![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp22r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp22r | ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2r 1199 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
2 | 1 | 3ad2ant2 1133 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: frrlem10 8319 ttrclselem2 9764 ax5seglem6 28964 segconeu 35993 3atlem2 39467 lplnexllnN 39547 lplncvrlvol2 39598 4atex 40059 cdleme3g 40217 cdleme3h 40218 cdleme11h 40249 cdleme20bN 40293 cdleme20c 40294 cdleme20f 40297 cdleme20g 40298 cdleme20j 40301 cdleme20l2 40304 cdleme20l 40305 cdleme21ct 40312 cdleme26e 40342 cdleme43fsv1snlem 40403 cdleme39n 40449 cdleme40m 40450 cdleme42k 40467 cdlemg6c 40603 cdlemg31d 40683 cdlemg33a 40689 cdlemg33c 40691 cdlemg33d 40692 cdlemg33e 40693 cdlemg33 40694 cdlemh 40800 cdlemk7u-2N 40871 cdlemk11u-2N 40872 cdlemk12u-2N 40873 cdlemk20-2N 40875 cdlemk28-3 40891 cdlemk33N 40892 cdlemk34 40893 cdlemk39 40899 cdlemkyyN 40945 |
Copyright terms: Public domain | W3C validator |