Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg6c Structured version   Visualization version   GIF version

Theorem cdlemg6c 40121
Description: TODO: FIX COMMENT. (Contributed by NM, 27-Apr-2013.)
Hypotheses
Ref Expression
cdlemg4.l ≀ = (leβ€˜πΎ)
cdlemg4.a 𝐴 = (Atomsβ€˜πΎ)
cdlemg4.h 𝐻 = (LHypβ€˜πΎ)
cdlemg4.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemg4.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
cdlemg4.j ∨ = (joinβ€˜πΎ)
cdlemg4b.v 𝑉 = (π‘…β€˜πΊ)
Assertion
Ref Expression
cdlemg6c (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) β†’ (((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉)) β†’ (πΉβ€˜(πΊβ€˜π‘„)) = 𝑄))
Distinct variable groups:   𝐴,π‘Ÿ   𝐹,π‘Ÿ   𝐺,π‘Ÿ   𝐻,π‘Ÿ   ∨ ,π‘Ÿ   𝐾,π‘Ÿ   ≀ ,π‘Ÿ   𝑃,π‘Ÿ   𝑄,π‘Ÿ   𝑇,π‘Ÿ   𝑉,π‘Ÿ   π‘Š,π‘Ÿ
Allowed substitution hint:   𝑅(π‘Ÿ)

Proof of Theorem cdlemg6c
StepHypRef Expression
1 simpl1 1188 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 simprl 769 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ (π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š))
3 simpl22 1249 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
4 simpl23 1250 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ 𝐹 ∈ 𝑇)
5 simpl31 1251 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ 𝐺 ∈ 𝑇)
6 simprr 771 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))
7 simpl1l 1221 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ 𝐾 ∈ HL)
8 simp22l 1289 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) β†’ 𝑄 ∈ 𝐴)
98adantr 479 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ 𝑄 ∈ 𝐴)
10 simprll 777 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ π‘Ÿ ∈ 𝐴)
11 cdlemg4b.v . . . . . . 7 𝑉 = (π‘…β€˜πΊ)
12 eqid 2725 . . . . . . . . 9 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
13 cdlemg4.h . . . . . . . . 9 𝐻 = (LHypβ€˜πΎ)
14 cdlemg4.t . . . . . . . . 9 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
15 cdlemg4.r . . . . . . . . 9 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
1612, 13, 14, 15trlcl 39665 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) β†’ (π‘…β€˜πΊ) ∈ (Baseβ€˜πΎ))
171, 5, 16syl2anc 582 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ (π‘…β€˜πΊ) ∈ (Baseβ€˜πΎ))
1811, 17eqeltrid 2829 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ 𝑉 ∈ (Baseβ€˜πΎ))
19 simp22r 1290 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) β†’ Β¬ 𝑄 ≀ π‘Š)
2019adantr 479 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ Β¬ 𝑄 ≀ π‘Š)
21 cdlemg4.l . . . . . . . . . . 11 ≀ = (leβ€˜πΎ)
2221, 13, 14, 15trlle 39685 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) β†’ (π‘…β€˜πΊ) ≀ π‘Š)
231, 5, 22syl2anc 582 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ (π‘…β€˜πΊ) ≀ π‘Š)
2411, 23eqbrtrid 5176 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ 𝑉 ≀ π‘Š)
25 simp1l 1194 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) β†’ 𝐾 ∈ HL)
2625hllatd 38864 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) β†’ 𝐾 ∈ Lat)
2726adantr 479 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ 𝐾 ∈ Lat)
28 cdlemg4.a . . . . . . . . . . . 12 𝐴 = (Atomsβ€˜πΎ)
2912, 28atbase 38789 . . . . . . . . . . 11 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ (Baseβ€˜πΎ))
308, 29syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) β†’ 𝑄 ∈ (Baseβ€˜πΎ))
3130adantr 479 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ 𝑄 ∈ (Baseβ€˜πΎ))
32 simp1r 1195 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) β†’ π‘Š ∈ 𝐻)
3312, 13lhpbase 39499 . . . . . . . . . . 11 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
3432, 33syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) β†’ π‘Š ∈ (Baseβ€˜πΎ))
3534adantr 479 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ π‘Š ∈ (Baseβ€˜πΎ))
3612, 21lattr 18433 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Baseβ€˜πΎ) ∧ 𝑉 ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ))) β†’ ((𝑄 ≀ 𝑉 ∧ 𝑉 ≀ π‘Š) β†’ 𝑄 ≀ π‘Š))
3727, 31, 18, 35, 36syl13anc 1369 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ ((𝑄 ≀ 𝑉 ∧ 𝑉 ≀ π‘Š) β†’ 𝑄 ≀ π‘Š))
3824, 37mpan2d 692 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ (𝑄 ≀ 𝑉 β†’ 𝑄 ≀ π‘Š))
3920, 38mtod 197 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ Β¬ 𝑄 ≀ 𝑉)
40 cdlemg4.j . . . . . . 7 ∨ = (joinβ€˜πΎ)
4112, 21, 40, 28hlexch2 38884 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴 ∧ 𝑉 ∈ (Baseβ€˜πΎ)) ∧ Β¬ 𝑄 ≀ 𝑉) β†’ (𝑄 ≀ (π‘Ÿ ∨ 𝑉) β†’ π‘Ÿ ≀ (𝑄 ∨ 𝑉)))
427, 9, 10, 18, 39, 41syl131anc 1380 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ (𝑄 ≀ (π‘Ÿ ∨ 𝑉) β†’ π‘Ÿ ≀ (𝑄 ∨ 𝑉)))
43 simpl32 1252 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ 𝑄 ≀ (𝑃 ∨ 𝑉))
44 simp21l 1287 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) β†’ 𝑃 ∈ 𝐴)
4544adantr 479 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ 𝑃 ∈ 𝐴)
4612, 28atbase 38789 . . . . . . . . 9 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
4745, 46syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
4812, 21, 40latlej2 18438 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑉 ∈ (Baseβ€˜πΎ)) β†’ 𝑉 ≀ (𝑃 ∨ 𝑉))
4927, 47, 18, 48syl3anc 1368 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ 𝑉 ≀ (𝑃 ∨ 𝑉))
5012, 40latjcl 18428 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑉 ∈ (Baseβ€˜πΎ)) β†’ (𝑃 ∨ 𝑉) ∈ (Baseβ€˜πΎ))
5127, 47, 18, 50syl3anc 1368 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ (𝑃 ∨ 𝑉) ∈ (Baseβ€˜πΎ))
5212, 21, 40latjle12 18439 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Baseβ€˜πΎ) ∧ 𝑉 ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑉) ∈ (Baseβ€˜πΎ))) β†’ ((𝑄 ≀ (𝑃 ∨ 𝑉) ∧ 𝑉 ≀ (𝑃 ∨ 𝑉)) ↔ (𝑄 ∨ 𝑉) ≀ (𝑃 ∨ 𝑉)))
5327, 31, 18, 51, 52syl13anc 1369 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ ((𝑄 ≀ (𝑃 ∨ 𝑉) ∧ 𝑉 ≀ (𝑃 ∨ 𝑉)) ↔ (𝑄 ∨ 𝑉) ≀ (𝑃 ∨ 𝑉)))
5443, 49, 53mpbi2and 710 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ (𝑄 ∨ 𝑉) ≀ (𝑃 ∨ 𝑉))
5512, 28atbase 38789 . . . . . . . 8 (π‘Ÿ ∈ 𝐴 β†’ π‘Ÿ ∈ (Baseβ€˜πΎ))
5610, 55syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ π‘Ÿ ∈ (Baseβ€˜πΎ))
5712, 40latjcl 18428 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Baseβ€˜πΎ) ∧ 𝑉 ∈ (Baseβ€˜πΎ)) β†’ (𝑄 ∨ 𝑉) ∈ (Baseβ€˜πΎ))
5827, 31, 18, 57syl3anc 1368 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ (𝑄 ∨ 𝑉) ∈ (Baseβ€˜πΎ))
5912, 21lattr 18433 . . . . . . 7 ((𝐾 ∈ Lat ∧ (π‘Ÿ ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑉) ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑉) ∈ (Baseβ€˜πΎ))) β†’ ((π‘Ÿ ≀ (𝑄 ∨ 𝑉) ∧ (𝑄 ∨ 𝑉) ≀ (𝑃 ∨ 𝑉)) β†’ π‘Ÿ ≀ (𝑃 ∨ 𝑉)))
6027, 56, 58, 51, 59syl13anc 1369 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ ((π‘Ÿ ≀ (𝑄 ∨ 𝑉) ∧ (𝑄 ∨ 𝑉) ≀ (𝑃 ∨ 𝑉)) β†’ π‘Ÿ ≀ (𝑃 ∨ 𝑉)))
6154, 60mpan2d 692 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ (π‘Ÿ ≀ (𝑄 ∨ 𝑉) β†’ π‘Ÿ ≀ (𝑃 ∨ 𝑉)))
6242, 61syld 47 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ (𝑄 ≀ (π‘Ÿ ∨ 𝑉) β†’ π‘Ÿ ≀ (𝑃 ∨ 𝑉)))
636, 62mtod 197 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ Β¬ 𝑄 ≀ (π‘Ÿ ∨ 𝑉))
64 simpl21 1248 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
65 simpl33 1253 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)
6621, 28, 13, 14, 15, 40, 11cdlemg6a 40119 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) β†’ (πΉβ€˜(πΊβ€˜π‘Ÿ)) = π‘Ÿ)
671, 64, 2, 4, 5, 6, 65, 66syl133anc 1390 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ (πΉβ€˜(πΊβ€˜π‘Ÿ)) = π‘Ÿ)
6821, 28, 13, 14, 15, 40, 11cdlemg6b 40120 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ Β¬ 𝑄 ≀ (π‘Ÿ ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘Ÿ)) = π‘Ÿ)) β†’ (πΉβ€˜(πΊβ€˜π‘„)) = 𝑄)
691, 2, 3, 4, 5, 63, 67, 68syl133anc 1390 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉))) β†’ (πΉβ€˜(πΊβ€˜π‘„)) = 𝑄)
7069ex 411 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑄 ≀ (𝑃 ∨ 𝑉) ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) = 𝑃)) β†’ (((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑉)) β†’ (πΉβ€˜(πΊβ€˜π‘„)) = 𝑄))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   class class class wbr 5141  β€˜cfv 6541  (class class class)co 7414  Basecbs 17177  lecple 17237  joincjn 18300  Latclat 18420  Atomscatm 38763  HLchlt 38850  LHypclh 39485  LTrncltrn 39602  trLctrl 39659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736  ax-riotaBAD 38453
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4991  df-iin 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5568  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7989  df-2nd 7990  df-undef 8275  df-map 8843  df-proset 18284  df-poset 18302  df-plt 18319  df-lub 18335  df-glb 18336  df-join 18337  df-meet 18338  df-p0 18414  df-p1 18415  df-lat 18421  df-clat 18488  df-oposet 38676  df-ol 38678  df-oml 38679  df-covers 38766  df-ats 38767  df-atl 38798  df-cvlat 38822  df-hlat 38851  df-llines 38999  df-lplanes 39000  df-lvols 39001  df-lines 39002  df-psubsp 39004  df-pmap 39005  df-padd 39297  df-lhyp 39489  df-laut 39490  df-ldil 39605  df-ltrn 39606  df-trl 39660
This theorem is referenced by:  cdlemg6d  40122
  Copyright terms: Public domain W3C validator