HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ssjo Structured version   Visualization version   GIF version

Theorem ssjo 31425
Description: The lattice join of a subset with its orthocomplement is the whole space. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
ssjo (𝐴 ⊆ ℋ → (𝐴 (⊥‘𝐴)) = ℋ)

Proof of Theorem ssjo
StepHypRef Expression
1 ocss 31263 . . 3 (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ)
2 sshjval 31328 . . 3 ((𝐴 ⊆ ℋ ∧ (⊥‘𝐴) ⊆ ℋ) → (𝐴 (⊥‘𝐴)) = (⊥‘(⊥‘(𝐴 ∪ (⊥‘𝐴)))))
31, 2mpdan 687 . 2 (𝐴 ⊆ ℋ → (𝐴 (⊥‘𝐴)) = (⊥‘(⊥‘(𝐴 ∪ (⊥‘𝐴)))))
4 ssun1 4128 . . . . . . . 8 𝐴 ⊆ (𝐴 ∪ (⊥‘𝐴))
51ancli 548 . . . . . . . . . 10 (𝐴 ⊆ ℋ → (𝐴 ⊆ ℋ ∧ (⊥‘𝐴) ⊆ ℋ))
6 unss 4140 . . . . . . . . . 10 ((𝐴 ⊆ ℋ ∧ (⊥‘𝐴) ⊆ ℋ) ↔ (𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ)
75, 6sylib 218 . . . . . . . . 9 (𝐴 ⊆ ℋ → (𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ)
8 occon 31265 . . . . . . . . 9 ((𝐴 ⊆ ℋ ∧ (𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ) → (𝐴 ⊆ (𝐴 ∪ (⊥‘𝐴)) → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘𝐴)))
97, 8mpdan 687 . . . . . . . 8 (𝐴 ⊆ ℋ → (𝐴 ⊆ (𝐴 ∪ (⊥‘𝐴)) → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘𝐴)))
104, 9mpi 20 . . . . . . 7 (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘𝐴))
11 ssun2 4129 . . . . . . . 8 (⊥‘𝐴) ⊆ (𝐴 ∪ (⊥‘𝐴))
12 occon 31265 . . . . . . . . 9 (((⊥‘𝐴) ⊆ ℋ ∧ (𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ) → ((⊥‘𝐴) ⊆ (𝐴 ∪ (⊥‘𝐴)) → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘(⊥‘𝐴))))
131, 7, 12syl2anc 584 . . . . . . . 8 (𝐴 ⊆ ℋ → ((⊥‘𝐴) ⊆ (𝐴 ∪ (⊥‘𝐴)) → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘(⊥‘𝐴))))
1411, 13mpi 20 . . . . . . 7 (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘(⊥‘𝐴)))
1510, 14ssind 4191 . . . . . 6 (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ ((⊥‘𝐴) ∩ (⊥‘(⊥‘𝐴))))
16 ocsh 31261 . . . . . . 7 (𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ S )
17 ocin 31274 . . . . . . 7 ((⊥‘𝐴) ∈ S → ((⊥‘𝐴) ∩ (⊥‘(⊥‘𝐴))) = 0)
1816, 17syl 17 . . . . . 6 (𝐴 ⊆ ℋ → ((⊥‘𝐴) ∩ (⊥‘(⊥‘𝐴))) = 0)
1915, 18sseqtrd 3971 . . . . 5 (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ 0)
20 ocsh 31261 . . . . . 6 ((𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ∈ S )
21 sh0le 31418 . . . . . 6 ((⊥‘(𝐴 ∪ (⊥‘𝐴))) ∈ S → 0 ⊆ (⊥‘(𝐴 ∪ (⊥‘𝐴))))
227, 20, 213syl 18 . . . . 5 (𝐴 ⊆ ℋ → 0 ⊆ (⊥‘(𝐴 ∪ (⊥‘𝐴))))
2319, 22eqssd 3952 . . . 4 (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) = 0)
2423fveq2d 6826 . . 3 (𝐴 ⊆ ℋ → (⊥‘(⊥‘(𝐴 ∪ (⊥‘𝐴)))) = (⊥‘0))
25 choc0 31304 . . 3 (⊥‘0) = ℋ
2624, 25eqtrdi 2782 . 2 (𝐴 ⊆ ℋ → (⊥‘(⊥‘(𝐴 ∪ (⊥‘𝐴)))) = ℋ)
273, 26eqtrd 2766 1 (𝐴 ⊆ ℋ → (𝐴 (⊥‘𝐴)) = ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cun 3900  cin 3901  wss 3902  cfv 6481  (class class class)co 7346  chba 30897   S csh 30906  cort 30908   chj 30911  0c0h 30913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086  ax-hilex 30977  ax-hfvadd 30978  ax-hvcom 30979  ax-hvass 30980  ax-hv0cl 30981  ax-hvaddid 30982  ax-hfvmul 30983  ax-hvmulid 30984  ax-hvmulass 30985  ax-hvdistr1 30986  ax-hvdistr2 30987  ax-hvmul0 30988  ax-hfi 31057  ax-his1 31060  ax-his2 31061  ax-his3 31062  ax-his4 31063
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-icc 13252  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-topgen 17347  df-psmet 21284  df-xmet 21285  df-met 21286  df-bl 21287  df-mopn 21288  df-top 22810  df-topon 22827  df-bases 22862  df-lm 23145  df-haus 23231  df-grpo 30471  df-gid 30472  df-ginv 30473  df-gdiv 30474  df-ablo 30523  df-vc 30537  df-nv 30570  df-va 30573  df-ba 30574  df-sm 30575  df-0v 30576  df-vs 30577  df-nmcv 30578  df-ims 30579  df-hnorm 30946  df-hvsub 30949  df-hlim 30950  df-sh 31185  df-ch 31199  df-oc 31230  df-ch0 31231  df-chj 31288
This theorem is referenced by:  chjoi  31466
  Copyright terms: Public domain W3C validator