![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp22r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp22r | ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2r 1200 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: frrlem10 8336 ttrclselem2 9795 ax5seglem6 28967 segconeu 35975 3atlem2 39441 lplnexllnN 39521 lplncvrlvol2 39572 4atex 40033 cdleme3g 40191 cdleme3h 40192 cdleme11h 40223 cdleme20bN 40267 cdleme20c 40268 cdleme20f 40271 cdleme20g 40272 cdleme20j 40275 cdleme20l2 40278 cdleme20l 40279 cdleme21ct 40286 cdleme26e 40316 cdleme43fsv1snlem 40377 cdleme39n 40423 cdleme40m 40424 cdleme42k 40441 cdlemg6c 40577 cdlemg31d 40657 cdlemg33a 40663 cdlemg33c 40665 cdlemg33d 40666 cdlemg33e 40667 cdlemg33 40668 cdlemh 40774 cdlemk7u-2N 40845 cdlemk11u-2N 40846 cdlemk12u-2N 40847 cdlemk20-2N 40849 cdlemk28-3 40865 cdlemk33N 40866 cdlemk34 40867 cdlemk39 40873 cdlemkyyN 40919 |
Copyright terms: Public domain | W3C validator |