| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp22r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp22r | ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2r 1201 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: frrlem10 8294 ttrclselem2 9740 ax5seglem6 28913 segconeu 36029 3atlem2 39503 lplnexllnN 39583 lplncvrlvol2 39634 4atex 40095 cdleme3g 40253 cdleme3h 40254 cdleme11h 40285 cdleme20bN 40329 cdleme20c 40330 cdleme20f 40333 cdleme20g 40334 cdleme20j 40337 cdleme20l2 40340 cdleme20l 40341 cdleme21ct 40348 cdleme26e 40378 cdleme43fsv1snlem 40439 cdleme39n 40485 cdleme40m 40486 cdleme42k 40503 cdlemg6c 40639 cdlemg31d 40719 cdlemg33a 40725 cdlemg33c 40727 cdlemg33d 40728 cdlemg33e 40729 cdlemg33 40730 cdlemh 40836 cdlemk7u-2N 40907 cdlemk11u-2N 40908 cdlemk12u-2N 40909 cdlemk20-2N 40911 cdlemk28-3 40927 cdlemk33N 40928 cdlemk34 40929 cdlemk39 40935 cdlemkyyN 40981 |
| Copyright terms: Public domain | W3C validator |