Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ssjo | Structured version Visualization version GIF version |
Description: The lattice join of a subset with its orthocomplement is the whole space. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ssjo | ⊢ (𝐴 ⊆ ℋ → (𝐴 ∨ℋ (⊥‘𝐴)) = ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ocss 29647 | . . 3 ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ) | |
2 | sshjval 29712 | . . 3 ⊢ ((𝐴 ⊆ ℋ ∧ (⊥‘𝐴) ⊆ ℋ) → (𝐴 ∨ℋ (⊥‘𝐴)) = (⊥‘(⊥‘(𝐴 ∪ (⊥‘𝐴))))) | |
3 | 1, 2 | mpdan 684 | . 2 ⊢ (𝐴 ⊆ ℋ → (𝐴 ∨ℋ (⊥‘𝐴)) = (⊥‘(⊥‘(𝐴 ∪ (⊥‘𝐴))))) |
4 | ssun1 4106 | . . . . . . . 8 ⊢ 𝐴 ⊆ (𝐴 ∪ (⊥‘𝐴)) | |
5 | 1 | ancli 549 | . . . . . . . . . 10 ⊢ (𝐴 ⊆ ℋ → (𝐴 ⊆ ℋ ∧ (⊥‘𝐴) ⊆ ℋ)) |
6 | unss 4118 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℋ ∧ (⊥‘𝐴) ⊆ ℋ) ↔ (𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ) | |
7 | 5, 6 | sylib 217 | . . . . . . . . 9 ⊢ (𝐴 ⊆ ℋ → (𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ) |
8 | occon 29649 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℋ ∧ (𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ) → (𝐴 ⊆ (𝐴 ∪ (⊥‘𝐴)) → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘𝐴))) | |
9 | 7, 8 | mpdan 684 | . . . . . . . 8 ⊢ (𝐴 ⊆ ℋ → (𝐴 ⊆ (𝐴 ∪ (⊥‘𝐴)) → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘𝐴))) |
10 | 4, 9 | mpi 20 | . . . . . . 7 ⊢ (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘𝐴)) |
11 | ssun2 4107 | . . . . . . . 8 ⊢ (⊥‘𝐴) ⊆ (𝐴 ∪ (⊥‘𝐴)) | |
12 | occon 29649 | . . . . . . . . 9 ⊢ (((⊥‘𝐴) ⊆ ℋ ∧ (𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ) → ((⊥‘𝐴) ⊆ (𝐴 ∪ (⊥‘𝐴)) → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘(⊥‘𝐴)))) | |
13 | 1, 7, 12 | syl2anc 584 | . . . . . . . 8 ⊢ (𝐴 ⊆ ℋ → ((⊥‘𝐴) ⊆ (𝐴 ∪ (⊥‘𝐴)) → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘(⊥‘𝐴)))) |
14 | 11, 13 | mpi 20 | . . . . . . 7 ⊢ (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘(⊥‘𝐴))) |
15 | 10, 14 | ssind 4166 | . . . . . 6 ⊢ (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ ((⊥‘𝐴) ∩ (⊥‘(⊥‘𝐴)))) |
16 | ocsh 29645 | . . . . . . 7 ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ Sℋ ) | |
17 | ocin 29658 | . . . . . . 7 ⊢ ((⊥‘𝐴) ∈ Sℋ → ((⊥‘𝐴) ∩ (⊥‘(⊥‘𝐴))) = 0ℋ) | |
18 | 16, 17 | syl 17 | . . . . . 6 ⊢ (𝐴 ⊆ ℋ → ((⊥‘𝐴) ∩ (⊥‘(⊥‘𝐴))) = 0ℋ) |
19 | 15, 18 | sseqtrd 3961 | . . . . 5 ⊢ (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ 0ℋ) |
20 | ocsh 29645 | . . . . . 6 ⊢ ((𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ∈ Sℋ ) | |
21 | sh0le 29802 | . . . . . 6 ⊢ ((⊥‘(𝐴 ∪ (⊥‘𝐴))) ∈ Sℋ → 0ℋ ⊆ (⊥‘(𝐴 ∪ (⊥‘𝐴)))) | |
22 | 7, 20, 21 | 3syl 18 | . . . . 5 ⊢ (𝐴 ⊆ ℋ → 0ℋ ⊆ (⊥‘(𝐴 ∪ (⊥‘𝐴)))) |
23 | 19, 22 | eqssd 3938 | . . . 4 ⊢ (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) = 0ℋ) |
24 | 23 | fveq2d 6778 | . . 3 ⊢ (𝐴 ⊆ ℋ → (⊥‘(⊥‘(𝐴 ∪ (⊥‘𝐴)))) = (⊥‘0ℋ)) |
25 | choc0 29688 | . . 3 ⊢ (⊥‘0ℋ) = ℋ | |
26 | 24, 25 | eqtrdi 2794 | . 2 ⊢ (𝐴 ⊆ ℋ → (⊥‘(⊥‘(𝐴 ∪ (⊥‘𝐴)))) = ℋ) |
27 | 3, 26 | eqtrd 2778 | 1 ⊢ (𝐴 ⊆ ℋ → (𝐴 ∨ℋ (⊥‘𝐴)) = ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∪ cun 3885 ∩ cin 3886 ⊆ wss 3887 ‘cfv 6433 (class class class)co 7275 ℋchba 29281 Sℋ csh 29290 ⊥cort 29292 ∨ℋ chj 29295 0ℋc0h 29297 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 ax-hilex 29361 ax-hfvadd 29362 ax-hvcom 29363 ax-hvass 29364 ax-hv0cl 29365 ax-hvaddid 29366 ax-hfvmul 29367 ax-hvmulid 29368 ax-hvmulass 29369 ax-hvdistr1 29370 ax-hvdistr2 29371 ax-hvmul0 29372 ax-hfi 29441 ax-his1 29444 ax-his2 29445 ax-his3 29446 ax-his4 29447 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-icc 13086 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-topgen 17154 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-top 22043 df-topon 22060 df-bases 22096 df-lm 22380 df-haus 22466 df-grpo 28855 df-gid 28856 df-ginv 28857 df-gdiv 28858 df-ablo 28907 df-vc 28921 df-nv 28954 df-va 28957 df-ba 28958 df-sm 28959 df-0v 28960 df-vs 28961 df-nmcv 28962 df-ims 28963 df-hnorm 29330 df-hvsub 29333 df-hlim 29334 df-sh 29569 df-ch 29583 df-oc 29614 df-ch0 29615 df-chj 29672 |
This theorem is referenced by: chjoi 29850 |
Copyright terms: Public domain | W3C validator |