| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp22r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp22r | ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2r 1201 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: frrlem10 8225 ttrclselem2 9616 ax5seglem6 28913 segconeu 36051 3atlem2 39529 lplnexllnN 39609 lplncvrlvol2 39660 4atex 40121 cdleme3g 40279 cdleme3h 40280 cdleme11h 40311 cdleme20bN 40355 cdleme20c 40356 cdleme20f 40359 cdleme20g 40360 cdleme20j 40363 cdleme20l2 40366 cdleme20l 40367 cdleme21ct 40374 cdleme26e 40404 cdleme43fsv1snlem 40465 cdleme39n 40511 cdleme40m 40512 cdleme42k 40529 cdlemg6c 40665 cdlemg31d 40745 cdlemg33a 40751 cdlemg33c 40753 cdlemg33d 40754 cdlemg33e 40755 cdlemg33 40756 cdlemh 40862 cdlemk7u-2N 40933 cdlemk11u-2N 40934 cdlemk12u-2N 40935 cdlemk20-2N 40937 cdlemk28-3 40953 cdlemk33N 40954 cdlemk34 40955 cdlemk39 40961 cdlemkyyN 41007 |
| Copyright terms: Public domain | W3C validator |