| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp22r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp22r | ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2r 1201 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: frrlem10 8274 ttrclselem2 9679 ax5seglem6 28861 segconeu 35999 3atlem2 39478 lplnexllnN 39558 lplncvrlvol2 39609 4atex 40070 cdleme3g 40228 cdleme3h 40229 cdleme11h 40260 cdleme20bN 40304 cdleme20c 40305 cdleme20f 40308 cdleme20g 40309 cdleme20j 40312 cdleme20l2 40315 cdleme20l 40316 cdleme21ct 40323 cdleme26e 40353 cdleme43fsv1snlem 40414 cdleme39n 40460 cdleme40m 40461 cdleme42k 40478 cdlemg6c 40614 cdlemg31d 40694 cdlemg33a 40700 cdlemg33c 40702 cdlemg33d 40703 cdlemg33e 40704 cdlemg33 40705 cdlemh 40811 cdlemk7u-2N 40882 cdlemk11u-2N 40883 cdlemk12u-2N 40884 cdlemk20-2N 40886 cdlemk28-3 40902 cdlemk33N 40903 cdlemk34 40904 cdlemk39 40910 cdlemkyyN 40956 |
| Copyright terms: Public domain | W3C validator |