Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atex Structured version   Visualization version   GIF version

Theorem 4atex 38090
Description: Whenever there are at least 4 atoms under 𝑃 𝑄 (specifically, 𝑃, 𝑄, 𝑟, and (𝑃 𝑄) 𝑊), there are also at least 4 atoms under 𝑃 𝑆. This proves the statement in Lemma E of [Crawley] p. 114, last line, "...p q/0 and hence p s/0 contains at least four atoms..." Note that by cvlsupr2 37357, our (𝑃 𝑟) = (𝑄 𝑟) is a shorter way to express 𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄). (Contributed by NM, 27-May-2013.)
Hypotheses
Ref Expression
4that.l = (le‘𝐾)
4that.j = (join‘𝐾)
4that.a 𝐴 = (Atoms‘𝐾)
4that.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
4atex (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
Distinct variable groups:   𝑧,𝑟,𝐴   𝐻,𝑟   ,𝑟,𝑧   𝐾,𝑟,𝑧   ,𝑟,𝑧   𝑃,𝑟,𝑧   𝑄,𝑟,𝑧   𝑆,𝑟,𝑧   𝑊,𝑟,𝑧
Allowed substitution hint:   𝐻(𝑧)

Proof of Theorem 4atex
StepHypRef Expression
1 simp21l 1289 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑃𝐴)
21ad2antrr 723 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆 = 𝑃) → 𝑃𝐴)
3 simp21r 1290 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ¬ 𝑃 𝑊)
43ad2antrr 723 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆 = 𝑃) → ¬ 𝑃 𝑊)
5 oveq1 7282 . . . . . 6 (𝑃 = 𝑆 → (𝑃 𝑃) = (𝑆 𝑃))
65eqcoms 2746 . . . . 5 (𝑆 = 𝑃 → (𝑃 𝑃) = (𝑆 𝑃))
76adantl 482 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆 = 𝑃) → (𝑃 𝑃) = (𝑆 𝑃))
8 breq1 5077 . . . . . . 7 (𝑧 = 𝑃 → (𝑧 𝑊𝑃 𝑊))
98notbid 318 . . . . . 6 (𝑧 = 𝑃 → (¬ 𝑧 𝑊 ↔ ¬ 𝑃 𝑊))
10 oveq2 7283 . . . . . . 7 (𝑧 = 𝑃 → (𝑃 𝑧) = (𝑃 𝑃))
11 oveq2 7283 . . . . . . 7 (𝑧 = 𝑃 → (𝑆 𝑧) = (𝑆 𝑃))
1210, 11eqeq12d 2754 . . . . . 6 (𝑧 = 𝑃 → ((𝑃 𝑧) = (𝑆 𝑧) ↔ (𝑃 𝑃) = (𝑆 𝑃)))
139, 12anbi12d 631 . . . . 5 (𝑧 = 𝑃 → ((¬ 𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)) ↔ (¬ 𝑃 𝑊 ∧ (𝑃 𝑃) = (𝑆 𝑃))))
1413rspcev 3561 . . . 4 ((𝑃𝐴 ∧ (¬ 𝑃 𝑊 ∧ (𝑃 𝑃) = (𝑆 𝑃))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
152, 4, 7, 14syl12anc 834 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆 = 𝑃) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
16 simpl3r 1228 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) → ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
1716ad2antrr 723 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆 = 𝑄) → ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
18 breq1 5077 . . . . . . . . . 10 (𝑟 = 𝑧 → (𝑟 𝑊𝑧 𝑊))
1918notbid 318 . . . . . . . . 9 (𝑟 = 𝑧 → (¬ 𝑟 𝑊 ↔ ¬ 𝑧 𝑊))
20 oveq2 7283 . . . . . . . . . 10 (𝑟 = 𝑧 → (𝑃 𝑟) = (𝑃 𝑧))
21 oveq2 7283 . . . . . . . . . 10 (𝑟 = 𝑧 → (𝑄 𝑟) = (𝑄 𝑧))
2220, 21eqeq12d 2754 . . . . . . . . 9 (𝑟 = 𝑧 → ((𝑃 𝑟) = (𝑄 𝑟) ↔ (𝑃 𝑧) = (𝑄 𝑧)))
2319, 22anbi12d 631 . . . . . . . 8 (𝑟 = 𝑧 → ((¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) ↔ (¬ 𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑄 𝑧))))
2423cbvrexvw 3384 . . . . . . 7 (∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) ↔ ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑄 𝑧)))
25 oveq1 7282 . . . . . . . . . 10 (𝑆 = 𝑄 → (𝑆 𝑧) = (𝑄 𝑧))
2625eqeq2d 2749 . . . . . . . . 9 (𝑆 = 𝑄 → ((𝑃 𝑧) = (𝑆 𝑧) ↔ (𝑃 𝑧) = (𝑄 𝑧)))
2726anbi2d 629 . . . . . . . 8 (𝑆 = 𝑄 → ((¬ 𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)) ↔ (¬ 𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑄 𝑧))))
2827rexbidv 3226 . . . . . . 7 (𝑆 = 𝑄 → (∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)) ↔ ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑄 𝑧))))
2924, 28bitr4id 290 . . . . . 6 (𝑆 = 𝑄 → (∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) ↔ ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧))))
3029adantl 482 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆 = 𝑄) → (∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) ↔ ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧))))
3117, 30mpbid 231 . . . 4 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆 = 𝑄) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
32 simp22l 1291 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑄𝐴)
3332ad3antrrr 727 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝑄𝐴)
34 simp22r 1292 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ¬ 𝑄 𝑊)
3534ad3antrrr 727 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → ¬ 𝑄 𝑊)
36 simp3l 1200 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑃𝑄)
3736necomd 2999 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑄𝑃)
3837ad3antrrr 727 . . . . . 6 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝑄𝑃)
39 simpr 485 . . . . . . 7 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝑆𝑄)
4039necomd 2999 . . . . . 6 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝑄𝑆)
41 simpllr 773 . . . . . . 7 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝑆 (𝑃 𝑄))
42 simp1l 1196 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐾 ∈ HL)
43 hlcvl 37373 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
4442, 43syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐾 ∈ CvLat)
4544ad3antrrr 727 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝐾 ∈ CvLat)
46 simp23 1207 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑆𝐴)
4746ad3antrrr 727 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝑆𝐴)
481ad3antrrr 727 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝑃𝐴)
49 simplr 766 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝑆𝑃)
50 4that.l . . . . . . . . 9 = (le‘𝐾)
51 4that.j . . . . . . . . 9 = (join‘𝐾)
52 4that.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
5350, 51, 52cvlatexch1 37350 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑆𝐴𝑄𝐴𝑃𝐴) ∧ 𝑆𝑃) → (𝑆 (𝑃 𝑄) → 𝑄 (𝑃 𝑆)))
5445, 47, 33, 48, 49, 53syl131anc 1382 . . . . . . 7 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → (𝑆 (𝑃 𝑄) → 𝑄 (𝑃 𝑆)))
5541, 54mpd 15 . . . . . 6 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝑄 (𝑃 𝑆))
5649necomd 2999 . . . . . . 7 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝑃𝑆)
5752, 50, 51cvlsupr2 37357 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑆𝐴𝑄𝐴) ∧ 𝑃𝑆) → ((𝑃 𝑄) = (𝑆 𝑄) ↔ (𝑄𝑃𝑄𝑆𝑄 (𝑃 𝑆))))
5845, 48, 47, 33, 56, 57syl131anc 1382 . . . . . 6 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → ((𝑃 𝑄) = (𝑆 𝑄) ↔ (𝑄𝑃𝑄𝑆𝑄 (𝑃 𝑆))))
5938, 40, 55, 58mpbir3and 1341 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → (𝑃 𝑄) = (𝑆 𝑄))
60 breq1 5077 . . . . . . . 8 (𝑧 = 𝑄 → (𝑧 𝑊𝑄 𝑊))
6160notbid 318 . . . . . . 7 (𝑧 = 𝑄 → (¬ 𝑧 𝑊 ↔ ¬ 𝑄 𝑊))
62 oveq2 7283 . . . . . . . 8 (𝑧 = 𝑄 → (𝑃 𝑧) = (𝑃 𝑄))
63 oveq2 7283 . . . . . . . 8 (𝑧 = 𝑄 → (𝑆 𝑧) = (𝑆 𝑄))
6462, 63eqeq12d 2754 . . . . . . 7 (𝑧 = 𝑄 → ((𝑃 𝑧) = (𝑆 𝑧) ↔ (𝑃 𝑄) = (𝑆 𝑄)))
6561, 64anbi12d 631 . . . . . 6 (𝑧 = 𝑄 → ((¬ 𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)) ↔ (¬ 𝑄 𝑊 ∧ (𝑃 𝑄) = (𝑆 𝑄))))
6665rspcev 3561 . . . . 5 ((𝑄𝐴 ∧ (¬ 𝑄 𝑊 ∧ (𝑃 𝑄) = (𝑆 𝑄))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
6733, 35, 59, 66syl12anc 834 . . . 4 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
6831, 67pm2.61dane 3032 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
6915, 68pm2.61dane 3032 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
70 simpl1 1190 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
71 simpl2 1191 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴))
72 simpl3l 1227 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑃𝑄)
73 simpr 485 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ ¬ 𝑆 (𝑃 𝑄)) → ¬ 𝑆 (𝑃 𝑄))
74 simpl3r 1228 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ ¬ 𝑆 (𝑃 𝑄)) → ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
75 4that.h . . . 4 𝐻 = (LHyp‘𝐾)
7650, 51, 52, 754atexlem7 38089 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
7770, 71, 72, 73, 74, 76syl113anc 1381 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ ¬ 𝑆 (𝑃 𝑄)) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
7869, 77pm2.61dan 810 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065   class class class wbr 5074  cfv 6433  (class class class)co 7275  lecple 16969  joincjn 18029  Atomscatm 37277  CvLatclc 37279  HLchlt 37364  LHypclh 37998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lhyp 38002
This theorem is referenced by:  4atex2  38091
  Copyright terms: Public domain W3C validator