![]() |
Metamath
Proof Explorer Theorem List (p. 91 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Syntax | cdom 9001 | Extend class definition to include the dominance relation (curly "less than or equal to") |
class ≼ | ||
Syntax | csdm 9002 | Extend class definition to include the strict dominance relation (curly less-than) |
class ≺ | ||
Syntax | cfn 9003 | Extend class definition to include the class of all finite sets. |
class Fin | ||
Definition | df-en 9004* | Define the equinumerosity relation. Definition of [Enderton] p. 129. We define ≈ to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 9013. (Contributed by NM, 28-Mar-1998.) |
⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} | ||
Definition | df-dom 9005* | Define the dominance relation. For an alternate definition see dfdom2 9038. Compare Definition of [Enderton] p. 145. Typical textbook definitions are derived as brdom 9020 and domen 9021. (Contributed by NM, 28-Mar-1998.) |
⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} | ||
Definition | df-sdom 9006 | Define the strict dominance relation. Alternate possible definitions are derived as brsdom 9035 and brsdom2 9163. Definition 3 of [Suppes] p. 97. (Contributed by NM, 31-Mar-1998.) |
⊢ ≺ = ( ≼ ∖ ≈ ) | ||
Definition | df-fin 9007* | Define the (proper) class of all finite sets. Similar to Definition 10.29 of [TakeutiZaring] p. 91, whose "Fin(a)" corresponds to our "𝑎 ∈ Fin". This definition is meaningful whether or not we accept the Axiom of Infinity ax-inf2 9710. If we accept Infinity, we can also express 𝐴 ∈ Fin by 𝐴 ≺ ω (Theorem isfinite 9721.) (Contributed by NM, 22-Aug-2008.) |
⊢ Fin = {𝑥 ∣ ∃𝑦 ∈ ω 𝑥 ≈ 𝑦} | ||
Theorem | relen 9008 | Equinumerosity is a relation. (Contributed by NM, 28-Mar-1998.) |
⊢ Rel ≈ | ||
Theorem | reldom 9009 | Dominance is a relation. (Contributed by NM, 28-Mar-1998.) |
⊢ Rel ≼ | ||
Theorem | relsdom 9010 | Strict dominance is a relation. (Contributed by NM, 31-Mar-1998.) |
⊢ Rel ≺ | ||
Theorem | encv 9011 | If two classes are equinumerous, both classes are sets. (Contributed by AV, 21-Mar-2019.) |
⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
Theorem | breng 9012* | Equinumerosity relation. This variation of bren 9013 does not require the Axiom of Union. (Contributed by NM, 15-Jun-1998.) Extract from a subproof of bren 9013. (Revised by BTernaryTau, 23-Sep-2024.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) | ||
Theorem | bren 9013* | Equinumerosity relation. (Contributed by NM, 15-Jun-1998.) Extract breng 9012 as an intermediate result. (Revised by BTernaryTau, 23-Sep-2024.) |
⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) | ||
Theorem | brenOLD 9014* | Obsolete version of bren 9013 as of 23-Sep-2024. (Contributed by NM, 15-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) | ||
Theorem | brdom2g 9015* | Dominance relation. This variation of brdomg 9016 does not require the Axiom of Union. (Contributed by NM, 15-Jun-1998.) Extract from a subproof of brdomg 9016. (Revised by BTernaryTau, 29-Nov-2024.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) | ||
Theorem | brdomg 9016* | Dominance relation. (Contributed by NM, 15-Jun-1998.) Extract brdom2g 9015 as an intermediate result. (Revised by BTernaryTau, 29-Nov-2024.) |
⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) | ||
Theorem | brdomgOLD 9017* | Obsolete version of brdomg 9016 as of 29-Nov-2024. (Contributed by NM, 15-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) | ||
Theorem | brdomi 9018* | Dominance relation. (Contributed by Mario Carneiro, 26-Apr-2015.) Avoid ax-un 7770. (Revised by BTernaryTau, 29-Nov-2024.) |
⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) | ||
Theorem | brdomiOLD 9019* | Obsolete version of brdomi 9018 as of 29-Nov-2024. (Contributed by Mario Carneiro, 26-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) | ||
Theorem | brdom 9020* | Dominance relation. (Contributed by NM, 15-Jun-1998.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵) | ||
Theorem | domen 9021* | Dominance in terms of equinumerosity. Example 1 of [Enderton] p. 146. (Contributed by NM, 15-Jun-1998.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) | ||
Theorem | domeng 9022* | Dominance in terms of equinumerosity, with the sethood requirement expressed as an antecedent. Example 1 of [Enderton] p. 146. (Contributed by NM, 24-Apr-2004.) |
⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵))) | ||
Theorem | ctex 9023 | A countable set is a set. (Contributed by Thierry Arnoux, 29-Dec-2016.) (Proof shortened by Jim Kingdon, 13-Mar-2023.) |
⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | ||
Theorem | f1oen4g 9024 | The domain and range of a one-to-one, onto set function are equinumerous. This variation of f1oeng 9031 does not require the Axiom of Replacement nor the Axiom of Power Sets nor the Axiom of Union. (Contributed by BTernaryTau, 7-Dec-2024.) |
⊢ (((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | ||
Theorem | f1dom4g 9025 | The domain of a one-to-one set function is dominated by its codomain when the latter is a set. This variation of f1domg 9032 does not require the Axiom of Replacement nor the Axiom of Power Sets nor the Axiom of Union. (Contributed by BTernaryTau, 7-Dec-2024.) |
⊢ (((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | ||
Theorem | f1oen3g 9026 | The domain and range of a one-to-one, onto set function are equinumerous. This variation of f1oeng 9031 does not require the Axiom of Replacement nor the Axiom of Power Sets. (Contributed by NM, 13-Jan-2007.) (Revised by Mario Carneiro, 10-Sep-2015.) |
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | ||
Theorem | f1dom3g 9027 | The domain of a one-to-one set function is dominated by its codomain when the latter is a set. This variation of f1domg 9032 does not require the Axiom of Replacement nor the Axiom of Power Sets. (Contributed by BTernaryTau, 9-Sep-2024.) |
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | ||
Theorem | f1oen2g 9028 | The domain and range of a one-to-one, onto function are equinumerous. This variation of f1oeng 9031 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | ||
Theorem | f1dom2g 9029 | The domain of a one-to-one function is dominated by its codomain. This variation of f1domg 9032 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.) (Proof shortened by BTernaryTau, 25-Sep-2024.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | ||
Theorem | f1dom2gOLD 9030 | Obsolete version of f1dom2g 9029 as of 25-Sep-2024. (Contributed by Mario Carneiro, 24-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | ||
Theorem | f1oeng 9031 | The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | ||
Theorem | f1domg 9032 | The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 4-Sep-2004.) |
⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴–1-1→𝐵 → 𝐴 ≼ 𝐵)) | ||
Theorem | f1oen 9033 | The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐴 ≈ 𝐵) | ||
Theorem | f1dom 9034 | The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 19-Jun-1998.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐴 ≼ 𝐵) | ||
Theorem | brsdom 9035 | Strict dominance relation, meaning "𝐵 is strictly greater in size than 𝐴". Definition of [Mendelson] p. 255. (Contributed by NM, 25-Jun-1998.) |
⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) | ||
Theorem | isfi 9036* | Express "𝐴 is finite". Definition 10.29 of [TakeutiZaring] p. 91 (whose "Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008.) |
⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | ||
Theorem | enssdom 9037 | Equinumerosity implies dominance. (Contributed by NM, 31-Mar-1998.) |
⊢ ≈ ⊆ ≼ | ||
Theorem | dfdom2 9038 | Alternate definition of dominance. (Contributed by NM, 17-Jun-1998.) |
⊢ ≼ = ( ≺ ∪ ≈ ) | ||
Theorem | endom 9039 | Equinumerosity implies dominance. Theorem 15 of [Suppes] p. 94. (Contributed by NM, 28-May-1998.) |
⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | ||
Theorem | sdomdom 9040 | Strict dominance implies dominance. (Contributed by NM, 10-Jun-1998.) |
⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) | ||
Theorem | sdomnen 9041 | Strict dominance implies non-equinumerosity. (Contributed by NM, 10-Jun-1998.) |
⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) | ||
Theorem | brdom2 9042 | Dominance in terms of strict dominance and equinumerosity. Theorem 22(iv) of [Suppes] p. 97. (Contributed by NM, 17-Jun-1998.) |
⊢ (𝐴 ≼ 𝐵 ↔ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) | ||
Theorem | bren2 9043 | Equinumerosity expressed in terms of dominance and strict dominance. (Contributed by NM, 23-Oct-2004.) |
⊢ (𝐴 ≈ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≺ 𝐵)) | ||
Theorem | enrefg 9044 | Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 18-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴) | ||
Theorem | enref 9045 | Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.) |
⊢ 𝐴 ∈ V ⇒ ⊢ 𝐴 ≈ 𝐴 | ||
Theorem | eqeng 9046 | Equality implies equinumerosity. (Contributed by NM, 26-Oct-2003.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → 𝐴 ≈ 𝐵)) | ||
Theorem | domrefg 9047 | Dominance is reflexive. (Contributed by NM, 18-Jun-1998.) |
⊢ (𝐴 ∈ 𝑉 → 𝐴 ≼ 𝐴) | ||
Theorem | en2d 9048* | Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by AV, 4-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝑋)) & ⊢ (𝜑 → (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝑌)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) ⇒ ⊢ (𝜑 → 𝐴 ≈ 𝐵) | ||
Theorem | en3d 9049* | Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by AV, 4-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) & ⊢ (𝜑 → (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶))) ⇒ ⊢ (𝜑 → 𝐴 ≈ 𝐵) | ||
Theorem | en2i 9050* | Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 4-Jan-2004.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ V) & ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ V) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)) ⇒ ⊢ 𝐴 ≈ 𝐵 | ||
Theorem | en3i 9051* | Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 19-Jul-2004.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) & ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶)) ⇒ ⊢ 𝐴 ≈ 𝐵 | ||
Theorem | dom2lem 9052* | A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵) | ||
Theorem | dom2d 9053* | A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 20-May-2013.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) ⇒ ⊢ (𝜑 → (𝐵 ∈ 𝑅 → 𝐴 ≼ 𝐵)) | ||
Theorem | dom3d 9054* | A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by Mario Carneiro, 20-May-2013.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐴 ≼ 𝐵) | ||
Theorem | dom2 9055* | A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. 𝐶 and 𝐷 can be read 𝐶(𝑥) and 𝐷(𝑦), as can be inferred from their distinct variable conditions. (Contributed by NM, 26-Oct-2003.) |
⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦)) ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐴 ≼ 𝐵) | ||
Theorem | dom3 9056* | A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. 𝐶 and 𝐷 can be read 𝐶(𝑥) and 𝐷(𝑦), as can be inferred from their distinct variable conditions. (Contributed by Mario Carneiro, 20-May-2013.) |
⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ≼ 𝐵) | ||
Theorem | idssen 9057 | Equality implies equinumerosity. (Contributed by NM, 30-Apr-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ I ⊆ ≈ | ||
Theorem | domssl 9058 | If 𝐴 is a subset of 𝐵 and 𝐶 dominates 𝐵, then 𝐶 also dominates 𝐴. (Contributed by BTernaryTau, 7-Dec-2024.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | ||
Theorem | domssr 9059 | If 𝐶 is a superset of 𝐵 and 𝐵 dominates 𝐴, then 𝐶 also dominates 𝐴. (Contributed by BTernaryTau, 7-Dec-2024.) |
⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐴 ≼ 𝐶) | ||
Theorem | ssdomg 9060 | A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) | ||
Theorem | ener 9061 | Equinumerosity is an equivalence relation. (Contributed by NM, 19-Mar-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) (Proof shortened by AV, 1-May-2021.) |
⊢ ≈ Er V | ||
Theorem | ensymb 9062 | Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by Mario Carneiro, 26-Apr-2015.) |
⊢ (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴) | ||
Theorem | ensym 9063 | Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | ||
Theorem | ensymi 9064 | Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.) |
⊢ 𝐴 ≈ 𝐵 ⇒ ⊢ 𝐵 ≈ 𝐴 | ||
Theorem | ensymd 9065 | Symmetry of equinumerosity. Deduction form of ensym 9063. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ≈ 𝐵) ⇒ ⊢ (𝜑 → 𝐵 ≈ 𝐴) | ||
Theorem | entr 9066 | Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92. (Contributed by NM, 9-Jun-1998.) |
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) | ||
Theorem | domtr 9067 | Transitivity of dominance relation. Theorem 17 of [Suppes] p. 94. (Contributed by NM, 4-Jun-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | ||
Theorem | entri 9068 | A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.) |
⊢ 𝐴 ≈ 𝐵 & ⊢ 𝐵 ≈ 𝐶 ⇒ ⊢ 𝐴 ≈ 𝐶 | ||
Theorem | entr2i 9069 | A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.) |
⊢ 𝐴 ≈ 𝐵 & ⊢ 𝐵 ≈ 𝐶 ⇒ ⊢ 𝐶 ≈ 𝐴 | ||
Theorem | entr3i 9070 | A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.) |
⊢ 𝐴 ≈ 𝐵 & ⊢ 𝐴 ≈ 𝐶 ⇒ ⊢ 𝐵 ≈ 𝐶 | ||
Theorem | entr4i 9071 | A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.) |
⊢ 𝐴 ≈ 𝐵 & ⊢ 𝐶 ≈ 𝐵 ⇒ ⊢ 𝐴 ≈ 𝐶 | ||
Theorem | endomtr 9072 | Transitivity of equinumerosity and dominance. (Contributed by NM, 7-Jun-1998.) |
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | ||
Theorem | domentr 9073 | Transitivity of dominance and equinumerosity. (Contributed by NM, 7-Jun-1998.) |
⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≼ 𝐶) | ||
Theorem | f1imaeng 9074 | If a function is one-to-one, then the image of a subset of its domain under it is equinumerous to the subset. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐹 “ 𝐶) ≈ 𝐶) | ||
Theorem | f1imaen2g 9075 | If a function is one-to-one, then the image of a subset of its domain under it is equinumerous to the subset. (This version of f1imaeng 9074 does not need ax-rep 5303.) (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉)) → (𝐹 “ 𝐶) ≈ 𝐶) | ||
Theorem | f1imaen3g 9076 | If a set function is one-to-one, then a subset of its domain is equinumerous to the image of that subset. (This version of f1imaeng 9074 does not need ax-rep 5303 nor ax-pow 5383.) (Contributed by BTernaryTau, 13-Jan-2025.) |
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ 𝑉) → 𝐶 ≈ (𝐹 “ 𝐶)) | ||
Theorem | f1imaen 9077 | If a function is one-to-one, then the image of a subset of its domain under it is equinumerous to the subset. (Contributed by NM, 30-Sep-2004.) |
⊢ 𝐶 ∈ V ⇒ ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 “ 𝐶) ≈ 𝐶) | ||
Theorem | en0 9078 | The empty set is equinumerous only to itself. Exercise 1 of [TakeutiZaring] p. 88. (Contributed by NM, 27-May-1998.) Avoid ax-pow 5383, ax-un 7770. (Revised by BTernaryTau, 23-Sep-2024.) |
⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) | ||
Theorem | en0OLD 9079 | Obsolete version of en0 9078 as of 23-Sep-2024. (Contributed by NM, 27-May-1998.) Avoid ax-pow 5383. (Revised by BTernaryTau, 31-Jul-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) | ||
Theorem | en0ALT 9080 | Shorter proof of en0 9078, depending on ax-pow 5383 and ax-un 7770. (Contributed by NM, 27-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) | ||
Theorem | en0r 9081 | The empty set is equinumerous only to itself. (Contributed by BTernaryTau, 29-Nov-2024.) |
⊢ (∅ ≈ 𝐴 ↔ 𝐴 = ∅) | ||
Theorem | ensn1 9082 | A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.) Avoid ax-un 7770. (Revised by BTernaryTau, 23-Sep-2024.) |
⊢ 𝐴 ∈ V ⇒ ⊢ {𝐴} ≈ 1o | ||
Theorem | ensn1OLD 9083 | Obsolete version of ensn1 9082 as of 23-Sep-2024. (Contributed by NM, 4-Nov-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V ⇒ ⊢ {𝐴} ≈ 1o | ||
Theorem | ensn1g 9084 | A singleton is equinumerous to ordinal one. (Contributed by NM, 23-Apr-2004.) |
⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) | ||
Theorem | enpr1g 9085 | {𝐴, 𝐴} has only one element. (Contributed by FL, 15-Feb-2010.) |
⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐴} ≈ 1o) | ||
Theorem | en1 9086* | A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004.) Avoid ax-un 7770. (Revised by BTernaryTau, 23-Sep-2024.) |
⊢ (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥}) | ||
Theorem | en1OLD 9087* | Obsolete version of en1 9086 as of 23-Sep-2024. (Contributed by NM, 25-Jul-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥}) | ||
Theorem | en1b 9088 | A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015.) Avoid ax-un 7770. (Revised by BTernaryTau, 24-Sep-2024.) |
⊢ (𝐴 ≈ 1o ↔ 𝐴 = {∪ 𝐴}) | ||
Theorem | en1bOLD 9089 | Obsolete version of en1b 9088 as of 24-Sep-2024. (Contributed by Mario Carneiro, 17-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ≈ 1o ↔ 𝐴 = {∪ 𝐴}) | ||
Theorem | reuen1 9090* | Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014.) |
⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ {𝑥 ∈ 𝐴 ∣ 𝜑} ≈ 1o) | ||
Theorem | euen1 9091 | Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014.) |
⊢ (∃!𝑥𝜑 ↔ {𝑥 ∣ 𝜑} ≈ 1o) | ||
Theorem | euen1b 9092* | Two ways to express "𝐴 has a unique element". (Contributed by Mario Carneiro, 9-Apr-2015.) |
⊢ (𝐴 ≈ 1o ↔ ∃!𝑥 𝑥 ∈ 𝐴) | ||
Theorem | en1uniel 9093 | A singleton contains its sole element. (Contributed by Stefan O'Rear, 16-Aug-2015.) Avoid ax-un 7770. (Revised by BTernaryTau, 24-Sep-2024.) |
⊢ (𝑆 ≈ 1o → ∪ 𝑆 ∈ 𝑆) | ||
Theorem | en1unielOLD 9094 | Obsolete version of en1uniel 9093 as of 24-Sep-2024. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑆 ≈ 1o → ∪ 𝑆 ∈ 𝑆) | ||
Theorem | 2dom 9095* | A set that dominates ordinal 2 has at least 2 different members. (Contributed by NM, 25-Jul-2004.) |
⊢ (2o ≼ 𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) | ||
Theorem | fundmen 9096 | A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 28-Jul-2004.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ 𝐹 ∈ V ⇒ ⊢ (Fun 𝐹 → dom 𝐹 ≈ 𝐹) | ||
Theorem | fundmeng 9097 | A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 17-Sep-2013.) |
⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → dom 𝐹 ≈ 𝐹) | ||
Theorem | cnven 9098 | A relational set is equinumerous to its converse. (Contributed by Mario Carneiro, 28-Dec-2014.) |
⊢ ((Rel 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 ≈ ◡𝐴) | ||
Theorem | cnvct 9099 | If a set is countable, so is its converse. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
⊢ (𝐴 ≼ ω → ◡𝐴 ≼ ω) | ||
Theorem | fndmeng 9100 | A function is equinumerate to its domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐴 ≈ 𝐹) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |