Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg33e Structured version   Visualization version   GIF version

Theorem cdlemg33e 40094
Description: TODO: Fix comment. (Contributed by NM, 30-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l ≀ = (leβ€˜πΎ)
cdlemg12.j ∨ = (joinβ€˜πΎ)
cdlemg12.m ∧ = (meetβ€˜πΎ)
cdlemg12.a 𝐴 = (Atomsβ€˜πΎ)
cdlemg12.h 𝐻 = (LHypβ€˜πΎ)
cdlemg12.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemg12b.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
cdlemg31.n 𝑁 = ((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (π‘…β€˜πΉ)))
cdlemg33.o 𝑂 = ((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (π‘…β€˜πΊ)))
Assertion
Ref Expression
cdlemg33e ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 = (0.β€˜πΎ) ∧ 𝑂 = (0.β€˜πΎ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂 ∧ 𝑧 ≀ (𝑃 ∨ 𝑣))))
Distinct variable groups:   𝐴,π‘Ÿ   𝐺,π‘Ÿ   ∨ ,π‘Ÿ   ≀ ,π‘Ÿ   𝑃,π‘Ÿ   𝑄,π‘Ÿ   π‘Š,π‘Ÿ   𝐹,π‘Ÿ   𝑧,𝐴   𝑧,𝐹,π‘Ÿ   𝐻,π‘Ÿ,𝑧   𝑧, ∨   𝐾,π‘Ÿ,𝑧   𝑧, ≀   𝑁,π‘Ÿ,𝑧   𝑧,𝑃   𝑧,𝑄   𝑧,𝑅   𝑧,𝑇   𝑧,π‘Š   𝑧,𝑣,π‘Ÿ   𝑧,𝐺   𝑧,𝑂,π‘Ÿ
Allowed substitution hints:   𝐴(𝑣)   𝑃(𝑣)   𝑄(𝑣)   𝑅(𝑣,π‘Ÿ)   𝑇(𝑣,π‘Ÿ)   𝐹(𝑣)   𝐺(𝑣)   𝐻(𝑣)   ∨ (𝑣)   𝐾(𝑣)   ≀ (𝑣)   ∧ (𝑧,𝑣,π‘Ÿ)   𝑁(𝑣)   𝑂(𝑣)   π‘Š(𝑣)

Proof of Theorem cdlemg33e
StepHypRef Expression
1 simp1 1133 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 = (0.β€˜πΎ) ∧ 𝑂 = (0.β€˜πΎ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)))
2 simp21 1203 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 = (0.β€˜πΎ) ∧ 𝑂 = (0.β€˜πΎ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š))
3 simp23l 1291 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 = (0.β€˜πΎ) ∧ 𝑂 = (0.β€˜πΎ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝐹 ∈ 𝑇)
4 simp3 1135 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 = (0.β€˜πΎ) ∧ 𝑂 = (0.β€˜πΎ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))))
5 cdlemg12.l . . . 4 ≀ = (leβ€˜πΎ)
6 cdlemg12.j . . . 4 ∨ = (joinβ€˜πΎ)
7 cdlemg12.m . . . 4 ∧ = (meetβ€˜πΎ)
8 cdlemg12.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
9 cdlemg12.h . . . 4 𝐻 = (LHypβ€˜πΎ)
10 cdlemg12.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
11 cdlemg12b.r . . . 4 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
12 cdlemg31.n . . . 4 𝑁 = ((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (π‘…β€˜πΉ)))
135, 6, 7, 8, 9, 10, 11, 12cdlemg33c0 40086 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ 𝑧 ≀ (𝑃 ∨ 𝑣)))
141, 2, 3, 4, 13syl121anc 1372 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 = (0.β€˜πΎ) ∧ 𝑂 = (0.β€˜πΎ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ 𝑧 ≀ (𝑃 ∨ 𝑣)))
15 simp11l 1281 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 = (0.β€˜πΎ) ∧ 𝑂 = (0.β€˜πΎ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝐾 ∈ HL)
16 hlatl 38743 . . . . . . . . . 10 (𝐾 ∈ HL β†’ 𝐾 ∈ AtLat)
1715, 16syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 = (0.β€˜πΎ) ∧ 𝑂 = (0.β€˜πΎ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝐾 ∈ AtLat)
18 eqid 2726 . . . . . . . . . 10 (0.β€˜πΎ) = (0.β€˜πΎ)
1918, 8atn0 38691 . . . . . . . . 9 ((𝐾 ∈ AtLat ∧ 𝑧 ∈ 𝐴) β†’ 𝑧 β‰  (0.β€˜πΎ))
2017, 19sylan 579 . . . . . . . 8 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 = (0.β€˜πΎ) ∧ 𝑂 = (0.β€˜πΎ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) ∧ 𝑧 ∈ 𝐴) β†’ 𝑧 β‰  (0.β€˜πΎ))
21 simp22l 1289 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 = (0.β€˜πΎ) ∧ 𝑂 = (0.β€˜πΎ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑁 = (0.β€˜πΎ))
2221adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 = (0.β€˜πΎ) ∧ 𝑂 = (0.β€˜πΎ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) ∧ 𝑧 ∈ 𝐴) β†’ 𝑁 = (0.β€˜πΎ))
2320, 22neeqtrrd 3009 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 = (0.β€˜πΎ) ∧ 𝑂 = (0.β€˜πΎ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) ∧ 𝑧 ∈ 𝐴) β†’ 𝑧 β‰  𝑁)
24 simp22r 1290 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 = (0.β€˜πΎ) ∧ 𝑂 = (0.β€˜πΎ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑂 = (0.β€˜πΎ))
2524adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 = (0.β€˜πΎ) ∧ 𝑂 = (0.β€˜πΎ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) ∧ 𝑧 ∈ 𝐴) β†’ 𝑂 = (0.β€˜πΎ))
2620, 25neeqtrrd 3009 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 = (0.β€˜πΎ) ∧ 𝑂 = (0.β€˜πΎ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) ∧ 𝑧 ∈ 𝐴) β†’ 𝑧 β‰  𝑂)
2723, 26jca 511 . . . . . 6 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 = (0.β€˜πΎ) ∧ 𝑂 = (0.β€˜πΎ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) ∧ 𝑧 ∈ 𝐴) β†’ (𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂))
2827biantrurd 532 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 = (0.β€˜πΎ) ∧ 𝑂 = (0.β€˜πΎ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) ∧ 𝑧 ∈ 𝐴) β†’ (𝑧 ≀ (𝑃 ∨ 𝑣) ↔ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣))))
29 df-3an 1086 . . . . 5 ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂 ∧ 𝑧 ≀ (𝑃 ∨ 𝑣)) ↔ ((𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂) ∧ 𝑧 ≀ (𝑃 ∨ 𝑣)))
3028, 29bitr4di 289 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 = (0.β€˜πΎ) ∧ 𝑂 = (0.β€˜πΎ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) ∧ 𝑧 ∈ 𝐴) β†’ (𝑧 ≀ (𝑃 ∨ 𝑣) ↔ (𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂 ∧ 𝑧 ≀ (𝑃 ∨ 𝑣))))
3130anbi2d 628 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 = (0.β€˜πΎ) ∧ 𝑂 = (0.β€˜πΎ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) ∧ 𝑧 ∈ 𝐴) β†’ ((Β¬ 𝑧 ≀ π‘Š ∧ 𝑧 ≀ (𝑃 ∨ 𝑣)) ↔ (Β¬ 𝑧 ≀ π‘Š ∧ (𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂 ∧ 𝑧 ≀ (𝑃 ∨ 𝑣)))))
3231rexbidva 3170 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 = (0.β€˜πΎ) ∧ 𝑂 = (0.β€˜πΎ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ 𝑧 ≀ (𝑃 ∨ 𝑣)) ↔ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂 ∧ 𝑧 ≀ (𝑃 ∨ 𝑣)))))
3314, 32mpbid 231 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≀ π‘Š) ∧ (𝑁 = (0.β€˜πΎ) ∧ 𝑂 = (0.β€˜πΎ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝑃 β‰  𝑄 ∧ 𝑣 β‰  (π‘…β€˜πΉ) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑧 β‰  𝑁 ∧ 𝑧 β‰  𝑂 ∧ 𝑧 ≀ (𝑃 ∨ 𝑣))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934  βˆƒwrex 3064   class class class wbr 5141  β€˜cfv 6537  (class class class)co 7405  lecple 17213  joincjn 18276  meetcmee 18277  0.cp0 18388  Atomscatm 38646  AtLatcal 38647  HLchlt 38733  LHypclh 39368  LTrncltrn 39485  trLctrl 39542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18260  df-poset 18278  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-p1 18391  df-lat 18397  df-clat 18464  df-oposet 38559  df-ol 38561  df-oml 38562  df-covers 38649  df-ats 38650  df-atl 38681  df-cvlat 38705  df-hlat 38734  df-llines 38882  df-lplanes 38883  df-lhyp 39372
This theorem is referenced by:  cdlemg33  40095
  Copyright terms: Public domain W3C validator