Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atex Structured version   Visualization version   GIF version

Theorem 4atex 37282
Description: Whenever there are at least 4 atoms under 𝑃 𝑄 (specifically, 𝑃, 𝑄, 𝑟, and (𝑃 𝑄) 𝑊), there are also at least 4 atoms under 𝑃 𝑆. This proves the statement in Lemma E of [Crawley] p. 114, last line, "...p q/0 and hence p s/0 contains at least four atoms..." Note that by cvlsupr2 36549, our (𝑃 𝑟) = (𝑄 𝑟) is a shorter way to express 𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄). (Contributed by NM, 27-May-2013.)
Hypotheses
Ref Expression
4that.l = (le‘𝐾)
4that.j = (join‘𝐾)
4that.a 𝐴 = (Atoms‘𝐾)
4that.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
4atex (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
Distinct variable groups:   𝑧,𝑟,𝐴   𝐻,𝑟   ,𝑟,𝑧   𝐾,𝑟,𝑧   ,𝑟,𝑧   𝑃,𝑟,𝑧   𝑄,𝑟,𝑧   𝑆,𝑟,𝑧   𝑊,𝑟,𝑧
Allowed substitution hint:   𝐻(𝑧)

Proof of Theorem 4atex
StepHypRef Expression
1 simp21l 1287 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑃𝐴)
21ad2antrr 725 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆 = 𝑃) → 𝑃𝐴)
3 simp21r 1288 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ¬ 𝑃 𝑊)
43ad2antrr 725 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆 = 𝑃) → ¬ 𝑃 𝑊)
5 oveq1 7152 . . . . . 6 (𝑃 = 𝑆 → (𝑃 𝑃) = (𝑆 𝑃))
65eqcoms 2832 . . . . 5 (𝑆 = 𝑃 → (𝑃 𝑃) = (𝑆 𝑃))
76adantl 485 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆 = 𝑃) → (𝑃 𝑃) = (𝑆 𝑃))
8 breq1 5055 . . . . . . 7 (𝑧 = 𝑃 → (𝑧 𝑊𝑃 𝑊))
98notbid 321 . . . . . 6 (𝑧 = 𝑃 → (¬ 𝑧 𝑊 ↔ ¬ 𝑃 𝑊))
10 oveq2 7153 . . . . . . 7 (𝑧 = 𝑃 → (𝑃 𝑧) = (𝑃 𝑃))
11 oveq2 7153 . . . . . . 7 (𝑧 = 𝑃 → (𝑆 𝑧) = (𝑆 𝑃))
1210, 11eqeq12d 2840 . . . . . 6 (𝑧 = 𝑃 → ((𝑃 𝑧) = (𝑆 𝑧) ↔ (𝑃 𝑃) = (𝑆 𝑃)))
139, 12anbi12d 633 . . . . 5 (𝑧 = 𝑃 → ((¬ 𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)) ↔ (¬ 𝑃 𝑊 ∧ (𝑃 𝑃) = (𝑆 𝑃))))
1413rspcev 3609 . . . 4 ((𝑃𝐴 ∧ (¬ 𝑃 𝑊 ∧ (𝑃 𝑃) = (𝑆 𝑃))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
152, 4, 7, 14syl12anc 835 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆 = 𝑃) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
16 simpl3r 1226 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) → ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
1716ad2antrr 725 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆 = 𝑄) → ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
18 oveq1 7152 . . . . . . . . . 10 (𝑆 = 𝑄 → (𝑆 𝑧) = (𝑄 𝑧))
1918eqeq2d 2835 . . . . . . . . 9 (𝑆 = 𝑄 → ((𝑃 𝑧) = (𝑆 𝑧) ↔ (𝑃 𝑧) = (𝑄 𝑧)))
2019anbi2d 631 . . . . . . . 8 (𝑆 = 𝑄 → ((¬ 𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)) ↔ (¬ 𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑄 𝑧))))
2120rexbidv 3290 . . . . . . 7 (𝑆 = 𝑄 → (∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)) ↔ ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑄 𝑧))))
22 breq1 5055 . . . . . . . . . 10 (𝑟 = 𝑧 → (𝑟 𝑊𝑧 𝑊))
2322notbid 321 . . . . . . . . 9 (𝑟 = 𝑧 → (¬ 𝑟 𝑊 ↔ ¬ 𝑧 𝑊))
24 oveq2 7153 . . . . . . . . . 10 (𝑟 = 𝑧 → (𝑃 𝑟) = (𝑃 𝑧))
25 oveq2 7153 . . . . . . . . . 10 (𝑟 = 𝑧 → (𝑄 𝑟) = (𝑄 𝑧))
2624, 25eqeq12d 2840 . . . . . . . . 9 (𝑟 = 𝑧 → ((𝑃 𝑟) = (𝑄 𝑟) ↔ (𝑃 𝑧) = (𝑄 𝑧)))
2723, 26anbi12d 633 . . . . . . . 8 (𝑟 = 𝑧 → ((¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) ↔ (¬ 𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑄 𝑧))))
2827cbvrexvw 3436 . . . . . . 7 (∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) ↔ ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑄 𝑧)))
2921, 28syl6rbbr 293 . . . . . 6 (𝑆 = 𝑄 → (∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) ↔ ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧))))
3029adantl 485 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆 = 𝑄) → (∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) ↔ ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧))))
3117, 30mpbid 235 . . . 4 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆 = 𝑄) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
32 simp22l 1289 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑄𝐴)
3332ad3antrrr 729 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝑄𝐴)
34 simp22r 1290 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ¬ 𝑄 𝑊)
3534ad3antrrr 729 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → ¬ 𝑄 𝑊)
36 simp3l 1198 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑃𝑄)
3736necomd 3069 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑄𝑃)
3837ad3antrrr 729 . . . . . 6 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝑄𝑃)
39 simpr 488 . . . . . . 7 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝑆𝑄)
4039necomd 3069 . . . . . 6 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝑄𝑆)
41 simpllr 775 . . . . . . 7 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝑆 (𝑃 𝑄))
42 simp1l 1194 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐾 ∈ HL)
43 hlcvl 36565 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
4442, 43syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐾 ∈ CvLat)
4544ad3antrrr 729 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝐾 ∈ CvLat)
46 simp23 1205 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑆𝐴)
4746ad3antrrr 729 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝑆𝐴)
481ad3antrrr 729 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝑃𝐴)
49 simplr 768 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝑆𝑃)
50 4that.l . . . . . . . . 9 = (le‘𝐾)
51 4that.j . . . . . . . . 9 = (join‘𝐾)
52 4that.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
5350, 51, 52cvlatexch1 36542 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑆𝐴𝑄𝐴𝑃𝐴) ∧ 𝑆𝑃) → (𝑆 (𝑃 𝑄) → 𝑄 (𝑃 𝑆)))
5445, 47, 33, 48, 49, 53syl131anc 1380 . . . . . . 7 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → (𝑆 (𝑃 𝑄) → 𝑄 (𝑃 𝑆)))
5541, 54mpd 15 . . . . . 6 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝑄 (𝑃 𝑆))
5649necomd 3069 . . . . . . 7 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝑃𝑆)
5752, 50, 51cvlsupr2 36549 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑆𝐴𝑄𝐴) ∧ 𝑃𝑆) → ((𝑃 𝑄) = (𝑆 𝑄) ↔ (𝑄𝑃𝑄𝑆𝑄 (𝑃 𝑆))))
5845, 48, 47, 33, 56, 57syl131anc 1380 . . . . . 6 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → ((𝑃 𝑄) = (𝑆 𝑄) ↔ (𝑄𝑃𝑄𝑆𝑄 (𝑃 𝑆))))
5938, 40, 55, 58mpbir3and 1339 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → (𝑃 𝑄) = (𝑆 𝑄))
60 breq1 5055 . . . . . . . 8 (𝑧 = 𝑄 → (𝑧 𝑊𝑄 𝑊))
6160notbid 321 . . . . . . 7 (𝑧 = 𝑄 → (¬ 𝑧 𝑊 ↔ ¬ 𝑄 𝑊))
62 oveq2 7153 . . . . . . . 8 (𝑧 = 𝑄 → (𝑃 𝑧) = (𝑃 𝑄))
63 oveq2 7153 . . . . . . . 8 (𝑧 = 𝑄 → (𝑆 𝑧) = (𝑆 𝑄))
6462, 63eqeq12d 2840 . . . . . . 7 (𝑧 = 𝑄 → ((𝑃 𝑧) = (𝑆 𝑧) ↔ (𝑃 𝑄) = (𝑆 𝑄)))
6561, 64anbi12d 633 . . . . . 6 (𝑧 = 𝑄 → ((¬ 𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)) ↔ (¬ 𝑄 𝑊 ∧ (𝑃 𝑄) = (𝑆 𝑄))))
6665rspcev 3609 . . . . 5 ((𝑄𝐴 ∧ (¬ 𝑄 𝑊 ∧ (𝑃 𝑄) = (𝑆 𝑄))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
6733, 35, 59, 66syl12anc 835 . . . 4 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
6831, 67pm2.61dane 3101 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
6915, 68pm2.61dane 3101 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
70 simpl1 1188 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
71 simpl2 1189 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴))
72 simpl3l 1225 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑃𝑄)
73 simpr 488 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ ¬ 𝑆 (𝑃 𝑄)) → ¬ 𝑆 (𝑃 𝑄))
74 simpl3r 1226 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ ¬ 𝑆 (𝑃 𝑄)) → ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
75 4that.h . . . 4 𝐻 = (LHyp‘𝐾)
7650, 51, 52, 754atexlem7 37281 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
7770, 71, 72, 73, 74, 76syl113anc 1379 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ ¬ 𝑆 (𝑃 𝑄)) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
7869, 77pm2.61dan 812 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3014  wrex 3134   class class class wbr 5052  cfv 6343  (class class class)co 7145  lecple 16568  joincjn 17550  Atomscatm 36469  CvLatclc 36471  HLchlt 36556  LHypclh 37190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-op 4556  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7103  df-ov 7148  df-oprab 7149  df-proset 17534  df-poset 17552  df-plt 17564  df-lub 17580  df-glb 17581  df-join 17582  df-meet 17583  df-p0 17645  df-p1 17646  df-lat 17652  df-clat 17714  df-oposet 36382  df-ol 36384  df-oml 36385  df-covers 36472  df-ats 36473  df-atl 36504  df-cvlat 36528  df-hlat 36557  df-llines 36704  df-lplanes 36705  df-lhyp 37194
This theorem is referenced by:  4atex2  37283
  Copyright terms: Public domain W3C validator