Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  segconeu Structured version   Visualization version   GIF version

Theorem segconeu 35989
Description: Existential uniqueness version of segconeq 35988. (Contributed by Scott Fenton, 19-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
segconeu ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → ∃!𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))
Distinct variable groups:   𝑁,𝑟   𝐴,𝑟   𝐵,𝑟   𝐶,𝑟   𝐷,𝑟

Proof of Theorem segconeu
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . 3 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → 𝑁 ∈ ℕ)
2 simpr2 1196 . . 3 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))
3 simpr1 1195 . . 3 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
4 axsegcon 28872 . . 3 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ∃𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))
51, 2, 3, 4syl3anc 1373 . 2 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → ∃𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))
6 simpl23 1254 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) ∧ ((𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩))) → 𝐶𝐷)
7 simprl 770 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) ∧ ((𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩))) → (𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))
8 simprr 772 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) ∧ ((𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩))) → (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩))
96, 7, 83jca 1128 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) ∧ ((𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩))) → (𝐶𝐷 ∧ (𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩)))
109ex 412 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → (((𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩)) → (𝐶𝐷 ∧ (𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩))))
11 simp1 1136 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
12 simp22r 1294 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
13 simp21l 1291 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
14 simp21r 1292 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
15 simp22l 1293 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
16 simp3l 1202 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → 𝑟 ∈ (𝔼‘𝑁))
17 simp3r 1203 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → 𝑠 ∈ (𝔼‘𝑁))
18 segconeq 35988 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → ((𝐶𝐷 ∧ (𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩)) → 𝑟 = 𝑠))
1911, 12, 13, 14, 15, 16, 17, 18syl133anc 1395 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → ((𝐶𝐷 ∧ (𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩)) → 𝑟 = 𝑠))
2010, 19syld 47 . . . 4 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → (((𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩)) → 𝑟 = 𝑠))
21203expa 1118 . . 3 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → (((𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩)) → 𝑟 = 𝑠))
2221ralrimivva 3172 . 2 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → ∀𝑟 ∈ (𝔼‘𝑁)∀𝑠 ∈ (𝔼‘𝑁)(((𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩)) → 𝑟 = 𝑠))
23 opeq2 4825 . . . . 5 (𝑟 = 𝑠 → ⟨𝐶, 𝑟⟩ = ⟨𝐶, 𝑠⟩)
2423breq2d 5104 . . . 4 (𝑟 = 𝑠 → (𝐷 Btwn ⟨𝐶, 𝑟⟩ ↔ 𝐷 Btwn ⟨𝐶, 𝑠⟩))
25 opeq2 4825 . . . . 5 (𝑟 = 𝑠 → ⟨𝐷, 𝑟⟩ = ⟨𝐷, 𝑠⟩)
2625breq1d 5102 . . . 4 (𝑟 = 𝑠 → (⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩ ↔ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩))
2724, 26anbi12d 632 . . 3 (𝑟 = 𝑠 → ((𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ↔ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩)))
2827reu4 3691 . 2 (∃!𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ↔ (∃𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ ∀𝑟 ∈ (𝔼‘𝑁)∀𝑠 ∈ (𝔼‘𝑁)(((𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩)) → 𝑟 = 𝑠)))
295, 22, 28sylanbrc 583 1 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → ∃!𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  wne 2925  wral 3044  wrex 3053  ∃!wreu 3341  cop 4583   class class class wbr 5092  cfv 6482  cn 12128  𝔼cee 28833   Btwn cbtwn 28834  Cgrccgr 28835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-ee 28836  df-btwn 28837  df-cgr 28838  df-ofs 35961
This theorem is referenced by:  transportcl  36011  transportprops  36012
  Copyright terms: Public domain W3C validator