| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp22r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp22r | ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2r 1201 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: frrlem10 8233 ttrclselem2 9625 ax5seglem6 28916 segconeu 36078 3atlem2 39606 lplnexllnN 39686 lplncvrlvol2 39737 4atex 40198 cdleme3g 40356 cdleme3h 40357 cdleme11h 40388 cdleme20bN 40432 cdleme20c 40433 cdleme20f 40436 cdleme20g 40437 cdleme20j 40440 cdleme20l2 40443 cdleme20l 40444 cdleme21ct 40451 cdleme26e 40481 cdleme43fsv1snlem 40542 cdleme39n 40588 cdleme40m 40589 cdleme42k 40606 cdlemg6c 40742 cdlemg31d 40822 cdlemg33a 40828 cdlemg33c 40830 cdlemg33d 40831 cdlemg33e 40832 cdlemg33 40833 cdlemh 40939 cdlemk7u-2N 41010 cdlemk11u-2N 41011 cdlemk12u-2N 41012 cdlemk20-2N 41014 cdlemk28-3 41030 cdlemk33N 41031 cdlemk34 41032 cdlemk39 41038 cdlemkyyN 41084 |
| Copyright terms: Public domain | W3C validator |