Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp22r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp22r | ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2r 1199 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
2 | 1 | 3ad2ant2 1133 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: frrlem10 8111 ttrclselem2 9484 ax5seglem6 27302 segconeu 34313 3atlem2 37498 lplnexllnN 37578 lplncvrlvol2 37629 4atex 38090 cdleme3g 38248 cdleme3h 38249 cdleme11h 38280 cdleme20bN 38324 cdleme20c 38325 cdleme20f 38328 cdleme20g 38329 cdleme20j 38332 cdleme20l2 38335 cdleme20l 38336 cdleme21ct 38343 cdleme26e 38373 cdleme43fsv1snlem 38434 cdleme39n 38480 cdleme40m 38481 cdleme42k 38498 cdlemg6c 38634 cdlemg31d 38714 cdlemg33a 38720 cdlemg33c 38722 cdlemg33d 38723 cdlemg33e 38724 cdlemg33 38725 cdlemh 38831 cdlemk7u-2N 38902 cdlemk11u-2N 38903 cdlemk12u-2N 38904 cdlemk20-2N 38906 cdlemk28-3 38922 cdlemk33N 38923 cdlemk34 38924 cdlemk39 38930 cdlemkyyN 38976 |
Copyright terms: Public domain | W3C validator |