![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shs0i | Structured version Visualization version GIF version |
Description: Hilbert subspace sum with the zero subspace. (Contributed by NM, 14-Jan-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shne0.1 | ⊢ 𝐴 ∈ Sℋ |
Ref | Expression |
---|---|
shs0i | ⊢ (𝐴 +ℋ 0ℋ) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shne0.1 | . . 3 ⊢ 𝐴 ∈ Sℋ | |
2 | h0elsh 28685 | . . 3 ⊢ 0ℋ ∈ Sℋ | |
3 | 1, 2 | shsval3i 28819 | . 2 ⊢ (𝐴 +ℋ 0ℋ) = (span‘(𝐴 ∪ 0ℋ)) |
4 | sh0le 28871 | . . . . 5 ⊢ (𝐴 ∈ Sℋ → 0ℋ ⊆ 𝐴) | |
5 | 1, 4 | ax-mp 5 | . . . 4 ⊢ 0ℋ ⊆ 𝐴 |
6 | ssequn2 4008 | . . . 4 ⊢ (0ℋ ⊆ 𝐴 ↔ (𝐴 ∪ 0ℋ) = 𝐴) | |
7 | 5, 6 | mpbi 222 | . . 3 ⊢ (𝐴 ∪ 0ℋ) = 𝐴 |
8 | 7 | fveq2i 6449 | . 2 ⊢ (span‘(𝐴 ∪ 0ℋ)) = (span‘𝐴) |
9 | spanid 28778 | . . 3 ⊢ (𝐴 ∈ Sℋ → (span‘𝐴) = 𝐴) | |
10 | 1, 9 | ax-mp 5 | . 2 ⊢ (span‘𝐴) = 𝐴 |
11 | 3, 8, 10 | 3eqtri 2805 | 1 ⊢ (𝐴 +ℋ 0ℋ) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 ∈ wcel 2106 ∪ cun 3789 ⊆ wss 3791 ‘cfv 6135 (class class class)co 6922 Sℋ csh 28357 +ℋ cph 28360 spancspn 28361 0ℋc0h 28364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 ax-addf 10351 ax-mulf 10352 ax-hilex 28428 ax-hfvadd 28429 ax-hvcom 28430 ax-hvass 28431 ax-hv0cl 28432 ax-hvaddid 28433 ax-hfvmul 28434 ax-hvmulid 28435 ax-hvmulass 28436 ax-hvdistr1 28437 ax-hvdistr2 28438 ax-hvmul0 28439 ax-hfi 28508 ax-his1 28511 ax-his2 28512 ax-his3 28513 ax-his4 28514 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-map 8142 df-pm 8143 df-en 8242 df-dom 8243 df-sdom 8244 df-sup 8636 df-inf 8637 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-n0 11643 df-z 11729 df-uz 11993 df-q 12096 df-rp 12138 df-xneg 12257 df-xadd 12258 df-xmul 12259 df-icc 12494 df-seq 13120 df-exp 13179 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-topgen 16490 df-psmet 20134 df-xmet 20135 df-met 20136 df-bl 20137 df-mopn 20138 df-top 21106 df-topon 21123 df-bases 21158 df-lm 21441 df-haus 21527 df-grpo 27920 df-gid 27921 df-ginv 27922 df-gdiv 27923 df-ablo 27972 df-vc 27986 df-nv 28019 df-va 28022 df-ba 28023 df-sm 28024 df-0v 28025 df-vs 28026 df-nmcv 28027 df-ims 28028 df-hnorm 28397 df-hvsub 28400 df-hlim 28401 df-sh 28636 df-ch 28650 df-ch0 28682 df-shs 28739 df-span 28740 |
This theorem is referenced by: shs00i 28881 sumdmdlem2 29850 |
Copyright terms: Public domain | W3C validator |