| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ssjo | Structured version Visualization version GIF version | ||
| Description: The lattice join of a subset with its orthocomplement is the whole space. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ssjo | ⊢ (𝐴 ⊆ ℋ → (𝐴 ∨ℋ (⊥‘𝐴)) = ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocss 31212 | . . 3 ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ) | |
| 2 | sshjval 31277 | . . 3 ⊢ ((𝐴 ⊆ ℋ ∧ (⊥‘𝐴) ⊆ ℋ) → (𝐴 ∨ℋ (⊥‘𝐴)) = (⊥‘(⊥‘(𝐴 ∪ (⊥‘𝐴))))) | |
| 3 | 1, 2 | mpdan 687 | . 2 ⊢ (𝐴 ⊆ ℋ → (𝐴 ∨ℋ (⊥‘𝐴)) = (⊥‘(⊥‘(𝐴 ∪ (⊥‘𝐴))))) |
| 4 | ssun1 4153 | . . . . . . . 8 ⊢ 𝐴 ⊆ (𝐴 ∪ (⊥‘𝐴)) | |
| 5 | 1 | ancli 548 | . . . . . . . . . 10 ⊢ (𝐴 ⊆ ℋ → (𝐴 ⊆ ℋ ∧ (⊥‘𝐴) ⊆ ℋ)) |
| 6 | unss 4165 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℋ ∧ (⊥‘𝐴) ⊆ ℋ) ↔ (𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ) | |
| 7 | 5, 6 | sylib 218 | . . . . . . . . 9 ⊢ (𝐴 ⊆ ℋ → (𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ) |
| 8 | occon 31214 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℋ ∧ (𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ) → (𝐴 ⊆ (𝐴 ∪ (⊥‘𝐴)) → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘𝐴))) | |
| 9 | 7, 8 | mpdan 687 | . . . . . . . 8 ⊢ (𝐴 ⊆ ℋ → (𝐴 ⊆ (𝐴 ∪ (⊥‘𝐴)) → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘𝐴))) |
| 10 | 4, 9 | mpi 20 | . . . . . . 7 ⊢ (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘𝐴)) |
| 11 | ssun2 4154 | . . . . . . . 8 ⊢ (⊥‘𝐴) ⊆ (𝐴 ∪ (⊥‘𝐴)) | |
| 12 | occon 31214 | . . . . . . . . 9 ⊢ (((⊥‘𝐴) ⊆ ℋ ∧ (𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ) → ((⊥‘𝐴) ⊆ (𝐴 ∪ (⊥‘𝐴)) → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘(⊥‘𝐴)))) | |
| 13 | 1, 7, 12 | syl2anc 584 | . . . . . . . 8 ⊢ (𝐴 ⊆ ℋ → ((⊥‘𝐴) ⊆ (𝐴 ∪ (⊥‘𝐴)) → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘(⊥‘𝐴)))) |
| 14 | 11, 13 | mpi 20 | . . . . . . 7 ⊢ (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘(⊥‘𝐴))) |
| 15 | 10, 14 | ssind 4216 | . . . . . 6 ⊢ (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ ((⊥‘𝐴) ∩ (⊥‘(⊥‘𝐴)))) |
| 16 | ocsh 31210 | . . . . . . 7 ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ Sℋ ) | |
| 17 | ocin 31223 | . . . . . . 7 ⊢ ((⊥‘𝐴) ∈ Sℋ → ((⊥‘𝐴) ∩ (⊥‘(⊥‘𝐴))) = 0ℋ) | |
| 18 | 16, 17 | syl 17 | . . . . . 6 ⊢ (𝐴 ⊆ ℋ → ((⊥‘𝐴) ∩ (⊥‘(⊥‘𝐴))) = 0ℋ) |
| 19 | 15, 18 | sseqtrd 3995 | . . . . 5 ⊢ (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ 0ℋ) |
| 20 | ocsh 31210 | . . . . . 6 ⊢ ((𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ∈ Sℋ ) | |
| 21 | sh0le 31367 | . . . . . 6 ⊢ ((⊥‘(𝐴 ∪ (⊥‘𝐴))) ∈ Sℋ → 0ℋ ⊆ (⊥‘(𝐴 ∪ (⊥‘𝐴)))) | |
| 22 | 7, 20, 21 | 3syl 18 | . . . . 5 ⊢ (𝐴 ⊆ ℋ → 0ℋ ⊆ (⊥‘(𝐴 ∪ (⊥‘𝐴)))) |
| 23 | 19, 22 | eqssd 3976 | . . . 4 ⊢ (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) = 0ℋ) |
| 24 | 23 | fveq2d 6879 | . . 3 ⊢ (𝐴 ⊆ ℋ → (⊥‘(⊥‘(𝐴 ∪ (⊥‘𝐴)))) = (⊥‘0ℋ)) |
| 25 | choc0 31253 | . . 3 ⊢ (⊥‘0ℋ) = ℋ | |
| 26 | 24, 25 | eqtrdi 2786 | . 2 ⊢ (𝐴 ⊆ ℋ → (⊥‘(⊥‘(𝐴 ∪ (⊥‘𝐴)))) = ℋ) |
| 27 | 3, 26 | eqtrd 2770 | 1 ⊢ (𝐴 ⊆ ℋ → (𝐴 ∨ℋ (⊥‘𝐴)) = ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∪ cun 3924 ∩ cin 3925 ⊆ wss 3926 ‘cfv 6530 (class class class)co 7403 ℋchba 30846 Sℋ csh 30855 ⊥cort 30857 ∨ℋ chj 30860 0ℋc0h 30862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 ax-addf 11206 ax-mulf 11207 ax-hilex 30926 ax-hfvadd 30927 ax-hvcom 30928 ax-hvass 30929 ax-hv0cl 30930 ax-hvaddid 30931 ax-hfvmul 30932 ax-hvmulid 30933 ax-hvmulass 30934 ax-hvdistr1 30935 ax-hvdistr2 30936 ax-hvmul0 30937 ax-hfi 31006 ax-his1 31009 ax-his2 31010 ax-his3 31011 ax-his4 31012 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-map 8840 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9452 df-inf 9453 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-n0 12500 df-z 12587 df-uz 12851 df-q 12963 df-rp 13007 df-xneg 13126 df-xadd 13127 df-xmul 13128 df-icc 13367 df-seq 14018 df-exp 14078 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-topgen 17455 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-top 22830 df-topon 22847 df-bases 22882 df-lm 23165 df-haus 23251 df-grpo 30420 df-gid 30421 df-ginv 30422 df-gdiv 30423 df-ablo 30472 df-vc 30486 df-nv 30519 df-va 30522 df-ba 30523 df-sm 30524 df-0v 30525 df-vs 30526 df-nmcv 30527 df-ims 30528 df-hnorm 30895 df-hvsub 30898 df-hlim 30899 df-sh 31134 df-ch 31148 df-oc 31179 df-ch0 31180 df-chj 31237 |
| This theorem is referenced by: chjoi 31415 |
| Copyright terms: Public domain | W3C validator |