![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > span0 | Structured version Visualization version GIF version |
Description: The span of the empty set is the zero subspace. Remark 11.6.e of [Schechter] p. 276. (Contributed by NM, 3-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
span0 | ⊢ (span‘∅) = 0ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | h0elsh 30496 | . . . . 5 ⊢ 0ℋ ∈ Sℋ | |
2 | 1 | shssii 30453 | . . . 4 ⊢ 0ℋ ⊆ ℋ |
3 | 0ss 4395 | . . . 4 ⊢ ∅ ⊆ 0ℋ | |
4 | spanss 30588 | . . . 4 ⊢ ((0ℋ ⊆ ℋ ∧ ∅ ⊆ 0ℋ) → (span‘∅) ⊆ (span‘0ℋ)) | |
5 | 2, 3, 4 | mp2an 690 | . . 3 ⊢ (span‘∅) ⊆ (span‘0ℋ) |
6 | spanid 30587 | . . . 4 ⊢ (0ℋ ∈ Sℋ → (span‘0ℋ) = 0ℋ) | |
7 | 1, 6 | ax-mp 5 | . . 3 ⊢ (span‘0ℋ) = 0ℋ |
8 | 5, 7 | sseqtri 4017 | . 2 ⊢ (span‘∅) ⊆ 0ℋ |
9 | 0ss 4395 | . . . 4 ⊢ ∅ ⊆ ℋ | |
10 | spancl 30576 | . . . 4 ⊢ (∅ ⊆ ℋ → (span‘∅) ∈ Sℋ ) | |
11 | 9, 10 | ax-mp 5 | . . 3 ⊢ (span‘∅) ∈ Sℋ |
12 | sh0le 30680 | . . 3 ⊢ ((span‘∅) ∈ Sℋ → 0ℋ ⊆ (span‘∅)) | |
13 | 11, 12 | ax-mp 5 | . 2 ⊢ 0ℋ ⊆ (span‘∅) |
14 | 8, 13 | eqssi 3997 | 1 ⊢ (span‘∅) = 0ℋ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 ⊆ wss 3947 ∅c0 4321 ‘cfv 6540 ℋchba 30159 Sℋ csh 30168 spancspn 30172 0ℋc0h 30175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 ax-hilex 30239 ax-hfvadd 30240 ax-hvcom 30241 ax-hvass 30242 ax-hv0cl 30243 ax-hvaddid 30244 ax-hfvmul 30245 ax-hvmulid 30246 ax-hvmulass 30247 ax-hvdistr1 30248 ax-hvdistr2 30249 ax-hvmul0 30250 ax-hfi 30319 ax-his1 30322 ax-his2 30323 ax-his3 30324 ax-his4 30325 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-n0 12469 df-z 12555 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-icc 13327 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-topgen 17385 df-psmet 20928 df-xmet 20929 df-met 20930 df-bl 20931 df-mopn 20932 df-top 22387 df-topon 22404 df-bases 22440 df-lm 22724 df-haus 22810 df-grpo 29733 df-gid 29734 df-ginv 29735 df-gdiv 29736 df-ablo 29785 df-vc 29799 df-nv 29832 df-va 29835 df-ba 29836 df-sm 29837 df-0v 29838 df-vs 29839 df-nmcv 29840 df-ims 29841 df-hnorm 30208 df-hvsub 30211 df-hlim 30212 df-sh 30447 df-ch 30461 df-ch0 30493 df-span 30549 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |