HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ssjo Structured version   Visualization version   GIF version

Theorem ssjo 29226
Description: The lattice join of a subset with its orthocomplement is the whole space. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
ssjo (𝐴 ⊆ ℋ → (𝐴 (⊥‘𝐴)) = ℋ)

Proof of Theorem ssjo
StepHypRef Expression
1 ocss 29064 . . 3 (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ)
2 sshjval 29129 . . 3 ((𝐴 ⊆ ℋ ∧ (⊥‘𝐴) ⊆ ℋ) → (𝐴 (⊥‘𝐴)) = (⊥‘(⊥‘(𝐴 ∪ (⊥‘𝐴)))))
31, 2mpdan 685 . 2 (𝐴 ⊆ ℋ → (𝐴 (⊥‘𝐴)) = (⊥‘(⊥‘(𝐴 ∪ (⊥‘𝐴)))))
4 ssun1 4150 . . . . . . . 8 𝐴 ⊆ (𝐴 ∪ (⊥‘𝐴))
51ancli 551 . . . . . . . . . 10 (𝐴 ⊆ ℋ → (𝐴 ⊆ ℋ ∧ (⊥‘𝐴) ⊆ ℋ))
6 unss 4162 . . . . . . . . . 10 ((𝐴 ⊆ ℋ ∧ (⊥‘𝐴) ⊆ ℋ) ↔ (𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ)
75, 6sylib 220 . . . . . . . . 9 (𝐴 ⊆ ℋ → (𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ)
8 occon 29066 . . . . . . . . 9 ((𝐴 ⊆ ℋ ∧ (𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ) → (𝐴 ⊆ (𝐴 ∪ (⊥‘𝐴)) → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘𝐴)))
97, 8mpdan 685 . . . . . . . 8 (𝐴 ⊆ ℋ → (𝐴 ⊆ (𝐴 ∪ (⊥‘𝐴)) → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘𝐴)))
104, 9mpi 20 . . . . . . 7 (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘𝐴))
11 ssun2 4151 . . . . . . . 8 (⊥‘𝐴) ⊆ (𝐴 ∪ (⊥‘𝐴))
12 occon 29066 . . . . . . . . 9 (((⊥‘𝐴) ⊆ ℋ ∧ (𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ) → ((⊥‘𝐴) ⊆ (𝐴 ∪ (⊥‘𝐴)) → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘(⊥‘𝐴))))
131, 7, 12syl2anc 586 . . . . . . . 8 (𝐴 ⊆ ℋ → ((⊥‘𝐴) ⊆ (𝐴 ∪ (⊥‘𝐴)) → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘(⊥‘𝐴))))
1411, 13mpi 20 . . . . . . 7 (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ (⊥‘(⊥‘𝐴)))
1510, 14ssind 4211 . . . . . 6 (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ ((⊥‘𝐴) ∩ (⊥‘(⊥‘𝐴))))
16 ocsh 29062 . . . . . . 7 (𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ S )
17 ocin 29075 . . . . . . 7 ((⊥‘𝐴) ∈ S → ((⊥‘𝐴) ∩ (⊥‘(⊥‘𝐴))) = 0)
1816, 17syl 17 . . . . . 6 (𝐴 ⊆ ℋ → ((⊥‘𝐴) ∩ (⊥‘(⊥‘𝐴))) = 0)
1915, 18sseqtrd 4009 . . . . 5 (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ⊆ 0)
20 ocsh 29062 . . . . . 6 ((𝐴 ∪ (⊥‘𝐴)) ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) ∈ S )
21 sh0le 29219 . . . . . 6 ((⊥‘(𝐴 ∪ (⊥‘𝐴))) ∈ S → 0 ⊆ (⊥‘(𝐴 ∪ (⊥‘𝐴))))
227, 20, 213syl 18 . . . . 5 (𝐴 ⊆ ℋ → 0 ⊆ (⊥‘(𝐴 ∪ (⊥‘𝐴))))
2319, 22eqssd 3986 . . . 4 (𝐴 ⊆ ℋ → (⊥‘(𝐴 ∪ (⊥‘𝐴))) = 0)
2423fveq2d 6676 . . 3 (𝐴 ⊆ ℋ → (⊥‘(⊥‘(𝐴 ∪ (⊥‘𝐴)))) = (⊥‘0))
25 choc0 29105 . . 3 (⊥‘0) = ℋ
2624, 25syl6eq 2874 . 2 (𝐴 ⊆ ℋ → (⊥‘(⊥‘(𝐴 ∪ (⊥‘𝐴)))) = ℋ)
273, 26eqtrd 2858 1 (𝐴 ⊆ ℋ → (𝐴 (⊥‘𝐴)) = ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cun 3936  cin 3937  wss 3938  cfv 6357  (class class class)co 7158  chba 28698   S csh 28707  cort 28709   chj 28712  0c0h 28714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619  ax-hilex 28778  ax-hfvadd 28779  ax-hvcom 28780  ax-hvass 28781  ax-hv0cl 28782  ax-hvaddid 28783  ax-hfvmul 28784  ax-hvmulid 28785  ax-hvmulass 28786  ax-hvdistr1 28787  ax-hvdistr2 28788  ax-hvmul0 28789  ax-hfi 28858  ax-his1 28861  ax-his2 28862  ax-his3 28863  ax-his4 28864
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-icc 12748  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-topgen 16719  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-top 21504  df-topon 21521  df-bases 21556  df-lm 21839  df-haus 21925  df-grpo 28272  df-gid 28273  df-ginv 28274  df-gdiv 28275  df-ablo 28324  df-vc 28338  df-nv 28371  df-va 28374  df-ba 28375  df-sm 28376  df-0v 28377  df-vs 28378  df-nmcv 28379  df-ims 28380  df-hnorm 28747  df-hvsub 28750  df-hlim 28751  df-sh 28986  df-ch 29000  df-oc 29031  df-ch0 29032  df-chj 29089
This theorem is referenced by:  chjoi  29267
  Copyright terms: Public domain W3C validator