Proof of Theorem 4atex
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp21l 1291 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝑃 ∈ 𝐴) | 
| 2 | 1 | ad2antrr 726 | . . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 = 𝑃) → 𝑃 ∈ 𝐴) | 
| 3 |  | simp21r 1292 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ¬ 𝑃 ≤ 𝑊) | 
| 4 | 3 | ad2antrr 726 | . . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 = 𝑃) → ¬ 𝑃 ≤ 𝑊) | 
| 5 |  | oveq1 7438 | . . . . . 6
⊢ (𝑃 = 𝑆 → (𝑃 ∨ 𝑃) = (𝑆 ∨ 𝑃)) | 
| 6 | 5 | eqcoms 2745 | . . . . 5
⊢ (𝑆 = 𝑃 → (𝑃 ∨ 𝑃) = (𝑆 ∨ 𝑃)) | 
| 7 | 6 | adantl 481 | . . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 = 𝑃) → (𝑃 ∨ 𝑃) = (𝑆 ∨ 𝑃)) | 
| 8 |  | breq1 5146 | . . . . . . 7
⊢ (𝑧 = 𝑃 → (𝑧 ≤ 𝑊 ↔ 𝑃 ≤ 𝑊)) | 
| 9 | 8 | notbid 318 | . . . . . 6
⊢ (𝑧 = 𝑃 → (¬ 𝑧 ≤ 𝑊 ↔ ¬ 𝑃 ≤ 𝑊)) | 
| 10 |  | oveq2 7439 | . . . . . . 7
⊢ (𝑧 = 𝑃 → (𝑃 ∨ 𝑧) = (𝑃 ∨ 𝑃)) | 
| 11 |  | oveq2 7439 | . . . . . . 7
⊢ (𝑧 = 𝑃 → (𝑆 ∨ 𝑧) = (𝑆 ∨ 𝑃)) | 
| 12 | 10, 11 | eqeq12d 2753 | . . . . . 6
⊢ (𝑧 = 𝑃 → ((𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧) ↔ (𝑃 ∨ 𝑃) = (𝑆 ∨ 𝑃))) | 
| 13 | 9, 12 | anbi12d 632 | . . . . 5
⊢ (𝑧 = 𝑃 → ((¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)) ↔ (¬ 𝑃 ≤ 𝑊 ∧ (𝑃 ∨ 𝑃) = (𝑆 ∨ 𝑃)))) | 
| 14 | 13 | rspcev 3622 | . . . 4
⊢ ((𝑃 ∈ 𝐴 ∧ (¬ 𝑃 ≤ 𝑊 ∧ (𝑃 ∨ 𝑃) = (𝑆 ∨ 𝑃))) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) | 
| 15 | 2, 4, 7, 14 | syl12anc 837 | . . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 = 𝑃) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) | 
| 16 |  | simpl3r 1230 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) | 
| 17 | 16 | ad2antrr 726 | . . . . 5
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 = 𝑄) → ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) | 
| 18 |  | breq1 5146 | . . . . . . . . . 10
⊢ (𝑟 = 𝑧 → (𝑟 ≤ 𝑊 ↔ 𝑧 ≤ 𝑊)) | 
| 19 | 18 | notbid 318 | . . . . . . . . 9
⊢ (𝑟 = 𝑧 → (¬ 𝑟 ≤ 𝑊 ↔ ¬ 𝑧 ≤ 𝑊)) | 
| 20 |  | oveq2 7439 | . . . . . . . . . 10
⊢ (𝑟 = 𝑧 → (𝑃 ∨ 𝑟) = (𝑃 ∨ 𝑧)) | 
| 21 |  | oveq2 7439 | . . . . . . . . . 10
⊢ (𝑟 = 𝑧 → (𝑄 ∨ 𝑟) = (𝑄 ∨ 𝑧)) | 
| 22 | 20, 21 | eqeq12d 2753 | . . . . . . . . 9
⊢ (𝑟 = 𝑧 → ((𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟) ↔ (𝑃 ∨ 𝑧) = (𝑄 ∨ 𝑧))) | 
| 23 | 19, 22 | anbi12d 632 | . . . . . . . 8
⊢ (𝑟 = 𝑧 → ((¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)) ↔ (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑄 ∨ 𝑧)))) | 
| 24 | 23 | cbvrexvw 3238 | . . . . . . 7
⊢
(∃𝑟 ∈
𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)) ↔ ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑄 ∨ 𝑧))) | 
| 25 |  | oveq1 7438 | . . . . . . . . . 10
⊢ (𝑆 = 𝑄 → (𝑆 ∨ 𝑧) = (𝑄 ∨ 𝑧)) | 
| 26 | 25 | eqeq2d 2748 | . . . . . . . . 9
⊢ (𝑆 = 𝑄 → ((𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧) ↔ (𝑃 ∨ 𝑧) = (𝑄 ∨ 𝑧))) | 
| 27 | 26 | anbi2d 630 | . . . . . . . 8
⊢ (𝑆 = 𝑄 → ((¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)) ↔ (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑄 ∨ 𝑧)))) | 
| 28 | 27 | rexbidv 3179 | . . . . . . 7
⊢ (𝑆 = 𝑄 → (∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)) ↔ ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑄 ∨ 𝑧)))) | 
| 29 | 24, 28 | bitr4id 290 | . . . . . 6
⊢ (𝑆 = 𝑄 → (∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)) ↔ ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) | 
| 30 | 29 | adantl 481 | . . . . 5
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 = 𝑄) → (∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)) ↔ ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) | 
| 31 | 17, 30 | mpbid 232 | . . . 4
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 = 𝑄) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) | 
| 32 |  | simp22l 1293 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝑄 ∈ 𝐴) | 
| 33 | 32 | ad3antrrr 730 | . . . . 5
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 ≠ 𝑄) → 𝑄 ∈ 𝐴) | 
| 34 |  | simp22r 1294 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ¬ 𝑄 ≤ 𝑊) | 
| 35 | 34 | ad3antrrr 730 | . . . . 5
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 ≠ 𝑄) → ¬ 𝑄 ≤ 𝑊) | 
| 36 |  | simp3l 1202 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝑃 ≠ 𝑄) | 
| 37 | 36 | necomd 2996 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝑄 ≠ 𝑃) | 
| 38 | 37 | ad3antrrr 730 | . . . . . 6
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 ≠ 𝑄) → 𝑄 ≠ 𝑃) | 
| 39 |  | simpr 484 | . . . . . . 7
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 ≠ 𝑄) → 𝑆 ≠ 𝑄) | 
| 40 | 39 | necomd 2996 | . . . . . 6
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 ≠ 𝑄) → 𝑄 ≠ 𝑆) | 
| 41 |  | simpllr 776 | . . . . . . 7
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 ≠ 𝑄) → 𝑆 ≤ (𝑃 ∨ 𝑄)) | 
| 42 |  | simp1l 1198 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝐾 ∈ HL) | 
| 43 |  | hlcvl 39360 | . . . . . . . . . 10
⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) | 
| 44 | 42, 43 | syl 17 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝐾 ∈ CvLat) | 
| 45 | 44 | ad3antrrr 730 | . . . . . . . 8
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 ≠ 𝑄) → 𝐾 ∈ CvLat) | 
| 46 |  | simp23 1209 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝑆 ∈ 𝐴) | 
| 47 | 46 | ad3antrrr 730 | . . . . . . . 8
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 ≠ 𝑄) → 𝑆 ∈ 𝐴) | 
| 48 | 1 | ad3antrrr 730 | . . . . . . . 8
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 ≠ 𝑄) → 𝑃 ∈ 𝐴) | 
| 49 |  | simplr 769 | . . . . . . . 8
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 ≠ 𝑄) → 𝑆 ≠ 𝑃) | 
| 50 |  | 4that.l | . . . . . . . . 9
⊢  ≤ =
(le‘𝐾) | 
| 51 |  | 4that.j | . . . . . . . . 9
⊢  ∨ =
(join‘𝐾) | 
| 52 |  | 4that.a | . . . . . . . . 9
⊢ 𝐴 = (Atoms‘𝐾) | 
| 53 | 50, 51, 52 | cvlatexch1 39337 | . . . . . . . 8
⊢ ((𝐾 ∈ CvLat ∧ (𝑆 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝑆 ≠ 𝑃) → (𝑆 ≤ (𝑃 ∨ 𝑄) → 𝑄 ≤ (𝑃 ∨ 𝑆))) | 
| 54 | 45, 47, 33, 48, 49, 53 | syl131anc 1385 | . . . . . . 7
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 ≠ 𝑄) → (𝑆 ≤ (𝑃 ∨ 𝑄) → 𝑄 ≤ (𝑃 ∨ 𝑆))) | 
| 55 | 41, 54 | mpd 15 | . . . . . 6
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 ≠ 𝑄) → 𝑄 ≤ (𝑃 ∨ 𝑆)) | 
| 56 | 49 | necomd 2996 | . . . . . . 7
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 ≠ 𝑄) → 𝑃 ≠ 𝑆) | 
| 57 | 52, 50, 51 | cvlsupr2 39344 | . . . . . . 7
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑆) → ((𝑃 ∨ 𝑄) = (𝑆 ∨ 𝑄) ↔ (𝑄 ≠ 𝑃 ∧ 𝑄 ≠ 𝑆 ∧ 𝑄 ≤ (𝑃 ∨ 𝑆)))) | 
| 58 | 45, 48, 47, 33, 56, 57 | syl131anc 1385 | . . . . . 6
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 ≠ 𝑄) → ((𝑃 ∨ 𝑄) = (𝑆 ∨ 𝑄) ↔ (𝑄 ≠ 𝑃 ∧ 𝑄 ≠ 𝑆 ∧ 𝑄 ≤ (𝑃 ∨ 𝑆)))) | 
| 59 | 38, 40, 55, 58 | mpbir3and 1343 | . . . . 5
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 ≠ 𝑄) → (𝑃 ∨ 𝑄) = (𝑆 ∨ 𝑄)) | 
| 60 |  | breq1 5146 | . . . . . . . 8
⊢ (𝑧 = 𝑄 → (𝑧 ≤ 𝑊 ↔ 𝑄 ≤ 𝑊)) | 
| 61 | 60 | notbid 318 | . . . . . . 7
⊢ (𝑧 = 𝑄 → (¬ 𝑧 ≤ 𝑊 ↔ ¬ 𝑄 ≤ 𝑊)) | 
| 62 |  | oveq2 7439 | . . . . . . . 8
⊢ (𝑧 = 𝑄 → (𝑃 ∨ 𝑧) = (𝑃 ∨ 𝑄)) | 
| 63 |  | oveq2 7439 | . . . . . . . 8
⊢ (𝑧 = 𝑄 → (𝑆 ∨ 𝑧) = (𝑆 ∨ 𝑄)) | 
| 64 | 62, 63 | eqeq12d 2753 | . . . . . . 7
⊢ (𝑧 = 𝑄 → ((𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧) ↔ (𝑃 ∨ 𝑄) = (𝑆 ∨ 𝑄))) | 
| 65 | 61, 64 | anbi12d 632 | . . . . . 6
⊢ (𝑧 = 𝑄 → ((¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)) ↔ (¬ 𝑄 ≤ 𝑊 ∧ (𝑃 ∨ 𝑄) = (𝑆 ∨ 𝑄)))) | 
| 66 | 65 | rspcev 3622 | . . . . 5
⊢ ((𝑄 ∈ 𝐴 ∧ (¬ 𝑄 ≤ 𝑊 ∧ (𝑃 ∨ 𝑄) = (𝑆 ∨ 𝑄))) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) | 
| 67 | 33, 35, 59, 66 | syl12anc 837 | . . . 4
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 ≠ 𝑄) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) | 
| 68 | 31, 67 | pm2.61dane 3029 | . . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) | 
| 69 | 15, 68 | pm2.61dane 3029 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) | 
| 70 |  | simpl1 1192 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 71 |  | simpl2 1193 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴)) | 
| 72 |  | simpl3l 1229 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ≠ 𝑄) | 
| 73 |  | simpr 484 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) | 
| 74 |  | simpl3r 1230 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) | 
| 75 |  | 4that.h | . . . 4
⊢ 𝐻 = (LHyp‘𝐾) | 
| 76 | 50, 51, 52, 75 | 4atexlem7 40077 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) | 
| 77 | 70, 71, 72, 73, 74, 76 | syl113anc 1384 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) | 
| 78 | 69, 77 | pm2.61dan 813 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) |