Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg6c Structured version   Visualization version   GIF version

Theorem cdlemg6c 40665
Description: TODO: FIX COMMENT. (Contributed by NM, 27-Apr-2013.)
Hypotheses
Ref Expression
cdlemg4.l = (le‘𝐾)
cdlemg4.a 𝐴 = (Atoms‘𝐾)
cdlemg4.h 𝐻 = (LHyp‘𝐾)
cdlemg4.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg4.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg4.j = (join‘𝐾)
cdlemg4b.v 𝑉 = (𝑅𝐺)
Assertion
Ref Expression
cdlemg6c (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉)) → (𝐹‘(𝐺𝑄)) = 𝑄))
Distinct variable groups:   𝐴,𝑟   𝐹,𝑟   𝐺,𝑟   𝐻,𝑟   ,𝑟   𝐾,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   𝑇,𝑟   𝑉,𝑟   𝑊,𝑟
Allowed substitution hint:   𝑅(𝑟)

Proof of Theorem cdlemg6c
StepHypRef Expression
1 simpl1 1192 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simprl 770 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → (𝑟𝐴 ∧ ¬ 𝑟 𝑊))
3 simpl22 1253 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
4 simpl23 1254 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → 𝐹𝑇)
5 simpl31 1255 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → 𝐺𝑇)
6 simprr 772 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → ¬ 𝑟 (𝑃 𝑉))
7 simpl1l 1225 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → 𝐾 ∈ HL)
8 simp22l 1293 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝑄𝐴)
98adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → 𝑄𝐴)
10 simprll 778 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → 𝑟𝐴)
11 cdlemg4b.v . . . . . . 7 𝑉 = (𝑅𝐺)
12 eqid 2731 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
13 cdlemg4.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
14 cdlemg4.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
15 cdlemg4.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
1612, 13, 14, 15trlcl 40209 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ (Base‘𝐾))
171, 5, 16syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → (𝑅𝐺) ∈ (Base‘𝐾))
1811, 17eqeltrid 2835 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → 𝑉 ∈ (Base‘𝐾))
19 simp22r 1294 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → ¬ 𝑄 𝑊)
2019adantr 480 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → ¬ 𝑄 𝑊)
21 cdlemg4.l . . . . . . . . . . 11 = (le‘𝐾)
2221, 13, 14, 15trlle 40229 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) 𝑊)
231, 5, 22syl2anc 584 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → (𝑅𝐺) 𝑊)
2411, 23eqbrtrid 5126 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → 𝑉 𝑊)
25 simp1l 1198 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝐾 ∈ HL)
2625hllatd 39409 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝐾 ∈ Lat)
2726adantr 480 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → 𝐾 ∈ Lat)
28 cdlemg4.a . . . . . . . . . . . 12 𝐴 = (Atoms‘𝐾)
2912, 28atbase 39334 . . . . . . . . . . 11 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
308, 29syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝑄 ∈ (Base‘𝐾))
3130adantr 480 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → 𝑄 ∈ (Base‘𝐾))
32 simp1r 1199 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝑊𝐻)
3312, 13lhpbase 40043 . . . . . . . . . . 11 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3432, 33syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝑊 ∈ (Base‘𝐾))
3534adantr 480 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → 𝑊 ∈ (Base‘𝐾))
3612, 21lattr 18350 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑄 𝑉𝑉 𝑊) → 𝑄 𝑊))
3727, 31, 18, 35, 36syl13anc 1374 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → ((𝑄 𝑉𝑉 𝑊) → 𝑄 𝑊))
3824, 37mpan2d 694 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → (𝑄 𝑉𝑄 𝑊))
3920, 38mtod 198 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → ¬ 𝑄 𝑉)
40 cdlemg4.j . . . . . . 7 = (join‘𝐾)
4112, 21, 40, 28hlexch2 39428 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑟𝐴𝑉 ∈ (Base‘𝐾)) ∧ ¬ 𝑄 𝑉) → (𝑄 (𝑟 𝑉) → 𝑟 (𝑄 𝑉)))
427, 9, 10, 18, 39, 41syl131anc 1385 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → (𝑄 (𝑟 𝑉) → 𝑟 (𝑄 𝑉)))
43 simpl32 1256 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → 𝑄 (𝑃 𝑉))
44 simp21l 1291 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝑃𝐴)
4544adantr 480 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → 𝑃𝐴)
4612, 28atbase 39334 . . . . . . . . 9 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
4745, 46syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → 𝑃 ∈ (Base‘𝐾))
4812, 21, 40latlej2 18355 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾)) → 𝑉 (𝑃 𝑉))
4927, 47, 18, 48syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → 𝑉 (𝑃 𝑉))
5012, 40latjcl 18345 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾)) → (𝑃 𝑉) ∈ (Base‘𝐾))
5127, 47, 18, 50syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → (𝑃 𝑉) ∈ (Base‘𝐾))
5212, 21, 40latjle12 18356 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾) ∧ (𝑃 𝑉) ∈ (Base‘𝐾))) → ((𝑄 (𝑃 𝑉) ∧ 𝑉 (𝑃 𝑉)) ↔ (𝑄 𝑉) (𝑃 𝑉)))
5327, 31, 18, 51, 52syl13anc 1374 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → ((𝑄 (𝑃 𝑉) ∧ 𝑉 (𝑃 𝑉)) ↔ (𝑄 𝑉) (𝑃 𝑉)))
5443, 49, 53mpbi2and 712 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → (𝑄 𝑉) (𝑃 𝑉))
5512, 28atbase 39334 . . . . . . . 8 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
5610, 55syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → 𝑟 ∈ (Base‘𝐾))
5712, 40latjcl 18345 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾)) → (𝑄 𝑉) ∈ (Base‘𝐾))
5827, 31, 18, 57syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → (𝑄 𝑉) ∈ (Base‘𝐾))
5912, 21lattr 18350 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑟 ∈ (Base‘𝐾) ∧ (𝑄 𝑉) ∈ (Base‘𝐾) ∧ (𝑃 𝑉) ∈ (Base‘𝐾))) → ((𝑟 (𝑄 𝑉) ∧ (𝑄 𝑉) (𝑃 𝑉)) → 𝑟 (𝑃 𝑉)))
6027, 56, 58, 51, 59syl13anc 1374 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → ((𝑟 (𝑄 𝑉) ∧ (𝑄 𝑉) (𝑃 𝑉)) → 𝑟 (𝑃 𝑉)))
6154, 60mpan2d 694 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → (𝑟 (𝑄 𝑉) → 𝑟 (𝑃 𝑉)))
6242, 61syld 47 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → (𝑄 (𝑟 𝑉) → 𝑟 (𝑃 𝑉)))
636, 62mtod 198 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → ¬ 𝑄 (𝑟 𝑉))
64 simpl21 1252 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
65 simpl33 1257 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → (𝐹‘(𝐺𝑃)) = 𝑃)
6621, 28, 13, 14, 15, 40, 11cdlemg6a 40663 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑟 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝐹‘(𝐺𝑟)) = 𝑟)
671, 64, 2, 4, 5, 6, 65, 66syl133anc 1395 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → (𝐹‘(𝐺𝑟)) = 𝑟)
6821, 28, 13, 14, 15, 40, 11cdlemg6b 40664 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑟 𝑉) ∧ (𝐹‘(𝐺𝑟)) = 𝑟)) → (𝐹‘(𝐺𝑄)) = 𝑄)
691, 2, 3, 4, 5, 63, 67, 68syl133anc 1395 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉))) → (𝐹‘(𝐺𝑄)) = 𝑄)
7069ex 412 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉)) → (𝐹‘(𝐺𝑄)) = 𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5091  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168  joincjn 18217  Latclat 18337  Atomscatm 39308  HLchlt 39395  LHypclh 40029  LTrncltrn 40146  trLctrl 40203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-riotaBAD 38998
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-undef 8203  df-map 8752  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39221  df-ol 39223  df-oml 39224  df-covers 39311  df-ats 39312  df-atl 39343  df-cvlat 39367  df-hlat 39396  df-llines 39543  df-lplanes 39544  df-lvols 39545  df-lines 39546  df-psubsp 39548  df-pmap 39549  df-padd 39841  df-lhyp 40033  df-laut 40034  df-ldil 40149  df-ltrn 40150  df-trl 40204
This theorem is referenced by:  cdlemg6d  40666
  Copyright terms: Public domain W3C validator