Proof of Theorem 4atex
Step | Hyp | Ref
| Expression |
1 | | simp21l 1289 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝑃 ∈ 𝐴) |
2 | 1 | ad2antrr 723 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 = 𝑃) → 𝑃 ∈ 𝐴) |
3 | | simp21r 1290 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ¬ 𝑃 ≤ 𝑊) |
4 | 3 | ad2antrr 723 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 = 𝑃) → ¬ 𝑃 ≤ 𝑊) |
5 | | oveq1 7282 |
. . . . . 6
⊢ (𝑃 = 𝑆 → (𝑃 ∨ 𝑃) = (𝑆 ∨ 𝑃)) |
6 | 5 | eqcoms 2746 |
. . . . 5
⊢ (𝑆 = 𝑃 → (𝑃 ∨ 𝑃) = (𝑆 ∨ 𝑃)) |
7 | 6 | adantl 482 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 = 𝑃) → (𝑃 ∨ 𝑃) = (𝑆 ∨ 𝑃)) |
8 | | breq1 5077 |
. . . . . . 7
⊢ (𝑧 = 𝑃 → (𝑧 ≤ 𝑊 ↔ 𝑃 ≤ 𝑊)) |
9 | 8 | notbid 318 |
. . . . . 6
⊢ (𝑧 = 𝑃 → (¬ 𝑧 ≤ 𝑊 ↔ ¬ 𝑃 ≤ 𝑊)) |
10 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑧 = 𝑃 → (𝑃 ∨ 𝑧) = (𝑃 ∨ 𝑃)) |
11 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑧 = 𝑃 → (𝑆 ∨ 𝑧) = (𝑆 ∨ 𝑃)) |
12 | 10, 11 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑧 = 𝑃 → ((𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧) ↔ (𝑃 ∨ 𝑃) = (𝑆 ∨ 𝑃))) |
13 | 9, 12 | anbi12d 631 |
. . . . 5
⊢ (𝑧 = 𝑃 → ((¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)) ↔ (¬ 𝑃 ≤ 𝑊 ∧ (𝑃 ∨ 𝑃) = (𝑆 ∨ 𝑃)))) |
14 | 13 | rspcev 3561 |
. . . 4
⊢ ((𝑃 ∈ 𝐴 ∧ (¬ 𝑃 ≤ 𝑊 ∧ (𝑃 ∨ 𝑃) = (𝑆 ∨ 𝑃))) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) |
15 | 2, 4, 7, 14 | syl12anc 834 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 = 𝑃) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) |
16 | | simpl3r 1228 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) |
17 | 16 | ad2antrr 723 |
. . . . 5
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 = 𝑄) → ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) |
18 | | breq1 5077 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑧 → (𝑟 ≤ 𝑊 ↔ 𝑧 ≤ 𝑊)) |
19 | 18 | notbid 318 |
. . . . . . . . 9
⊢ (𝑟 = 𝑧 → (¬ 𝑟 ≤ 𝑊 ↔ ¬ 𝑧 ≤ 𝑊)) |
20 | | oveq2 7283 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑧 → (𝑃 ∨ 𝑟) = (𝑃 ∨ 𝑧)) |
21 | | oveq2 7283 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑧 → (𝑄 ∨ 𝑟) = (𝑄 ∨ 𝑧)) |
22 | 20, 21 | eqeq12d 2754 |
. . . . . . . . 9
⊢ (𝑟 = 𝑧 → ((𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟) ↔ (𝑃 ∨ 𝑧) = (𝑄 ∨ 𝑧))) |
23 | 19, 22 | anbi12d 631 |
. . . . . . . 8
⊢ (𝑟 = 𝑧 → ((¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)) ↔ (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑄 ∨ 𝑧)))) |
24 | 23 | cbvrexvw 3384 |
. . . . . . 7
⊢
(∃𝑟 ∈
𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)) ↔ ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑄 ∨ 𝑧))) |
25 | | oveq1 7282 |
. . . . . . . . . 10
⊢ (𝑆 = 𝑄 → (𝑆 ∨ 𝑧) = (𝑄 ∨ 𝑧)) |
26 | 25 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (𝑆 = 𝑄 → ((𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧) ↔ (𝑃 ∨ 𝑧) = (𝑄 ∨ 𝑧))) |
27 | 26 | anbi2d 629 |
. . . . . . . 8
⊢ (𝑆 = 𝑄 → ((¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)) ↔ (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑄 ∨ 𝑧)))) |
28 | 27 | rexbidv 3226 |
. . . . . . 7
⊢ (𝑆 = 𝑄 → (∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)) ↔ ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑄 ∨ 𝑧)))) |
29 | 24, 28 | bitr4id 290 |
. . . . . 6
⊢ (𝑆 = 𝑄 → (∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)) ↔ ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) |
30 | 29 | adantl 482 |
. . . . 5
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 = 𝑄) → (∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)) ↔ ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) |
31 | 17, 30 | mpbid 231 |
. . . 4
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 = 𝑄) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) |
32 | | simp22l 1291 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝑄 ∈ 𝐴) |
33 | 32 | ad3antrrr 727 |
. . . . 5
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 ≠ 𝑄) → 𝑄 ∈ 𝐴) |
34 | | simp22r 1292 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ¬ 𝑄 ≤ 𝑊) |
35 | 34 | ad3antrrr 727 |
. . . . 5
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 ≠ 𝑄) → ¬ 𝑄 ≤ 𝑊) |
36 | | simp3l 1200 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝑃 ≠ 𝑄) |
37 | 36 | necomd 2999 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝑄 ≠ 𝑃) |
38 | 37 | ad3antrrr 727 |
. . . . . 6
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 ≠ 𝑄) → 𝑄 ≠ 𝑃) |
39 | | simpr 485 |
. . . . . . 7
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 ≠ 𝑄) → 𝑆 ≠ 𝑄) |
40 | 39 | necomd 2999 |
. . . . . 6
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 ≠ 𝑄) → 𝑄 ≠ 𝑆) |
41 | | simpllr 773 |
. . . . . . 7
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 ≠ 𝑄) → 𝑆 ≤ (𝑃 ∨ 𝑄)) |
42 | | simp1l 1196 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝐾 ∈ HL) |
43 | | hlcvl 37373 |
. . . . . . . . . 10
⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
44 | 42, 43 | syl 17 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝐾 ∈ CvLat) |
45 | 44 | ad3antrrr 727 |
. . . . . . . 8
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 ≠ 𝑄) → 𝐾 ∈ CvLat) |
46 | | simp23 1207 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝑆 ∈ 𝐴) |
47 | 46 | ad3antrrr 727 |
. . . . . . . 8
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 ≠ 𝑄) → 𝑆 ∈ 𝐴) |
48 | 1 | ad3antrrr 727 |
. . . . . . . 8
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 ≠ 𝑄) → 𝑃 ∈ 𝐴) |
49 | | simplr 766 |
. . . . . . . 8
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 ≠ 𝑄) → 𝑆 ≠ 𝑃) |
50 | | 4that.l |
. . . . . . . . 9
⊢ ≤ =
(le‘𝐾) |
51 | | 4that.j |
. . . . . . . . 9
⊢ ∨ =
(join‘𝐾) |
52 | | 4that.a |
. . . . . . . . 9
⊢ 𝐴 = (Atoms‘𝐾) |
53 | 50, 51, 52 | cvlatexch1 37350 |
. . . . . . . 8
⊢ ((𝐾 ∈ CvLat ∧ (𝑆 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝑆 ≠ 𝑃) → (𝑆 ≤ (𝑃 ∨ 𝑄) → 𝑄 ≤ (𝑃 ∨ 𝑆))) |
54 | 45, 47, 33, 48, 49, 53 | syl131anc 1382 |
. . . . . . 7
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 ≠ 𝑄) → (𝑆 ≤ (𝑃 ∨ 𝑄) → 𝑄 ≤ (𝑃 ∨ 𝑆))) |
55 | 41, 54 | mpd 15 |
. . . . . 6
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 ≠ 𝑄) → 𝑄 ≤ (𝑃 ∨ 𝑆)) |
56 | 49 | necomd 2999 |
. . . . . . 7
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 ≠ 𝑄) → 𝑃 ≠ 𝑆) |
57 | 52, 50, 51 | cvlsupr2 37357 |
. . . . . . 7
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑆) → ((𝑃 ∨ 𝑄) = (𝑆 ∨ 𝑄) ↔ (𝑄 ≠ 𝑃 ∧ 𝑄 ≠ 𝑆 ∧ 𝑄 ≤ (𝑃 ∨ 𝑆)))) |
58 | 45, 48, 47, 33, 56, 57 | syl131anc 1382 |
. . . . . 6
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 ≠ 𝑄) → ((𝑃 ∨ 𝑄) = (𝑆 ∨ 𝑄) ↔ (𝑄 ≠ 𝑃 ∧ 𝑄 ≠ 𝑆 ∧ 𝑄 ≤ (𝑃 ∨ 𝑆)))) |
59 | 38, 40, 55, 58 | mpbir3and 1341 |
. . . . 5
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 ≠ 𝑄) → (𝑃 ∨ 𝑄) = (𝑆 ∨ 𝑄)) |
60 | | breq1 5077 |
. . . . . . . 8
⊢ (𝑧 = 𝑄 → (𝑧 ≤ 𝑊 ↔ 𝑄 ≤ 𝑊)) |
61 | 60 | notbid 318 |
. . . . . . 7
⊢ (𝑧 = 𝑄 → (¬ 𝑧 ≤ 𝑊 ↔ ¬ 𝑄 ≤ 𝑊)) |
62 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑧 = 𝑄 → (𝑃 ∨ 𝑧) = (𝑃 ∨ 𝑄)) |
63 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑧 = 𝑄 → (𝑆 ∨ 𝑧) = (𝑆 ∨ 𝑄)) |
64 | 62, 63 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑧 = 𝑄 → ((𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧) ↔ (𝑃 ∨ 𝑄) = (𝑆 ∨ 𝑄))) |
65 | 61, 64 | anbi12d 631 |
. . . . . 6
⊢ (𝑧 = 𝑄 → ((¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)) ↔ (¬ 𝑄 ≤ 𝑊 ∧ (𝑃 ∨ 𝑄) = (𝑆 ∨ 𝑄)))) |
66 | 65 | rspcev 3561 |
. . . . 5
⊢ ((𝑄 ∈ 𝐴 ∧ (¬ 𝑄 ≤ 𝑊 ∧ (𝑃 ∨ 𝑄) = (𝑆 ∨ 𝑄))) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) |
67 | 33, 35, 59, 66 | syl12anc 834 |
. . . 4
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) ∧ 𝑆 ≠ 𝑄) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) |
68 | 31, 67 | pm2.61dane 3032 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑆 ≠ 𝑃) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) |
69 | 15, 68 | pm2.61dane 3032 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) |
70 | | simpl1 1190 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
71 | | simpl2 1191 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴)) |
72 | | simpl3l 1227 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ≠ 𝑄) |
73 | | simpr 485 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) |
74 | | simpl3r 1228 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) |
75 | | 4that.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
76 | 50, 51, 52, 75 | 4atexlem7 38089 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) |
77 | 70, 71, 72, 73, 74, 76 | syl113anc 1381 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) |
78 | 69, 77 | pm2.61dan 810 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) |