| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp22r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp22r | ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2r 1201 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: frrlem10 8277 ttrclselem2 9686 ax5seglem6 28868 segconeu 36006 3atlem2 39485 lplnexllnN 39565 lplncvrlvol2 39616 4atex 40077 cdleme3g 40235 cdleme3h 40236 cdleme11h 40267 cdleme20bN 40311 cdleme20c 40312 cdleme20f 40315 cdleme20g 40316 cdleme20j 40319 cdleme20l2 40322 cdleme20l 40323 cdleme21ct 40330 cdleme26e 40360 cdleme43fsv1snlem 40421 cdleme39n 40467 cdleme40m 40468 cdleme42k 40485 cdlemg6c 40621 cdlemg31d 40701 cdlemg33a 40707 cdlemg33c 40709 cdlemg33d 40710 cdlemg33e 40711 cdlemg33 40712 cdlemh 40818 cdlemk7u-2N 40889 cdlemk11u-2N 40890 cdlemk12u-2N 40891 cdlemk20-2N 40893 cdlemk28-3 40909 cdlemk33N 40910 cdlemk34 40911 cdlemk39 40917 cdlemkyyN 40963 |
| Copyright terms: Public domain | W3C validator |