Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atex Structured version   Visualization version   GIF version

Theorem 4atex 36150
Description: Whenever there are at least 4 atoms under 𝑃 𝑄 (specifically, 𝑃, 𝑄, 𝑟, and (𝑃 𝑄) 𝑊), there are also at least 4 atoms under 𝑃 𝑆. This proves the statement in Lemma E of [Crawley] p. 114, last line, "...p q/0 and hence p s/0 contains at least four atoms..." Note that by cvlsupr2 35417, our (𝑃 𝑟) = (𝑄 𝑟) is a shorter way to express 𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄). (Contributed by NM, 27-May-2013.)
Hypotheses
Ref Expression
4that.l = (le‘𝐾)
4that.j = (join‘𝐾)
4that.a 𝐴 = (Atoms‘𝐾)
4that.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
4atex (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
Distinct variable groups:   𝑧,𝑟,𝐴   𝐻,𝑟   ,𝑟,𝑧   𝐾,𝑟,𝑧   ,𝑟,𝑧   𝑃,𝑟,𝑧   𝑄,𝑟,𝑧   𝑆,𝑟,𝑧   𝑊,𝑟,𝑧
Allowed substitution hint:   𝐻(𝑧)

Proof of Theorem 4atex
StepHypRef Expression
1 simp21l 1393 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑃𝐴)
21ad2antrr 717 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆 = 𝑃) → 𝑃𝐴)
3 simp21r 1394 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ¬ 𝑃 𝑊)
43ad2antrr 717 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆 = 𝑃) → ¬ 𝑃 𝑊)
5 oveq1 6917 . . . . . 6 (𝑃 = 𝑆 → (𝑃 𝑃) = (𝑆 𝑃))
65eqcoms 2833 . . . . 5 (𝑆 = 𝑃 → (𝑃 𝑃) = (𝑆 𝑃))
76adantl 475 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆 = 𝑃) → (𝑃 𝑃) = (𝑆 𝑃))
8 breq1 4878 . . . . . . 7 (𝑧 = 𝑃 → (𝑧 𝑊𝑃 𝑊))
98notbid 310 . . . . . 6 (𝑧 = 𝑃 → (¬ 𝑧 𝑊 ↔ ¬ 𝑃 𝑊))
10 oveq2 6918 . . . . . . 7 (𝑧 = 𝑃 → (𝑃 𝑧) = (𝑃 𝑃))
11 oveq2 6918 . . . . . . 7 (𝑧 = 𝑃 → (𝑆 𝑧) = (𝑆 𝑃))
1210, 11eqeq12d 2840 . . . . . 6 (𝑧 = 𝑃 → ((𝑃 𝑧) = (𝑆 𝑧) ↔ (𝑃 𝑃) = (𝑆 𝑃)))
139, 12anbi12d 624 . . . . 5 (𝑧 = 𝑃 → ((¬ 𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)) ↔ (¬ 𝑃 𝑊 ∧ (𝑃 𝑃) = (𝑆 𝑃))))
1413rspcev 3526 . . . 4 ((𝑃𝐴 ∧ (¬ 𝑃 𝑊 ∧ (𝑃 𝑃) = (𝑆 𝑃))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
152, 4, 7, 14syl12anc 870 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆 = 𝑃) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
16 simpl3r 1307 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) → ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
1716ad2antrr 717 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆 = 𝑄) → ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
18 oveq1 6917 . . . . . . . . . 10 (𝑆 = 𝑄 → (𝑆 𝑧) = (𝑄 𝑧))
1918eqeq2d 2835 . . . . . . . . 9 (𝑆 = 𝑄 → ((𝑃 𝑧) = (𝑆 𝑧) ↔ (𝑃 𝑧) = (𝑄 𝑧)))
2019anbi2d 622 . . . . . . . 8 (𝑆 = 𝑄 → ((¬ 𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)) ↔ (¬ 𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑄 𝑧))))
2120rexbidv 3262 . . . . . . 7 (𝑆 = 𝑄 → (∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)) ↔ ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑄 𝑧))))
22 breq1 4878 . . . . . . . . . 10 (𝑟 = 𝑧 → (𝑟 𝑊𝑧 𝑊))
2322notbid 310 . . . . . . . . 9 (𝑟 = 𝑧 → (¬ 𝑟 𝑊 ↔ ¬ 𝑧 𝑊))
24 oveq2 6918 . . . . . . . . . 10 (𝑟 = 𝑧 → (𝑃 𝑟) = (𝑃 𝑧))
25 oveq2 6918 . . . . . . . . . 10 (𝑟 = 𝑧 → (𝑄 𝑟) = (𝑄 𝑧))
2624, 25eqeq12d 2840 . . . . . . . . 9 (𝑟 = 𝑧 → ((𝑃 𝑟) = (𝑄 𝑟) ↔ (𝑃 𝑧) = (𝑄 𝑧)))
2723, 26anbi12d 624 . . . . . . . 8 (𝑟 = 𝑧 → ((¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) ↔ (¬ 𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑄 𝑧))))
2827cbvrexv 3384 . . . . . . 7 (∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) ↔ ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑄 𝑧)))
2921, 28syl6rbbr 282 . . . . . 6 (𝑆 = 𝑄 → (∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) ↔ ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧))))
3029adantl 475 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆 = 𝑄) → (∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) ↔ ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧))))
3117, 30mpbid 224 . . . 4 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆 = 𝑄) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
32 simp22l 1395 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑄𝐴)
3332ad3antrrr 721 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝑄𝐴)
34 simp22r 1396 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ¬ 𝑄 𝑊)
3534ad3antrrr 721 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → ¬ 𝑄 𝑊)
36 simp3l 1262 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑃𝑄)
3736necomd 3054 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑄𝑃)
3837ad3antrrr 721 . . . . . 6 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝑄𝑃)
39 simpr 479 . . . . . . 7 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝑆𝑄)
4039necomd 3054 . . . . . 6 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝑄𝑆)
41 simpllr 793 . . . . . . 7 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝑆 (𝑃 𝑄))
42 simp1l 1258 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐾 ∈ HL)
43 hlcvl 35433 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
4442, 43syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐾 ∈ CvLat)
4544ad3antrrr 721 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝐾 ∈ CvLat)
46 simp23 1269 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑆𝐴)
4746ad3antrrr 721 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝑆𝐴)
481ad3antrrr 721 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝑃𝐴)
49 simplr 785 . . . . . . . 8 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝑆𝑃)
50 4that.l . . . . . . . . 9 = (le‘𝐾)
51 4that.j . . . . . . . . 9 = (join‘𝐾)
52 4that.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
5350, 51, 52cvlatexch1 35410 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑆𝐴𝑄𝐴𝑃𝐴) ∧ 𝑆𝑃) → (𝑆 (𝑃 𝑄) → 𝑄 (𝑃 𝑆)))
5445, 47, 33, 48, 49, 53syl131anc 1506 . . . . . . 7 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → (𝑆 (𝑃 𝑄) → 𝑄 (𝑃 𝑆)))
5541, 54mpd 15 . . . . . 6 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝑄 (𝑃 𝑆))
5649necomd 3054 . . . . . . 7 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → 𝑃𝑆)
5752, 50, 51cvlsupr2 35417 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑆𝐴𝑄𝐴) ∧ 𝑃𝑆) → ((𝑃 𝑄) = (𝑆 𝑄) ↔ (𝑄𝑃𝑄𝑆𝑄 (𝑃 𝑆))))
5845, 48, 47, 33, 56, 57syl131anc 1506 . . . . . 6 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → ((𝑃 𝑄) = (𝑆 𝑄) ↔ (𝑄𝑃𝑄𝑆𝑄 (𝑃 𝑆))))
5938, 40, 55, 58mpbir3and 1446 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → (𝑃 𝑄) = (𝑆 𝑄))
60 breq1 4878 . . . . . . . 8 (𝑧 = 𝑄 → (𝑧 𝑊𝑄 𝑊))
6160notbid 310 . . . . . . 7 (𝑧 = 𝑄 → (¬ 𝑧 𝑊 ↔ ¬ 𝑄 𝑊))
62 oveq2 6918 . . . . . . . 8 (𝑧 = 𝑄 → (𝑃 𝑧) = (𝑃 𝑄))
63 oveq2 6918 . . . . . . . 8 (𝑧 = 𝑄 → (𝑆 𝑧) = (𝑆 𝑄))
6462, 63eqeq12d 2840 . . . . . . 7 (𝑧 = 𝑄 → ((𝑃 𝑧) = (𝑆 𝑧) ↔ (𝑃 𝑄) = (𝑆 𝑄)))
6561, 64anbi12d 624 . . . . . 6 (𝑧 = 𝑄 → ((¬ 𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)) ↔ (¬ 𝑄 𝑊 ∧ (𝑃 𝑄) = (𝑆 𝑄))))
6665rspcev 3526 . . . . 5 ((𝑄𝐴 ∧ (¬ 𝑄 𝑊 ∧ (𝑃 𝑄) = (𝑆 𝑄))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
6733, 35, 59, 66syl12anc 870 . . . 4 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) ∧ 𝑆𝑄) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
6831, 67pm2.61dane 3086 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) ∧ 𝑆𝑃) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
6915, 68pm2.61dane 3086 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑆 (𝑃 𝑄)) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
70 simpl1 1246 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
71 simpl2 1248 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴))
72 simpl3l 1305 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑃𝑄)
73 simpr 479 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ ¬ 𝑆 (𝑃 𝑄)) → ¬ 𝑆 (𝑃 𝑄))
74 simpl3r 1307 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ ¬ 𝑆 (𝑃 𝑄)) → ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
75 4that.h . . . 4 𝐻 = (LHyp‘𝐾)
7650, 51, 52, 754atexlem7 36149 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
7770, 71, 72, 73, 74, 76syl113anc 1505 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ ¬ 𝑆 (𝑃 𝑄)) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
7869, 77pm2.61dan 847 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wcel 2164  wne 2999  wrex 3118   class class class wbr 4875  cfv 6127  (class class class)co 6910  lecple 16319  joincjn 17304  Atomscatm 35337  CvLatclc 35339  HLchlt 35424  LHypclh 36058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-proset 17288  df-poset 17306  df-plt 17318  df-lub 17334  df-glb 17335  df-join 17336  df-meet 17337  df-p0 17399  df-p1 17400  df-lat 17406  df-clat 17468  df-oposet 35250  df-ol 35252  df-oml 35253  df-covers 35340  df-ats 35341  df-atl 35372  df-cvlat 35396  df-hlat 35425  df-llines 35572  df-lplanes 35573  df-lhyp 36062
This theorem is referenced by:  4atex2  36151
  Copyright terms: Public domain W3C validator