| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp22r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp22r | ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2r 1201 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: frrlem10 8235 ttrclselem2 9641 ax5seglem6 28897 segconeu 35987 3atlem2 39466 lplnexllnN 39546 lplncvrlvol2 39597 4atex 40058 cdleme3g 40216 cdleme3h 40217 cdleme11h 40248 cdleme20bN 40292 cdleme20c 40293 cdleme20f 40296 cdleme20g 40297 cdleme20j 40300 cdleme20l2 40303 cdleme20l 40304 cdleme21ct 40311 cdleme26e 40341 cdleme43fsv1snlem 40402 cdleme39n 40448 cdleme40m 40449 cdleme42k 40466 cdlemg6c 40602 cdlemg31d 40682 cdlemg33a 40688 cdlemg33c 40690 cdlemg33d 40691 cdlemg33e 40692 cdlemg33 40693 cdlemh 40799 cdlemk7u-2N 40870 cdlemk11u-2N 40871 cdlemk12u-2N 40872 cdlemk20-2N 40874 cdlemk28-3 40890 cdlemk33N 40891 cdlemk34 40892 cdlemk39 40898 cdlemkyyN 40944 |
| Copyright terms: Public domain | W3C validator |