Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp22r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp22r | ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2r 1199 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
2 | 1 | 3ad2ant2 1133 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: frrlem10 8109 ttrclselem2 9482 ax5seglem6 27300 segconeu 34310 3atlem2 37495 lplnexllnN 37575 lplncvrlvol2 37626 4atex 38087 cdleme3g 38245 cdleme3h 38246 cdleme11h 38277 cdleme20bN 38321 cdleme20c 38322 cdleme20f 38325 cdleme20g 38326 cdleme20j 38329 cdleme20l2 38332 cdleme20l 38333 cdleme21ct 38340 cdleme26e 38370 cdleme43fsv1snlem 38431 cdleme39n 38477 cdleme40m 38478 cdleme42k 38495 cdlemg6c 38631 cdlemg31d 38711 cdlemg33a 38717 cdlemg33c 38719 cdlemg33d 38720 cdlemg33e 38721 cdlemg33 38722 cdlemh 38828 cdlemk7u-2N 38899 cdlemk11u-2N 38900 cdlemk12u-2N 38901 cdlemk20-2N 38903 cdlemk28-3 38919 cdlemk33N 38920 cdlemk34 38921 cdlemk39 38927 cdlemkyyN 38973 |
Copyright terms: Public domain | W3C validator |