Step | Hyp | Ref
| Expression |
1 | | simp1 1136 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (π β π΄ β§ π = (0.βπΎ)) β§ (πΉ β π β§ πΊ β π)) β§ (π β π β§ π£ β (π
βπΉ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β ((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π))) |
2 | | simp21 1206 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (π β π΄ β§ π = (0.βπΎ)) β§ (πΉ β π β§ πΊ β π)) β§ (π β π β§ π£ β (π
βπΉ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (π£ β π΄ β§ π£ β€ π)) |
3 | | simp22l 1292 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (π β π΄ β§ π = (0.βπΎ)) β§ (πΉ β π β§ πΊ β π)) β§ (π β π β§ π£ β (π
βπΉ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β π β π΄) |
4 | | simp23l 1294 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (π β π΄ β§ π = (0.βπΎ)) β§ (πΉ β π β§ πΊ β π)) β§ (π β π β§ π£ β (π
βπΉ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β πΉ β π) |
5 | | simp3 1138 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (π β π΄ β§ π = (0.βπΎ)) β§ (πΉ β π β§ πΊ β π)) β§ (π β π β§ π£ β (π
βπΉ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (π β π β§ π£ β (π
βπΉ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) |
6 | | cdlemg12.l |
. . . 4
β’ β€ =
(leβπΎ) |
7 | | cdlemg12.j |
. . . 4
β’ β¨ =
(joinβπΎ) |
8 | | cdlemg12.m |
. . . 4
β’ β§ =
(meetβπΎ) |
9 | | cdlemg12.a |
. . . 4
β’ π΄ = (AtomsβπΎ) |
10 | | cdlemg12.h |
. . . 4
β’ π» = (LHypβπΎ) |
11 | | cdlemg12.t |
. . . 4
β’ π = ((LTrnβπΎ)βπ) |
12 | | cdlemg12b.r |
. . . 4
β’ π
= ((trLβπΎ)βπ) |
13 | | cdlemg31.n |
. . . 4
β’ π = ((π β¨ π£) β§ (π β¨ (π
βπΉ))) |
14 | 6, 7, 8, 9, 10, 11, 12, 13 | cdlemg33b0 39560 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ π β π΄ β§ πΉ β π) β§ (π β π β§ π£ β (π
βπΉ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β βπ§ β π΄ (Β¬ π§ β€ π β§ (π§ β π β§ π§ β€ (π β¨ π£)))) |
15 | 1, 2, 3, 4, 5, 14 | syl131anc 1383 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (π β π΄ β§ π = (0.βπΎ)) β§ (πΉ β π β§ πΊ β π)) β§ (π β π β§ π£ β (π
βπΉ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β βπ§ β π΄ (Β¬ π§ β€ π β§ (π§ β π β§ π§ β€ (π β¨ π£)))) |
16 | | simp11l 1284 |
. . . . . . . . . . 11
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (π β π΄ β§ π = (0.βπΎ)) β§ (πΉ β π β§ πΊ β π)) β§ (π β π β§ π£ β (π
βπΉ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β πΎ β HL) |
17 | 16 | adantr 481 |
. . . . . . . . . 10
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (π β π΄ β§ π = (0.βπΎ)) β§ (πΉ β π β§ πΊ β π)) β§ (π β π β§ π£ β (π
βπΉ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ π§ β π΄) β πΎ β HL) |
18 | | hlatl 38218 |
. . . . . . . . . 10
β’ (πΎ β HL β πΎ β AtLat) |
19 | 17, 18 | syl 17 |
. . . . . . . . 9
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (π β π΄ β§ π = (0.βπΎ)) β§ (πΉ β π β§ πΊ β π)) β§ (π β π β§ π£ β (π
βπΉ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ π§ β π΄) β πΎ β AtLat) |
20 | | eqid 2732 |
. . . . . . . . . 10
β’
(0.βπΎ) =
(0.βπΎ) |
21 | 20, 9 | atn0 38166 |
. . . . . . . . 9
β’ ((πΎ β AtLat β§ π§ β π΄) β π§ β (0.βπΎ)) |
22 | 19, 21 | sylancom 588 |
. . . . . . . 8
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (π β π΄ β§ π = (0.βπΎ)) β§ (πΉ β π β§ πΊ β π)) β§ (π β π β§ π£ β (π
βπΉ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ π§ β π΄) β π§ β (0.βπΎ)) |
23 | | simp22r 1293 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (π β π΄ β§ π = (0.βπΎ)) β§ (πΉ β π β§ πΊ β π)) β§ (π β π β§ π£ β (π
βπΉ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β π = (0.βπΎ)) |
24 | 23 | adantr 481 |
. . . . . . . 8
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (π β π΄ β§ π = (0.βπΎ)) β§ (πΉ β π β§ πΊ β π)) β§ (π β π β§ π£ β (π
βπΉ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ π§ β π΄) β π = (0.βπΎ)) |
25 | 22, 24 | neeqtrrd 3015 |
. . . . . . 7
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (π β π΄ β§ π = (0.βπΎ)) β§ (πΉ β π β§ πΊ β π)) β§ (π β π β§ π£ β (π
βπΉ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ π§ β π΄) β π§ β π) |
26 | 25 | biantrud 532 |
. . . . . 6
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (π β π΄ β§ π = (0.βπΎ)) β§ (πΉ β π β§ πΊ β π)) β§ (π β π β§ π£ β (π
βπΉ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ π§ β π΄) β (π§ β π β (π§ β π β§ π§ β π))) |
27 | 26 | anbi1d 630 |
. . . . 5
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (π β π΄ β§ π = (0.βπΎ)) β§ (πΉ β π β§ πΊ β π)) β§ (π β π β§ π£ β (π
βπΉ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ π§ β π΄) β ((π§ β π β§ π§ β€ (π β¨ π£)) β ((π§ β π β§ π§ β π) β§ π§ β€ (π β¨ π£)))) |
28 | | df-3an 1089 |
. . . . 5
β’ ((π§ β π β§ π§ β π β§ π§ β€ (π β¨ π£)) β ((π§ β π β§ π§ β π) β§ π§ β€ (π β¨ π£))) |
29 | 27, 28 | bitr4di 288 |
. . . 4
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (π β π΄ β§ π = (0.βπΎ)) β§ (πΉ β π β§ πΊ β π)) β§ (π β π β§ π£ β (π
βπΉ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ π§ β π΄) β ((π§ β π β§ π§ β€ (π β¨ π£)) β (π§ β π β§ π§ β π β§ π§ β€ (π β¨ π£)))) |
30 | 29 | anbi2d 629 |
. . 3
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (π β π΄ β§ π = (0.βπΎ)) β§ (πΉ β π β§ πΊ β π)) β§ (π β π β§ π£ β (π
βπΉ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ π§ β π΄) β ((Β¬ π§ β€ π β§ (π§ β π β§ π§ β€ (π β¨ π£))) β (Β¬ π§ β€ π β§ (π§ β π β§ π§ β π β§ π§ β€ (π β¨ π£))))) |
31 | 30 | rexbidva 3176 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (π β π΄ β§ π = (0.βπΎ)) β§ (πΉ β π β§ πΊ β π)) β§ (π β π β§ π£ β (π
βπΉ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (βπ§ β π΄ (Β¬ π§ β€ π β§ (π§ β π β§ π§ β€ (π β¨ π£))) β βπ§ β π΄ (Β¬ π§ β€ π β§ (π§ β π β§ π§ β π β§ π§ β€ (π β¨ π£))))) |
32 | 15, 31 | mpbid 231 |
1
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (π β π΄ β§ π = (0.βπΎ)) β§ (πΉ β π β§ πΊ β π)) β§ (π β π β§ π£ β (π
βπΉ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β βπ§ β π΄ (Β¬ π§ β€ π β§ (π§ β π β§ π§ β π β§ π§ β€ (π β¨ π£)))) |