HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ssjo Structured version   Visualization version   GIF version

Theorem ssjo 29552
Description: The lattice join of a subset with its orthocomplement is the whole space. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
ssjo (𝐴 ⊆ ℋ → (𝐴 (⊥‘𝐴)) = ℋ)

Proof of Theorem ssjo
StepHypRef Expression
1 ocss 29390 . . 3 (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ)
2 sshjval 29455 . . 3 ((𝐴 ⊆ ℋ ∧ (⊥‘𝐴) ⊆ ℋ) → (𝐴 (⊥‘𝐴)) = (⊥‘(⊥‘(𝐴 ∪ (⊥‘𝐴)))))
31, 2mpdan 687 . 2 (𝐴 ⊆ ℋ → (𝐴 (⊥‘𝐴)) = (⊥‘(⊥‘(𝐴 ∪ (⊥‘𝐴)))))
4 ssun1 4100 . . . . . . . 8 𝐴 ⊆ (𝐴 ∪ (⊥‘𝐴))
51ancli 552 . . . . . . . . . 10 (𝐴 ⊆ ℋ → (𝐴 ⊆ ℋ ∧ (⊥‘𝐴) ⊆ ℋ))
6 unss 4112 . . . . . . . . . 10 ((𝐴 ⊆ ℋ ∧ (⊥‘𝐴) ⊆ ℋ) ↔ (𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ)
75, 6sylib 221 . . . . . . . . 9 (𝐴 ⊆ ℋ → (𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ)
8 occon 29392 . . . . . . . . 9 ((𝐴 ⊆ ℋ ∧ (𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ) → (𝐴 ⊆ (𝐴 ∪ (⊥‘𝐴)) → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘𝐴)))
97, 8mpdan 687 . . . . . . . 8 (𝐴 ⊆ ℋ → (𝐴 ⊆ (𝐴 ∪ (⊥‘𝐴)) → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘𝐴)))
104, 9mpi 20 . . . . . . 7 (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘𝐴))
11 ssun2 4101 . . . . . . . 8 (⊥‘𝐴) ⊆ (𝐴 ∪ (⊥‘𝐴))
12 occon 29392 . . . . . . . . 9 (((⊥‘𝐴) ⊆ ℋ ∧ (𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ) → ((⊥‘𝐴) ⊆ (𝐴 ∪ (⊥‘𝐴)) → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘(⊥‘𝐴))))
131, 7, 12syl2anc 587 . . . . . . . 8 (𝐴 ⊆ ℋ → ((⊥‘𝐴) ⊆ (𝐴 ∪ (⊥‘𝐴)) → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘(⊥‘𝐴))))
1411, 13mpi 20 . . . . . . 7 (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘(⊥‘𝐴)))
1510, 14ssind 4161 . . . . . 6 (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ ((⊥‘𝐴) ∩ (⊥‘(⊥‘𝐴))))
16 ocsh 29388 . . . . . . 7 (𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ S )
17 ocin 29401 . . . . . . 7 ((⊥‘𝐴) ∈ S → ((⊥‘𝐴) ∩ (⊥‘(⊥‘𝐴))) = 0)
1816, 17syl 17 . . . . . 6 (𝐴 ⊆ ℋ → ((⊥‘𝐴) ∩ (⊥‘(⊥‘𝐴))) = 0)
1915, 18sseqtrd 3955 . . . . 5 (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ 0)
20 ocsh 29388 . . . . . 6 ((𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ∈ S )
21 sh0le 29545 . . . . . 6 ((⊥‘(𝐴 ∪ (⊥‘𝐴))) ∈ S → 0 ⊆ (⊥‘(𝐴 ∪ (⊥‘𝐴))))
227, 20, 213syl 18 . . . . 5 (𝐴 ⊆ ℋ → 0 ⊆ (⊥‘(𝐴 ∪ (⊥‘𝐴))))
2319, 22eqssd 3932 . . . 4 (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) = 0)
2423fveq2d 6739 . . 3 (𝐴 ⊆ ℋ → (⊥‘(⊥‘(𝐴 ∪ (⊥‘𝐴)))) = (⊥‘0))
25 choc0 29431 . . 3 (⊥‘0) = ℋ
2624, 25eqtrdi 2795 . 2 (𝐴 ⊆ ℋ → (⊥‘(⊥‘(𝐴 ∪ (⊥‘𝐴)))) = ℋ)
273, 26eqtrd 2778 1 (𝐴 ⊆ ℋ → (𝐴 (⊥‘𝐴)) = ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2111  cun 3878  cin 3879  wss 3880  cfv 6397  (class class class)co 7231  chba 29024   S csh 29033  cort 29035   chj 29038  0c0h 29040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5272  ax-pr 5336  ax-un 7541  ax-cnex 10809  ax-resscn 10810  ax-1cn 10811  ax-icn 10812  ax-addcl 10813  ax-addrcl 10814  ax-mulcl 10815  ax-mulrcl 10816  ax-mulcom 10817  ax-addass 10818  ax-mulass 10819  ax-distr 10820  ax-i2m1 10821  ax-1ne0 10822  ax-1rid 10823  ax-rnegex 10824  ax-rrecex 10825  ax-cnre 10826  ax-pre-lttri 10827  ax-pre-lttrn 10828  ax-pre-ltadd 10829  ax-pre-mulgt0 10830  ax-pre-sup 10831  ax-addf 10832  ax-mulf 10833  ax-hilex 29104  ax-hfvadd 29105  ax-hvcom 29106  ax-hvass 29107  ax-hv0cl 29108  ax-hvaddid 29109  ax-hfvmul 29110  ax-hvmulid 29111  ax-hvmulass 29112  ax-hvdistr1 29113  ax-hvdistr2 29114  ax-hvmul0 29115  ax-hfi 29184  ax-his1 29187  ax-his2 29188  ax-his3 29189  ax-his4 29190
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3422  df-sbc 3709  df-csb 3826  df-dif 3883  df-un 3885  df-in 3887  df-ss 3897  df-pss 3899  df-nul 4252  df-if 4454  df-pw 4529  df-sn 4556  df-pr 4558  df-tp 4560  df-op 4562  df-uni 4834  df-iun 4920  df-br 5068  df-opab 5130  df-mpt 5150  df-tr 5176  df-id 5469  df-eprel 5474  df-po 5482  df-so 5483  df-fr 5523  df-we 5525  df-xp 5571  df-rel 5572  df-cnv 5573  df-co 5574  df-dm 5575  df-rn 5576  df-res 5577  df-ima 5578  df-pred 6175  df-ord 6233  df-on 6234  df-lim 6235  df-suc 6236  df-iota 6355  df-fun 6399  df-fn 6400  df-f 6401  df-f1 6402  df-fo 6403  df-f1o 6404  df-fv 6405  df-riota 7188  df-ov 7234  df-oprab 7235  df-mpo 7236  df-om 7663  df-1st 7779  df-2nd 7780  df-wrecs 8067  df-recs 8128  df-rdg 8166  df-er 8411  df-map 8530  df-pm 8531  df-en 8647  df-dom 8648  df-sdom 8649  df-sup 9082  df-inf 9083  df-pnf 10893  df-mnf 10894  df-xr 10895  df-ltxr 10896  df-le 10897  df-sub 11088  df-neg 11089  df-div 11514  df-nn 11855  df-2 11917  df-3 11918  df-4 11919  df-n0 12115  df-z 12201  df-uz 12463  df-q 12569  df-rp 12611  df-xneg 12728  df-xadd 12729  df-xmul 12730  df-icc 12966  df-seq 13599  df-exp 13660  df-cj 14686  df-re 14687  df-im 14688  df-sqrt 14822  df-abs 14823  df-topgen 16972  df-psmet 20379  df-xmet 20380  df-met 20381  df-bl 20382  df-mopn 20383  df-top 21815  df-topon 21832  df-bases 21867  df-lm 22150  df-haus 22236  df-grpo 28598  df-gid 28599  df-ginv 28600  df-gdiv 28601  df-ablo 28650  df-vc 28664  df-nv 28697  df-va 28700  df-ba 28701  df-sm 28702  df-0v 28703  df-vs 28704  df-nmcv 28705  df-ims 28706  df-hnorm 29073  df-hvsub 29076  df-hlim 29077  df-sh 29312  df-ch 29326  df-oc 29357  df-ch0 29358  df-chj 29415
This theorem is referenced by:  chjoi  29593
  Copyright terms: Public domain W3C validator