Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp22r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp22r | ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2r 1198 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
2 | 1 | 3ad2ant2 1132 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: frrlem10 8082 ax5seglem6 27205 ttrclselem2 33712 segconeu 34240 3atlem2 37425 lplnexllnN 37505 lplncvrlvol2 37556 4atex 38017 cdleme3g 38175 cdleme3h 38176 cdleme11h 38207 cdleme20bN 38251 cdleme20c 38252 cdleme20f 38255 cdleme20g 38256 cdleme20j 38259 cdleme20l2 38262 cdleme20l 38263 cdleme21ct 38270 cdleme26e 38300 cdleme43fsv1snlem 38361 cdleme39n 38407 cdleme40m 38408 cdleme42k 38425 cdlemg6c 38561 cdlemg31d 38641 cdlemg33a 38647 cdlemg33c 38649 cdlemg33d 38650 cdlemg33e 38651 cdlemg33 38652 cdlemh 38758 cdlemk7u-2N 38829 cdlemk11u-2N 38830 cdlemk12u-2N 38831 cdlemk20-2N 38833 cdlemk28-3 38849 cdlemk33N 38850 cdlemk34 38851 cdlemk39 38857 cdlemkyyN 38903 |
Copyright terms: Public domain | W3C validator |