, 72elfzod 42830 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗 ∈ (𝑀..^𝐾))
74 elfzouz 13320 . . . . . . . . . . . 12 (𝑗 ∈ (𝑀..^𝐾) → 𝑗 ∈ (ℤ𝑀))
7574, 22eleqtrdi 2849 . . . . . . . . . . 11 (𝑗 ∈ (𝑀..^𝐾) → 𝑗𝑍)
7673, 75, 393syl 18 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗 ∈ ℤ)
77 eluzle 12524 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 𝑀𝑗)
7870, 77syl 17 . . . . . . . . . . 11 (𝑗𝑍𝑀𝑗)
7978ad2antlr 723 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑀𝑗)
8073, 75, 533syl 18 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗 ∈ ℝ)
8155ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝐾 ∈ ℝ)
8280, 81, 72ltled 11053 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗𝐾)
8367, 68, 76, 79, 82elfzd 13176 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑗 ∈ (𝑀...𝐾))
845, 27ralrimia 3420 . . . . . . . . . . 11 (𝜑 → ∀𝑗 ∈ (𝑀...𝐾)𝐵 ∈ ℝ)
85 fimaxre3 11851 . . . . . . . . . . 11 (((𝑀...𝐾) ∈ Fin ∧ ∀𝑗 ∈ (𝑀...𝐾)𝐵 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑗 ∈ (𝑀...𝐾)𝐵𝑦)
868, 84, 85syl2anc 583 . . . . . . . . . 10 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑗 ∈ (𝑀...𝐾)𝐵𝑦)
875, 27, 86suprubrnmpt 42688 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀...𝐾)) → 𝐵 ≤ sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < ))
8866, 83, 87syl2anc 583 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝐵 ≤ sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < ))
8988, 3breqtrrdi 5112 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝐵𝑊)
90 max1 12848 . . . . . . . . . 10 ((𝑊 ∈ ℝ ∧ 𝑌 ∈ ℝ) → 𝑊 ≤ if(𝑊𝑌, 𝑌, 𝑊))
9129, 2, 90syl2anc 583 . . . . . . . . 9 (𝜑𝑊 ≤ if(𝑊𝑌, 𝑌, 𝑊))
9291, 1breqtrrdi 5112 . . . . . . . 8 (𝜑𝑊𝑋)
9392ad2antrr 722 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝑊𝑋)
9459, 62, 65, 89, 93letrd 11062 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑗 < 𝐾) → 𝐵𝑋)
9558, 94syldan 590 . . . . 5 (((𝜑𝑗𝑍) ∧ ¬ 𝐾𝑗) → 𝐵𝑋)
9649, 95pm2.61dan 809 . . . 4 ((𝜑𝑗𝑍) → 𝐵𝑋)
9796ex 412 . . 3 (𝜑 → (𝑗𝑍𝐵𝑋))
985, 97ralrimi 3139 . 2 (𝜑 → ∀𝑗𝑍 𝐵𝑋)
99 nfv 1918 . . 3 𝑥𝑗𝑍 𝐵𝑋
100 nfcv 2906 . . . . 5 𝑗𝑥
101 uzublem.2 . . . . 5 𝑗𝑋
102100, 101nfeq 2919 . . . 4 𝑗 𝑥 = 𝑋
103 breq2 5074 . . . 4 (𝑥 = 𝑋 → (𝐵𝑥𝐵𝑋))
104102, 103ralbid 3158 . . 3 (𝑥 = 𝑋 → (∀𝑗𝑍 𝐵𝑥 ↔ ∀𝑗𝑍 𝐵𝑋))
10599, 104rspce 3540 . 2 ((𝑋 ∈ ℝ ∧ ∀𝑗𝑍 𝐵𝑋) → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
10631, 98, 105syl2anc 583 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wnf 1787  wcel 2108  wnfc 2886  wral 3063  wrex 3064  ifcif 4456   class class class wbr 5070  cmpt 5153   Or wor 5493  ran crn 5581  cfv 6418  (class class class)co 7255  Fincfn 8691  supcsup 9129  cr 10801   < clt 10940  cle 10941  cz 12249  cuz 12511  ...cfz 13168  ..^cfzo 13311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312
This theorem is referenced by:  uzub  42861
  Copyright terms: Public domain W3C validator