| Metamath
Proof Explorer Theorem List (p. 91 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | pw2f1olem 9001* | Lemma for pw2f1o 9002. (Contributed by Mario Carneiro, 6-Oct-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → ((𝑆 ∈ 𝒫 𝐴 ∧ 𝐺 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑆, 𝐶, 𝐵))) ↔ (𝐺 ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑆 = (◡𝐺 “ {𝐶})))) | ||
| Theorem | pw2f1o 9002* | The power set of a set is equinumerous to set exponentiation with an unordered pair base of ordinal 2. Generalized from Proposition 10.44 of [TakeutiZaring] p. 96. (Contributed by Mario Carneiro, 6-Oct-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵))) ⇒ ⊢ (𝜑 → 𝐹:𝒫 𝐴–1-1-onto→({𝐵, 𝐶} ↑m 𝐴)) | ||
| Theorem | pw2eng 9003 | The power set of a set is equinumerous to set exponentiation with a base of ordinal 2o. (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 1-Jul-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≈ (2o ↑m 𝐴)) | ||
| Theorem | pw2en 9004 | The power set of a set is equinumerous to set exponentiation with a base of ordinal 2. Proposition 10.44 of [TakeutiZaring] p. 96. This is Metamath 100 proof #52. (Contributed by NM, 29-Jan-2004.) (Proof shortened by Mario Carneiro, 1-Jul-2015.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ 𝒫 𝐴 ≈ (2o ↑m 𝐴) | ||
| Theorem | fopwdom 9005 | Covering implies injection on power sets. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.) (Revised by AV, 18-Sep-2021.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → 𝒫 𝐵 ≼ 𝒫 𝐴) | ||
| Theorem | enfixsn 9006* | Given two equipollent sets, a bijection can always be chosen which fixes a single point. (Contributed by Stefan O'Rear, 9-Jul-2015.) |
| ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌) → ∃𝑓(𝑓:𝑋–1-1-onto→𝑌 ∧ (𝑓‘𝐴) = 𝐵)) | ||
| Theorem | sbthlem1 9007* | Lemma for sbth 9017. (Contributed by NM, 22-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} ⇒ ⊢ ∪ 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) | ||
| Theorem | sbthlem2 9008* | Lemma for sbth 9017. (Contributed by NM, 22-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} ⇒ ⊢ (ran 𝑔 ⊆ 𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ⊆ ∪ 𝐷) | ||
| Theorem | sbthlem3 9009* | Lemma for sbth 9017. (Contributed by NM, 22-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} ⇒ ⊢ (ran 𝑔 ⊆ 𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) = (𝐴 ∖ ∪ 𝐷)) | ||
| Theorem | sbthlem4 9010* | Lemma for sbth 9017. (Contributed by NM, 27-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} ⇒ ⊢ (((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔) → (◡𝑔 “ (𝐴 ∖ ∪ 𝐷)) = (𝐵 ∖ (𝑓 “ ∪ 𝐷))) | ||
| Theorem | sbthlem5 9011* | Lemma for sbth 9017. (Contributed by NM, 22-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ⇒ ⊢ ((dom 𝑓 = 𝐴 ∧ ran 𝑔 ⊆ 𝐴) → dom 𝐻 = 𝐴) | ||
| Theorem | sbthlem6 9012* | Lemma for sbth 9017. (Contributed by NM, 27-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ⇒ ⊢ ((ran 𝑓 ⊆ 𝐵 ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) → ran 𝐻 = 𝐵) | ||
| Theorem | sbthlem7 9013* | Lemma for sbth 9017. (Contributed by NM, 27-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ⇒ ⊢ ((Fun 𝑓 ∧ Fun ◡𝑔) → Fun 𝐻) | ||
| Theorem | sbthlem8 9014* | Lemma for sbth 9017. (Contributed by NM, 27-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ⇒ ⊢ ((Fun ◡𝑓 ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) → Fun ◡𝐻) | ||
| Theorem | sbthlem9 9015* | Lemma for sbth 9017. (Contributed by NM, 28-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ⇒ ⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) → 𝐻:𝐴–1-1-onto→𝐵) | ||
| Theorem | sbthlem10 9016* | Lemma for sbth 9017. (Contributed by NM, 28-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵) | ||
| Theorem | sbth 9017 |
Schroeder-Bernstein Theorem. Theorem 18 of [Suppes] p. 95. This
theorem states that if set 𝐴 is smaller (has lower cardinality)
than
𝐵 and vice-versa, then 𝐴 and
𝐵
are equinumerous (have the
same cardinality). The interesting thing is that this can be proved
without invoking the Axiom of Choice, as we do here. The theorem can
also be proved from the axiom of choice and the linear order of the
cardinal numbers, but our development does not provide the linear order
of cardinal numbers until much later and in ways that depend on
Schroeder-Bernstein.
The main proof consists of lemmas sbthlem1 9007 through sbthlem10 9016; this final piece mainly changes bound variables to eliminate the hypotheses of sbthlem10 9016. We follow closely the proof in Suppes, which you should consult to understand our proof at a higher level. Note that Suppes' proof, which is credited to J. M. Whitaker, does not require the Axiom of Infinity. In the Intuitionistic Logic Explorer (ILE) the Schroeder-Bernstein Theorem has been proven equivalent to the law of the excluded middle (LEM), and in ILE the LEM is not accepted as necessarily true; see https://us.metamath.org/ileuni/exmidsbth.html 9016. This is Metamath 100 proof #25. (Contributed by NM, 8-Jun-1998.) |
| ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵) | ||
| Theorem | sbthb 9018 | Schroeder-Bernstein Theorem and its converse. (Contributed by NM, 8-Jun-1998.) |
| ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) ↔ 𝐴 ≈ 𝐵) | ||
| Theorem | sbthcl 9019 | Schroeder-Bernstein Theorem in class form. (Contributed by NM, 28-Mar-1998.) |
| ⊢ ≈ = ( ≼ ∩ ◡ ≼ ) | ||
| Theorem | dfsdom2 9020 | Alternate definition of strict dominance. Compare Definition 3 of [Suppes] p. 97. (Contributed by NM, 31-Mar-1998.) |
| ⊢ ≺ = ( ≼ ∖ ◡ ≼ ) | ||
| Theorem | brsdom2 9021 | Alternate definition of strict dominance. Definition 3 of [Suppes] p. 97. (Contributed by NM, 27-Jul-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐵 ≼ 𝐴)) | ||
| Theorem | sdomnsym 9022 | Strict dominance is asymmetric. Theorem 21(ii) of [Suppes] p. 97. (Contributed by NM, 8-Jun-1998.) |
| ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐵 ≺ 𝐴) | ||
| Theorem | domnsym 9023 | Theorem 22(i) of [Suppes] p. 97. (Contributed by NM, 10-Jun-1998.) |
| ⊢ (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴) | ||
| Theorem | 0domg 9024 | Any set dominates the empty set. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) Avoid ax-pow 5305, ax-un 7674. (Revised by BTernaryTau, 29-Nov-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → ∅ ≼ 𝐴) | ||
| Theorem | dom0 9025 | A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004.) Avoid ax-pow 5305, ax-un 7674. (Revised by BTernaryTau, 29-Nov-2024.) |
| ⊢ (𝐴 ≼ ∅ ↔ 𝐴 = ∅) | ||
| Theorem | 0sdomg 9026 | A set strictly dominates the empty set iff it is not empty. (Contributed by NM, 23-Mar-2006.) Avoid ax-pow 5305, ax-un 7674. (Revised by BTernaryTau, 29-Nov-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | ||
| Theorem | 0dom 9027 | Any set dominates the empty set. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ∅ ≼ 𝐴 | ||
| Theorem | 0sdom 9028 | A set strictly dominates the empty set iff it is not empty. (Contributed by NM, 29-Jul-2004.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅) | ||
| Theorem | sdom0 9029 | The empty set does not strictly dominate any set. (Contributed by NM, 26-Oct-2003.) Avoid ax-pow 5305, ax-un 7674. (Revised by BTernaryTau, 29-Nov-2024.) |
| ⊢ ¬ 𝐴 ≺ ∅ | ||
| Theorem | sdomdomtr 9030 | Transitivity of strict dominance and dominance. Theorem 22(iii) of [Suppes] p. 97. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≺ 𝐶) | ||
| Theorem | sdomentr 9031 | Transitivity of strict dominance and equinumerosity. Exercise 11 of [Suppes] p. 98. (Contributed by NM, 26-Oct-2003.) |
| ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≺ 𝐶) | ||
| Theorem | domsdomtr 9032 | Transitivity of dominance and strict dominance. Theorem 22(ii) of [Suppes] p. 97. (Contributed by NM, 10-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) | ||
| Theorem | ensdomtr 9033 | Transitivity of equinumerosity and strict dominance. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) | ||
| Theorem | sdomirr 9034 | Strict dominance is irreflexive. Theorem 21(i) of [Suppes] p. 97. (Contributed by NM, 4-Jun-1998.) |
| ⊢ ¬ 𝐴 ≺ 𝐴 | ||
| Theorem | sdomtr 9035 | Strict dominance is transitive. Theorem 21(iii) of [Suppes] p. 97. (Contributed by NM, 9-Jun-1998.) |
| ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) | ||
| Theorem | sdomn2lp 9036 | Strict dominance has no 2-cycle loops. (Contributed by NM, 6-May-2008.) |
| ⊢ ¬ (𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝐴) | ||
| Theorem | enen1 9037 | Equality-like theorem for equinumerosity. (Contributed by NM, 18-Dec-2003.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≈ 𝐶 ↔ 𝐵 ≈ 𝐶)) | ||
| Theorem | enen2 9038 | Equality-like theorem for equinumerosity. (Contributed by NM, 18-Dec-2003.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≈ 𝐴 ↔ 𝐶 ≈ 𝐵)) | ||
| Theorem | domen1 9039 | Equality-like theorem for equinumerosity and dominance. (Contributed by NM, 8-Nov-2003.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≼ 𝐶 ↔ 𝐵 ≼ 𝐶)) | ||
| Theorem | domen2 9040 | Equality-like theorem for equinumerosity and dominance. (Contributed by NM, 8-Nov-2003.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≼ 𝐴 ↔ 𝐶 ≼ 𝐵)) | ||
| Theorem | sdomen1 9041 | Equality-like theorem for equinumerosity and strict dominance. (Contributed by NM, 8-Nov-2003.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≺ 𝐶 ↔ 𝐵 ≺ 𝐶)) | ||
| Theorem | sdomen2 9042 | Equality-like theorem for equinumerosity and strict dominance. (Contributed by NM, 8-Nov-2003.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≺ 𝐴 ↔ 𝐶 ≺ 𝐵)) | ||
| Theorem | domtriord 9043 | Dominance is trichotomous in the restricted case of ordinal numbers. (Contributed by Jeff Hankins, 24-Oct-2009.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) | ||
| Theorem | sdomel 9044 | For ordinals, strict dominance implies membership. (Contributed by Mario Carneiro, 13-Jan-2013.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≺ 𝐵 → 𝐴 ∈ 𝐵)) | ||
| Theorem | sdomdif 9045 | The difference of a set from a smaller set cannot be empty. (Contributed by Mario Carneiro, 5-Feb-2013.) |
| ⊢ (𝐴 ≺ 𝐵 → (𝐵 ∖ 𝐴) ≠ ∅) | ||
| Theorem | onsdominel 9046 | An ordinal with more elements of some type is larger. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (𝐴 ∩ 𝐶) ≺ (𝐵 ∩ 𝐶)) → 𝐴 ∈ 𝐵) | ||
| Theorem | domunsn 9047 | Dominance over a set with one element added. (Contributed by Mario Carneiro, 18-May-2015.) |
| ⊢ (𝐴 ≺ 𝐵 → (𝐴 ∪ {𝐶}) ≼ 𝐵) | ||
| Theorem | fodomr 9048* | There exists a mapping from a set onto any (nonempty) set that it dominates. (Contributed by NM, 23-Mar-2006.) |
| ⊢ ((∅ ≺ 𝐵 ∧ 𝐵 ≼ 𝐴) → ∃𝑓 𝑓:𝐴–onto→𝐵) | ||
| Theorem | pwdom 9049 | Injection of sets implies injection on power sets. (Contributed by Mario Carneiro, 9-Apr-2015.) |
| ⊢ (𝐴 ≼ 𝐵 → 𝒫 𝐴 ≼ 𝒫 𝐵) | ||
| Theorem | canth2 9050 | Cantor's Theorem. No set is equinumerous to its power set. Specifically, any set has a cardinality (size) strictly less than the cardinality of its power set. For example, the cardinality of real numbers is the same as the cardinality of the power set of integers, so real numbers cannot be put into a one-to-one correspondence with integers. Theorem 23 of [Suppes] p. 97. For the function version, see canth 7306. This is Metamath 100 proof #63. (Contributed by NM, 7-Aug-1994.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ 𝐴 ≺ 𝒫 𝐴 | ||
| Theorem | canth2g 9051 | Cantor's theorem with the sethood requirement expressed as an antecedent. Theorem 23 of [Suppes] p. 97. (Contributed by NM, 7-Nov-2003.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≺ 𝒫 𝐴) | ||
| Theorem | 2pwuninel 9052 | The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by NM, 27-Jun-2008.) |
| ⊢ ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 | ||
| Theorem | 2pwne 9053 | No set equals the power set of its power set. (Contributed by NM, 17-Nov-2008.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝒫 𝐴 ≠ 𝐴) | ||
| Theorem | disjen 9054 | A stronger form of pwuninel 8211. We can use pwuninel 8211, 2pwuninel 9052 to create one or two sets disjoint from a given set 𝐴, but here we show that in fact such constructions exist for arbitrarily large disjoint extensions, which is to say that for any set 𝐵 we can construct a set 𝑥 that is equinumerous to it and disjoint from 𝐴. (Contributed by Mario Carneiro, 7-Feb-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∩ (𝐵 × {𝒫 ∪ ran 𝐴})) = ∅ ∧ (𝐵 × {𝒫 ∪ ran 𝐴}) ≈ 𝐵)) | ||
| Theorem | disjenex 9055* | Existence version of disjen 9054. (Contributed by Mario Carneiro, 7-Feb-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑥((𝐴 ∩ 𝑥) = ∅ ∧ 𝑥 ≈ 𝐵)) | ||
| Theorem | domss2 9056 | A corollary of disjenex 9055. If 𝐹 is an injection from 𝐴 to 𝐵 then 𝐺 is a right inverse of 𝐹 from 𝐵 to a superset of 𝐴. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| ⊢ 𝐺 = ◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) ⇒ ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐺:𝐵–1-1-onto→ran 𝐺 ∧ 𝐴 ⊆ ran 𝐺 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴))) | ||
| Theorem | domssex2 9057* | A corollary of disjenex 9055. If 𝐹 is an injection from 𝐴 to 𝐵 then there is a right inverse 𝑔 of 𝐹 from 𝐵 to a superset of 𝐴. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑔(𝑔:𝐵–1-1→V ∧ (𝑔 ∘ 𝐹) = ( I ↾ 𝐴))) | ||
| Theorem | domssex 9058* | Weakening of domssex2 9057 to forget the functions in favor of dominance and equinumerosity. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| ⊢ (𝐴 ≼ 𝐵 → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝐵 ≈ 𝑥)) | ||
| Theorem | xpf1o 9059* | Construct a bijection on a Cartesian product given bijections on the factors. (Contributed by Mario Carneiro, 30-May-2015.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑋):𝐴–1-1-onto→𝐵) & ⊢ (𝜑 → (𝑦 ∈ 𝐶 ↦ 𝑌):𝐶–1-1-onto→𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 〈𝑋, 𝑌〉):(𝐴 × 𝐶)–1-1-onto→(𝐵 × 𝐷)) | ||
| Theorem | xpen 9060 | Equinumerosity law for Cartesian product. Proposition 4.22(b) of [Mendelson] p. 254. (Contributed by NM, 24-Jul-2004.) (Proof shortened by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷)) | ||
| Theorem | mapen 9061 | Two set exponentiations are equinumerous when their bases and exponents are equinumerous. Theorem 6H(c) of [Enderton] p. 139. (Contributed by NM, 16-Dec-2003.) (Proof shortened by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 ↑m 𝐶) ≈ (𝐵 ↑m 𝐷)) | ||
| Theorem | mapdom1 9062 | Order-preserving property of set exponentiation. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 9-Mar-2013.) |
| ⊢ (𝐴 ≼ 𝐵 → (𝐴 ↑m 𝐶) ≼ (𝐵 ↑m 𝐶)) | ||
| Theorem | mapxpen 9063 | Equinumerosity law for double set exponentiation. Proposition 10.45 of [TakeutiZaring] p. 96. (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝐴 ↑m 𝐵) ↑m 𝐶) ≈ (𝐴 ↑m (𝐵 × 𝐶))) | ||
| Theorem | xpmapenlem 9064* | Lemma for xpmapen 9065. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 = (𝑧 ∈ 𝐶 ↦ (1st ‘(𝑥‘𝑧))) & ⊢ 𝑅 = (𝑧 ∈ 𝐶 ↦ (2nd ‘(𝑥‘𝑧))) & ⊢ 𝑆 = (𝑧 ∈ 𝐶 ↦ 〈((1st ‘𝑦)‘𝑧), ((2nd ‘𝑦)‘𝑧)〉) ⇒ ⊢ ((𝐴 × 𝐵) ↑m 𝐶) ≈ ((𝐴 ↑m 𝐶) × (𝐵 ↑m 𝐶)) | ||
| Theorem | xpmapen 9065 | Equinumerosity law for set exponentiation of a Cartesian product. Exercise 4.47 of [Mendelson] p. 255. (Contributed by NM, 23-Feb-2004.) (Proof shortened by Mario Carneiro, 16-Nov-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ ((𝐴 × 𝐵) ↑m 𝐶) ≈ ((𝐴 ↑m 𝐶) × (𝐵 ↑m 𝐶)) | ||
| Theorem | mapunen 9066 | Equinumerosity law for set exponentiation of a disjoint union. Exercise 4.45 of [Mendelson] p. 255. (Contributed by NM, 23-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐶 ↑m (𝐴 ∪ 𝐵)) ≈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵))) | ||
| Theorem | map2xp 9067 | A cardinal power with exponent 2 is equivalent to a Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.) (Proof shortened by AV, 17-Jul-2022.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m 2o) ≈ (𝐴 × 𝐴)) | ||
| Theorem | mapdom2 9068 | Order-preserving property of set exponentiation. Theorem 6L(d) of [Enderton] p. 149. (Contributed by NM, 23-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) → (𝐶 ↑m 𝐴) ≼ (𝐶 ↑m 𝐵)) | ||
| Theorem | mapdom3 9069 | Set exponentiation dominates the base. (Contributed by Mario Carneiro, 30-Apr-2015.) (Proof shortened by AV, 17-Jul-2022.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 ↑m 𝐵)) | ||
| Theorem | pwen 9070 | If two sets are equinumerous, then their power sets are equinumerous. Proposition 10.15 of [TakeutiZaring] p. 87. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 9-Apr-2015.) |
| ⊢ (𝐴 ≈ 𝐵 → 𝒫 𝐴 ≈ 𝒫 𝐵) | ||
| Theorem | ssenen 9071* | Equinumerosity of equinumerous subsets of a set. (Contributed by NM, 30-Sep-2004.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| ⊢ (𝐴 ≈ 𝐵 → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐶)} ≈ {𝑥 ∣ (𝑥 ⊆ 𝐵 ∧ 𝑥 ≈ 𝐶)}) | ||
| Theorem | limenpsi 9072 | A limit ordinal is equinumerous to a proper subset of itself. (Contributed by NM, 30-Oct-2003.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| ⊢ Lim 𝐴 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ (𝐴 ∖ {∅})) | ||
| Theorem | limensuci 9073 | A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003.) |
| ⊢ Lim 𝐴 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ suc 𝐴) | ||
| Theorem | limensuc 9074 | A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) → 𝐴 ≈ suc 𝐴) | ||
| Theorem | infensuc 9075 | Any infinite ordinal is equinumerous to its successor. Exercise 7 of [TakeutiZaring] p. 88. Proved without the Axiom of Infinity. (Contributed by NM, 30-Oct-2003.) (Revised by Mario Carneiro, 13-Jan-2013.) |
| ⊢ ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → 𝐴 ≈ suc 𝐴) | ||
| Theorem | dif1enlem 9076 | Lemma for rexdif1en 9077 and dif1en 9078. (Contributed by BTernaryTau, 18-Aug-2024.) Generalize to all ordinals and add a sethood requirement to avoid ax-un 7674. (Revised by BTernaryTau, 5-Jan-2025.) |
| ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝑀 ∈ On) ∧ 𝐹:𝐴–1-1-onto→suc 𝑀) → (𝐴 ∖ {(◡𝐹‘𝑀)}) ≈ 𝑀) | ||
| Theorem | rexdif1en 9077* | If a set is equinumerous to a nonzero ordinal, then there exists an element in that set such that removing it leaves the set equinumerous to the predecessor of that ordinal. (Contributed by BTernaryTau, 26-Aug-2024.) Generalize to all ordinals and avoid ax-un 7674. (Revised by BTernaryTau, 5-Jan-2025.) |
| ⊢ ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) | ||
| Theorem | dif1en 9078 | If a set 𝐴 is equinumerous to the successor of an ordinal 𝑀, then 𝐴 with an element removed is equinumerous to 𝑀. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.) Avoid ax-pow 5305. (Revised by BTernaryTau, 26-Aug-2024.) Generalize to all ordinals. (Revised by BTernaryTau, 6-Jan-2025.) |
| ⊢ ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀) | ||
| Theorem | dif1ennn 9079 | If a set 𝐴 is equinumerous to the successor of a natural number 𝑀, then 𝐴 with an element removed is equinumerous to 𝑀. See also dif1ennnALT 9168. (Contributed by BTernaryTau, 6-Jan-2025.) |
| ⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀) | ||
| Theorem | findcard 9080* | Schema for induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on the given set with any one element removed. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = (𝑦 ∖ {𝑧}) → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ Fin → (∀𝑧 ∈ 𝑦 𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ Fin → 𝜏) | ||
| Theorem | findcard2 9081* | Schema for induction on the cardinality of a finite set. The inductive step shows that the result is true if one more element is added to the set. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 8-Jul-2010.) Avoid ax-pow 5305. (Revised by BTernaryTau, 26-Aug-2024.) |
| ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ Fin → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ Fin → 𝜏) | ||
| Theorem | findcard2s 9082* | Variation of findcard2 9081 requiring that the element added in the induction step not be a member of the original set. (Contributed by Paul Chapman, 30-Nov-2012.) |
| ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ Fin → 𝜏) | ||
| Theorem | findcard2d 9083* | Deduction version of findcard2 9081. (Contributed by SO, 16-Jul-2018.) |
| ⊢ (𝑥 = ∅ → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (𝜃 → 𝜏)) & ⊢ (𝜑 → 𝐴 ∈ Fin) ⇒ ⊢ (𝜑 → 𝜂) | ||
| Theorem | nnfi 9084 | Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015.) Avoid ax-pow 5305. (Revised by BTernaryTau, 23-Sep-2024.) |
| ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | ||
| Theorem | pssnn 9085* | A proper subset of a natural number is equinumerous to some smaller number. Lemma 6F of [Enderton] p. 137. (Contributed by NM, 22-Jun-1998.) (Revised by Mario Carneiro, 16-Nov-2014.) Avoid ax-pow 5305. (Revised by BTernaryTau, 31-Jul-2024.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥) | ||
| Theorem | ssnnfi 9086 | A subset of a natural number is finite. (Contributed by NM, 24-Jun-1998.) (Proof shortened by BTernaryTau, 23-Sep-2024.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | ||
| Theorem | unfi 9087 | The union of two finite sets is finite. Part of Corollary 6K of [Enderton] p. 144. (Contributed by NM, 16-Nov-2002.) Avoid ax-pow 5305. (Revised by BTernaryTau, 7-Aug-2024.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | ||
| Theorem | unfid 9088 | The union of two finite sets is finite. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ Fin) | ||
| Theorem | ssfi 9089 | A subset of a finite set is finite. Corollary 6G of [Enderton] p. 138. For a shorter proof using ax-pow 5305, see ssfiALT 9090. (Contributed by NM, 24-Jun-1998.) Avoid ax-pow 5305. (Revised by BTernaryTau, 12-Aug-2024.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | ||
| Theorem | ssfiALT 9090 | Shorter proof of ssfi 9089 using ax-pow 5305. (Contributed by NM, 24-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | ||
| Theorem | diffi 9091 | If 𝐴 is finite, (𝐴 ∖ 𝐵) is finite. (Contributed by FL, 3-Aug-2009.) |
| ⊢ (𝐴 ∈ Fin → (𝐴 ∖ 𝐵) ∈ Fin) | ||
| Theorem | cnvfi 9092 | If a set is finite, its converse is as well. (Contributed by Mario Carneiro, 28-Dec-2014.) Avoid ax-pow 5305. (Revised by BTernaryTau, 9-Sep-2024.) |
| ⊢ (𝐴 ∈ Fin → ◡𝐴 ∈ Fin) | ||
| Theorem | pwssfi 9093 | Every element of the power set of 𝐴 is finite if and only if 𝐴 is finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ 𝒫 𝐴 ⊆ Fin)) | ||
| Theorem | fnfi 9094 | A version of fnex 7157 for finite sets that does not require Replacement or Power Sets. (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → 𝐹 ∈ Fin) | ||
| Theorem | f1oenfi 9095 | If the domain of a one-to-one, onto function is finite, then the domain and range of the function are equinumerous. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1oeng 8899). (Contributed by BTernaryTau, 8-Sep-2024.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | ||
| Theorem | f1oenfirn 9096 | If the range of a one-to-one, onto function is finite, then the domain and range of the function are equinumerous. (Contributed by BTernaryTau, 9-Sep-2024.) |
| ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | ||
| Theorem | f1domfi 9097 | If the codomain of a one-to-one function is finite, then the function's domain is dominated by its codomain. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1domg 8900). (Contributed by BTernaryTau, 25-Sep-2024.) |
| ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | ||
| Theorem | f1domfi2 9098 | If the domain of a one-to-one function is finite, then the function's domain is dominated by its codomain when the latter is a set. This theorem is proved without using the Axiom of Power Sets (unlike f1dom2g 8898). (Contributed by BTernaryTau, 24-Nov-2024.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | ||
| Theorem | enreffi 9099 | Equinumerosity is reflexive for finite sets, proved without using the Axiom of Power Sets (unlike enrefg 8913). (Contributed by BTernaryTau, 8-Sep-2024.) |
| ⊢ (𝐴 ∈ Fin → 𝐴 ≈ 𝐴) | ||
| Theorem | ensymfib 9100 | Symmetry of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike ensymb 8931). (Contributed by BTernaryTau, 9-Sep-2024.) |
| ⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |