HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shs0i Structured version   Visualization version   GIF version

Theorem shs0i 31397
Description: Hilbert subspace sum with the zero subspace. (Contributed by NM, 14-Jan-2005.) (New usage is discouraged.)
Hypothesis
Ref Expression
shne0.1 𝐴S
Assertion
Ref Expression
shs0i (𝐴 + 0) = 𝐴

Proof of Theorem shs0i
StepHypRef Expression
1 shne0.1 . . 3 𝐴S
2 h0elsh 31204 . . 3 0S
31, 2shsval3i 31336 . 2 (𝐴 + 0) = (span‘(𝐴 ∪ 0))
4 sh0le 31388 . . . . 5 (𝐴S → 0𝐴)
51, 4ax-mp 5 . . . 4 0𝐴
6 ssequn2 4169 . . . 4 (0𝐴 ↔ (𝐴 ∪ 0) = 𝐴)
75, 6mpbi 230 . . 3 (𝐴 ∪ 0) = 𝐴
87fveq2i 6889 . 2 (span‘(𝐴 ∪ 0)) = (span‘𝐴)
9 spanid 31295 . . 3 (𝐴S → (span‘𝐴) = 𝐴)
101, 9ax-mp 5 . 2 (span‘𝐴) = 𝐴
113, 8, 103eqtri 2761 1 (𝐴 + 0) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  cun 3929  wss 3931  cfv 6541  (class class class)co 7413   S csh 30876   + cph 30879  spancspn 30880  0c0h 30883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216  ax-mulf 11217  ax-hilex 30947  ax-hfvadd 30948  ax-hvcom 30949  ax-hvass 30950  ax-hv0cl 30951  ax-hvaddid 30952  ax-hfvmul 30953  ax-hvmulid 30954  ax-hvmulass 30955  ax-hvdistr1 30956  ax-hvdistr2 30957  ax-hvmul0 30958  ax-hfi 31027  ax-his1 31030  ax-his2 31031  ax-his3 31032  ax-his4 31033
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-map 8850  df-pm 8851  df-en 8968  df-dom 8969  df-sdom 8970  df-sup 9464  df-inf 9465  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-n0 12510  df-z 12597  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-icc 13376  df-seq 14025  df-exp 14085  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-topgen 17460  df-psmet 21319  df-xmet 21320  df-met 21321  df-bl 21322  df-mopn 21323  df-top 22849  df-topon 22866  df-bases 22901  df-lm 23184  df-haus 23270  df-grpo 30441  df-gid 30442  df-ginv 30443  df-gdiv 30444  df-ablo 30493  df-vc 30507  df-nv 30540  df-va 30543  df-ba 30544  df-sm 30545  df-0v 30546  df-vs 30547  df-nmcv 30548  df-ims 30549  df-hnorm 30916  df-hvsub 30919  df-hlim 30920  df-sh 31155  df-ch 31169  df-ch0 31201  df-shs 31256  df-span 31257
This theorem is referenced by:  shs00i  31398  sumdmdlem2  32367
  Copyright terms: Public domain W3C validator