![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ssjo | Structured version Visualization version GIF version |
Description: The lattice join of a subset with its orthocomplement is the whole space. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ssjo | ⊢ (𝐴 ⊆ ℋ → (𝐴 ∨ℋ (⊥‘𝐴)) = ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ocss 30803 | . . 3 ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ) | |
2 | sshjval 30868 | . . 3 ⊢ ((𝐴 ⊆ ℋ ∧ (⊥‘𝐴) ⊆ ℋ) → (𝐴 ∨ℋ (⊥‘𝐴)) = (⊥‘(⊥‘(𝐴 ∪ (⊥‘𝐴))))) | |
3 | 1, 2 | mpdan 683 | . 2 ⊢ (𝐴 ⊆ ℋ → (𝐴 ∨ℋ (⊥‘𝐴)) = (⊥‘(⊥‘(𝐴 ∪ (⊥‘𝐴))))) |
4 | ssun1 4173 | . . . . . . . 8 ⊢ 𝐴 ⊆ (𝐴 ∪ (⊥‘𝐴)) | |
5 | 1 | ancli 547 | . . . . . . . . . 10 ⊢ (𝐴 ⊆ ℋ → (𝐴 ⊆ ℋ ∧ (⊥‘𝐴) ⊆ ℋ)) |
6 | unss 4185 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℋ ∧ (⊥‘𝐴) ⊆ ℋ) ↔ (𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ) | |
7 | 5, 6 | sylib 217 | . . . . . . . . 9 ⊢ (𝐴 ⊆ ℋ → (𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ) |
8 | occon 30805 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℋ ∧ (𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ) → (𝐴 ⊆ (𝐴 ∪ (⊥‘𝐴)) → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘𝐴))) | |
9 | 7, 8 | mpdan 683 | . . . . . . . 8 ⊢ (𝐴 ⊆ ℋ → (𝐴 ⊆ (𝐴 ∪ (⊥‘𝐴)) → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘𝐴))) |
10 | 4, 9 | mpi 20 | . . . . . . 7 ⊢ (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘𝐴)) |
11 | ssun2 4174 | . . . . . . . 8 ⊢ (⊥‘𝐴) ⊆ (𝐴 ∪ (⊥‘𝐴)) | |
12 | occon 30805 | . . . . . . . . 9 ⊢ (((⊥‘𝐴) ⊆ ℋ ∧ (𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ) → ((⊥‘𝐴) ⊆ (𝐴 ∪ (⊥‘𝐴)) → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘(⊥‘𝐴)))) | |
13 | 1, 7, 12 | syl2anc 582 | . . . . . . . 8 ⊢ (𝐴 ⊆ ℋ → ((⊥‘𝐴) ⊆ (𝐴 ∪ (⊥‘𝐴)) → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘(⊥‘𝐴)))) |
14 | 11, 13 | mpi 20 | . . . . . . 7 ⊢ (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘(⊥‘𝐴))) |
15 | 10, 14 | ssind 4233 | . . . . . 6 ⊢ (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ ((⊥‘𝐴) ∩ (⊥‘(⊥‘𝐴)))) |
16 | ocsh 30801 | . . . . . . 7 ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ Sℋ ) | |
17 | ocin 30814 | . . . . . . 7 ⊢ ((⊥‘𝐴) ∈ Sℋ → ((⊥‘𝐴) ∩ (⊥‘(⊥‘𝐴))) = 0ℋ) | |
18 | 16, 17 | syl 17 | . . . . . 6 ⊢ (𝐴 ⊆ ℋ → ((⊥‘𝐴) ∩ (⊥‘(⊥‘𝐴))) = 0ℋ) |
19 | 15, 18 | sseqtrd 4023 | . . . . 5 ⊢ (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ 0ℋ) |
20 | ocsh 30801 | . . . . . 6 ⊢ ((𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ∈ Sℋ ) | |
21 | sh0le 30958 | . . . . . 6 ⊢ ((⊥‘(𝐴 ∪ (⊥‘𝐴))) ∈ Sℋ → 0ℋ ⊆ (⊥‘(𝐴 ∪ (⊥‘𝐴)))) | |
22 | 7, 20, 21 | 3syl 18 | . . . . 5 ⊢ (𝐴 ⊆ ℋ → 0ℋ ⊆ (⊥‘(𝐴 ∪ (⊥‘𝐴)))) |
23 | 19, 22 | eqssd 4000 | . . . 4 ⊢ (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) = 0ℋ) |
24 | 23 | fveq2d 6896 | . . 3 ⊢ (𝐴 ⊆ ℋ → (⊥‘(⊥‘(𝐴 ∪ (⊥‘𝐴)))) = (⊥‘0ℋ)) |
25 | choc0 30844 | . . 3 ⊢ (⊥‘0ℋ) = ℋ | |
26 | 24, 25 | eqtrdi 2786 | . 2 ⊢ (𝐴 ⊆ ℋ → (⊥‘(⊥‘(𝐴 ∪ (⊥‘𝐴)))) = ℋ) |
27 | 3, 26 | eqtrd 2770 | 1 ⊢ (𝐴 ⊆ ℋ → (𝐴 ∨ℋ (⊥‘𝐴)) = ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∪ cun 3947 ∩ cin 3948 ⊆ wss 3949 ‘cfv 6544 (class class class)co 7413 ℋchba 30437 Sℋ csh 30446 ⊥cort 30448 ∨ℋ chj 30451 0ℋc0h 30453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 ax-addf 11193 ax-mulf 11194 ax-hilex 30517 ax-hfvadd 30518 ax-hvcom 30519 ax-hvass 30520 ax-hv0cl 30521 ax-hvaddid 30522 ax-hfvmul 30523 ax-hvmulid 30524 ax-hvmulass 30525 ax-hvdistr1 30526 ax-hvdistr2 30527 ax-hvmul0 30528 ax-hfi 30597 ax-his1 30600 ax-his2 30601 ax-his3 30602 ax-his4 30603 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-map 8826 df-pm 8827 df-en 8944 df-dom 8945 df-sdom 8946 df-sup 9441 df-inf 9442 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-div 11878 df-nn 12219 df-2 12281 df-3 12282 df-4 12283 df-n0 12479 df-z 12565 df-uz 12829 df-q 12939 df-rp 12981 df-xneg 13098 df-xadd 13099 df-xmul 13100 df-icc 13337 df-seq 13973 df-exp 14034 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-topgen 17395 df-psmet 21138 df-xmet 21139 df-met 21140 df-bl 21141 df-mopn 21142 df-top 22618 df-topon 22635 df-bases 22671 df-lm 22955 df-haus 23041 df-grpo 30011 df-gid 30012 df-ginv 30013 df-gdiv 30014 df-ablo 30063 df-vc 30077 df-nv 30110 df-va 30113 df-ba 30114 df-sm 30115 df-0v 30116 df-vs 30117 df-nmcv 30118 df-ims 30119 df-hnorm 30486 df-hvsub 30489 df-hlim 30490 df-sh 30725 df-ch 30739 df-oc 30770 df-ch0 30771 df-chj 30828 |
This theorem is referenced by: chjoi 31006 |
Copyright terms: Public domain | W3C validator |