Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme42k Structured version   Visualization version   GIF version

Theorem cdleme42k 39658
Description: Part of proof of Lemma E in [Crawley] p. 113. Since F ' S =/= F'R when S =/= R (i.e. 1-1); then ( ( F ' R ) .\/ ( F ' S ) ) is 2-dim therefore = ( ( F ' R ) .\/ V ) by cdleme42i 39657 and ps-1 38651 TODO: FIX COMMENT. (Contributed by NM, 20-Mar-2013.)
Hypotheses
Ref Expression
cdleme41.b 𝐡 = (Baseβ€˜πΎ)
cdleme41.l ≀ = (leβ€˜πΎ)
cdleme41.j ∨ = (joinβ€˜πΎ)
cdleme41.m ∧ = (meetβ€˜πΎ)
cdleme41.a 𝐴 = (Atomsβ€˜πΎ)
cdleme41.h 𝐻 = (LHypβ€˜πΎ)
cdleme41.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdleme41.d 𝐷 = ((𝑠 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ π‘Š)))
cdleme41.e 𝐸 = ((𝑑 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑑) ∧ π‘Š)))
cdleme41.g 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑠 ∨ 𝑑) ∧ π‘Š)))
cdleme41.i 𝐼 = (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = 𝐺))
cdleme41.n 𝑁 = if(𝑠 ≀ (𝑃 ∨ 𝑄), 𝐼, 𝐷)
cdleme41.o 𝑂 = (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑧 = (𝑁 ∨ (π‘₯ ∧ π‘Š))))
cdleme41.f 𝐹 = (π‘₯ ∈ 𝐡 ↦ if((𝑃 β‰  𝑄 ∧ Β¬ π‘₯ ≀ π‘Š), 𝑂, π‘₯))
cdleme34e.v 𝑉 = ((𝑅 ∨ 𝑆) ∧ π‘Š)
Assertion
Ref Expression
cdleme42k ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ 𝑅 β‰  𝑆) β†’ ((πΉβ€˜π‘…) ∨ (πΉβ€˜π‘†)) = ((πΉβ€˜π‘…) ∨ 𝑉))
Distinct variable groups:   𝐴,𝑠   ∨ ,𝑠   ≀ ,𝑠   ∧ ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠   𝑆,𝑠   π‘ˆ,𝑠   π‘Š,𝑠   𝑦,𝑑,𝐴,𝑠   𝐡,𝑠,𝑑,𝑦   𝑦,𝐷   𝑦,𝐺   𝐸,𝑠,𝑦   𝐻,𝑠,𝑑,𝑦   𝑑, ∨ ,𝑦   𝐾,𝑠,𝑑,𝑦   𝑑, ≀ ,𝑦   𝑑, ∧ ,𝑦   𝑑,𝑃,𝑦   𝑑,𝑄,𝑦   𝑑,𝑅,𝑦   𝑑,𝑆,𝑦   𝑑,π‘ˆ,𝑦   𝑑,π‘Š,𝑦   π‘₯,𝑧,𝐴   π‘₯,𝐡,𝑧   𝑧,𝐸,𝑠   𝑧,𝐻   π‘₯, ∨ ,𝑧   𝑧,𝐾   π‘₯, ≀ ,𝑧   π‘₯, ∧ ,𝑧   π‘₯,𝑁,𝑧   π‘₯,𝑃,𝑧   π‘₯,𝑄,𝑧   π‘₯,𝑅,𝑧   π‘₯,𝑆,𝑧   π‘₯,π‘ˆ,𝑧   π‘₯,π‘Š,𝑧,𝑠,𝑑,𝑦   𝑉,𝑠,𝑑,π‘₯,𝑧
Allowed substitution hints:   𝐷(π‘₯,𝑧,𝑑,𝑠)   𝐸(π‘₯,𝑑)   𝐹(π‘₯,𝑦,𝑧,𝑑,𝑠)   𝐺(π‘₯,𝑧,𝑑,𝑠)   𝐻(π‘₯)   𝐼(π‘₯,𝑦,𝑧,𝑑,𝑠)   𝐾(π‘₯)   𝑁(𝑦,𝑑,𝑠)   𝑂(π‘₯,𝑦,𝑧,𝑑,𝑠)   𝑉(𝑦)

Proof of Theorem cdleme42k
StepHypRef Expression
1 simp1 1136 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ 𝑅 β‰  𝑆) β†’ ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)))
2 simp22 1207 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ 𝑅 β‰  𝑆) β†’ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))
3 simp23 1208 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ 𝑅 β‰  𝑆) β†’ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š))
4 simp21 1206 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ 𝑅 β‰  𝑆) β†’ 𝑃 β‰  𝑄)
5 cdleme41.b . . . 4 𝐡 = (Baseβ€˜πΎ)
6 cdleme41.l . . . 4 ≀ = (leβ€˜πΎ)
7 cdleme41.j . . . 4 ∨ = (joinβ€˜πΎ)
8 cdleme41.m . . . 4 ∧ = (meetβ€˜πΎ)
9 cdleme41.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
10 cdleme41.h . . . 4 𝐻 = (LHypβ€˜πΎ)
11 cdleme41.u . . . 4 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
12 cdleme41.d . . . 4 𝐷 = ((𝑠 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ π‘Š)))
13 cdleme41.e . . . 4 𝐸 = ((𝑑 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑑) ∧ π‘Š)))
14 cdleme41.g . . . 4 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑠 ∨ 𝑑) ∧ π‘Š)))
15 cdleme41.i . . . 4 𝐼 = (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = 𝐺))
16 cdleme41.n . . . 4 𝑁 = if(𝑠 ≀ (𝑃 ∨ 𝑄), 𝐼, 𝐷)
17 cdleme41.o . . . 4 𝑂 = (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑧 = (𝑁 ∨ (π‘₯ ∧ π‘Š))))
18 cdleme41.f . . . 4 𝐹 = (π‘₯ ∈ 𝐡 ↦ if((𝑃 β‰  𝑄 ∧ Β¬ π‘₯ ≀ π‘Š), 𝑂, π‘₯))
19 cdleme34e.v . . . 4 𝑉 = ((𝑅 ∨ 𝑆) ∧ π‘Š)
205, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19cdleme42i 39657 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ ((πΉβ€˜π‘…) ∨ (πΉβ€˜π‘†)) ≀ ((πΉβ€˜π‘…) ∨ 𝑉))
211, 2, 3, 4, 20syl121anc 1375 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ 𝑅 β‰  𝑆) β†’ ((πΉβ€˜π‘…) ∨ (πΉβ€˜π‘†)) ≀ ((πΉβ€˜π‘…) ∨ 𝑉))
22 simp11l 1284 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ 𝑅 β‰  𝑆) β†’ 𝐾 ∈ HL)
235, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18cdleme32fvaw 39613 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ ((πΉβ€˜π‘…) ∈ 𝐴 ∧ Β¬ (πΉβ€˜π‘…) ≀ π‘Š))
2423simpld 495 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ (πΉβ€˜π‘…) ∈ 𝐴)
251, 2, 24syl2anc 584 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ 𝑅 β‰  𝑆) β†’ (πΉβ€˜π‘…) ∈ 𝐴)
265, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18cdleme32fvaw 39613 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ ((πΉβ€˜π‘†) ∈ 𝐴 ∧ Β¬ (πΉβ€˜π‘†) ≀ π‘Š))
2726simpld 495 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ (πΉβ€˜π‘†) ∈ 𝐴)
281, 3, 27syl2anc 584 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ 𝑅 β‰  𝑆) β†’ (πΉβ€˜π‘†) ∈ 𝐴)
295, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18cdleme41fva11 39651 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ 𝑅 β‰  𝑆) β†’ (πΉβ€˜π‘…) β‰  (πΉβ€˜π‘†))
30 simp11r 1285 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ 𝑅 β‰  𝑆) β†’ π‘Š ∈ 𝐻)
31 simp22l 1292 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ 𝑅 β‰  𝑆) β†’ 𝑅 ∈ 𝐴)
32 simp22r 1293 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ 𝑅 β‰  𝑆) β†’ Β¬ 𝑅 ≀ π‘Š)
33 simp23l 1294 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ 𝑅 β‰  𝑆) β†’ 𝑆 ∈ 𝐴)
34 simp3 1138 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ 𝑅 β‰  𝑆) β†’ 𝑅 β‰  𝑆)
356, 7, 8, 9, 10, 19cdleme0a 39385 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑅 β‰  𝑆)) β†’ 𝑉 ∈ 𝐴)
3622, 30, 31, 32, 33, 34, 35syl222anc 1386 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ 𝑅 β‰  𝑆) β†’ 𝑉 ∈ 𝐴)
376, 7, 9ps-1 38651 . . 3 ((𝐾 ∈ HL ∧ ((πΉβ€˜π‘…) ∈ 𝐴 ∧ (πΉβ€˜π‘†) ∈ 𝐴 ∧ (πΉβ€˜π‘…) β‰  (πΉβ€˜π‘†)) ∧ ((πΉβ€˜π‘…) ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) β†’ (((πΉβ€˜π‘…) ∨ (πΉβ€˜π‘†)) ≀ ((πΉβ€˜π‘…) ∨ 𝑉) ↔ ((πΉβ€˜π‘…) ∨ (πΉβ€˜π‘†)) = ((πΉβ€˜π‘…) ∨ 𝑉)))
3822, 25, 28, 29, 25, 36, 37syl132anc 1388 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ 𝑅 β‰  𝑆) β†’ (((πΉβ€˜π‘…) ∨ (πΉβ€˜π‘†)) ≀ ((πΉβ€˜π‘…) ∨ 𝑉) ↔ ((πΉβ€˜π‘…) ∨ (πΉβ€˜π‘†)) = ((πΉβ€˜π‘…) ∨ 𝑉)))
3921, 38mpbid 231 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ 𝑅 β‰  𝑆) β†’ ((πΉβ€˜π‘…) ∨ (πΉβ€˜π‘†)) = ((πΉβ€˜π‘…) ∨ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  ifcif 4528   class class class wbr 5148   ↦ cmpt 5231  β€˜cfv 6543  β„©crio 7366  (class class class)co 7411  Basecbs 17148  lecple 17208  joincjn 18268  meetcmee 18269  Atomscatm 38436  HLchlt 38523  LHypclh 39158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-riotaBAD 38126
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-undef 8260  df-proset 18252  df-poset 18270  df-plt 18287  df-lub 18303  df-glb 18304  df-join 18305  df-meet 18306  df-p0 18382  df-p1 18383  df-lat 18389  df-clat 18456  df-oposet 38349  df-ol 38351  df-oml 38352  df-covers 38439  df-ats 38440  df-atl 38471  df-cvlat 38495  df-hlat 38524  df-llines 38672  df-lplanes 38673  df-lvols 38674  df-lines 38675  df-psubsp 38677  df-pmap 38678  df-padd 38970  df-lhyp 39162
This theorem is referenced by:  cdleme42ke  39659
  Copyright terms: Public domain W3C validator