Step | Hyp | Ref
| Expression |
1 | | simpl 486 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷)) → 𝑁 ∈ ℕ) |
2 | | simpr2 1197 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷)) → (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) |
3 | | simpr1 1196 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷)) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) |
4 | | axsegcon 27018 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ∃𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn 〈𝐶, 𝑟〉 ∧ 〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉)) |
5 | 1, 2, 3, 4 | syl3anc 1373 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷)) → ∃𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn 〈𝐶, 𝑟〉 ∧ 〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉)) |
6 | | simpl23 1255 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) ∧ ((𝐷 Btwn 〈𝐶, 𝑟〉 ∧ 〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉) ∧ (𝐷 Btwn 〈𝐶, 𝑠〉 ∧ 〈𝐷, 𝑠〉Cgr〈𝐴, 𝐵〉))) → 𝐶 ≠ 𝐷) |
7 | | simprl 771 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) ∧ ((𝐷 Btwn 〈𝐶, 𝑟〉 ∧ 〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉) ∧ (𝐷 Btwn 〈𝐶, 𝑠〉 ∧ 〈𝐷, 𝑠〉Cgr〈𝐴, 𝐵〉))) → (𝐷 Btwn 〈𝐶, 𝑟〉 ∧ 〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉)) |
8 | | simprr 773 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) ∧ ((𝐷 Btwn 〈𝐶, 𝑟〉 ∧ 〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉) ∧ (𝐷 Btwn 〈𝐶, 𝑠〉 ∧ 〈𝐷, 𝑠〉Cgr〈𝐴, 𝐵〉))) → (𝐷 Btwn 〈𝐶, 𝑠〉 ∧ 〈𝐷, 𝑠〉Cgr〈𝐴, 𝐵〉)) |
9 | 6, 7, 8 | 3jca 1130 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) ∧ ((𝐷 Btwn 〈𝐶, 𝑟〉 ∧ 〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉) ∧ (𝐷 Btwn 〈𝐶, 𝑠〉 ∧ 〈𝐷, 𝑠〉Cgr〈𝐴, 𝐵〉))) → (𝐶 ≠ 𝐷 ∧ (𝐷 Btwn 〈𝐶, 𝑟〉 ∧ 〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉) ∧ (𝐷 Btwn 〈𝐶, 𝑠〉 ∧ 〈𝐷, 𝑠〉Cgr〈𝐴, 𝐵〉))) |
10 | 9 | ex 416 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → (((𝐷 Btwn 〈𝐶, 𝑟〉 ∧ 〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉) ∧ (𝐷 Btwn 〈𝐶, 𝑠〉 ∧ 〈𝐷, 𝑠〉Cgr〈𝐴, 𝐵〉)) → (𝐶 ≠ 𝐷 ∧ (𝐷 Btwn 〈𝐶, 𝑟〉 ∧ 〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉) ∧ (𝐷 Btwn 〈𝐶, 𝑠〉 ∧ 〈𝐷, 𝑠〉Cgr〈𝐴, 𝐵〉)))) |
11 | | simp1 1138 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ) |
12 | | simp22r 1295 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁)) |
13 | | simp21l 1292 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁)) |
14 | | simp21r 1293 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁)) |
15 | | simp22l 1294 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁)) |
16 | | simp3l 1203 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → 𝑟 ∈ (𝔼‘𝑁)) |
17 | | simp3r 1204 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → 𝑠 ∈ (𝔼‘𝑁)) |
18 | | segconeq 34049 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → ((𝐶 ≠ 𝐷 ∧ (𝐷 Btwn 〈𝐶, 𝑟〉 ∧ 〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉) ∧ (𝐷 Btwn 〈𝐶, 𝑠〉 ∧ 〈𝐷, 𝑠〉Cgr〈𝐴, 𝐵〉)) → 𝑟 = 𝑠)) |
19 | 11, 12, 13, 14, 15, 16, 17, 18 | syl133anc 1395 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → ((𝐶 ≠ 𝐷 ∧ (𝐷 Btwn 〈𝐶, 𝑟〉 ∧ 〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉) ∧ (𝐷 Btwn 〈𝐶, 𝑠〉 ∧ 〈𝐷, 𝑠〉Cgr〈𝐴, 𝐵〉)) → 𝑟 = 𝑠)) |
20 | 10, 19 | syld 47 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → (((𝐷 Btwn 〈𝐶, 𝑟〉 ∧ 〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉) ∧ (𝐷 Btwn 〈𝐶, 𝑠〉 ∧ 〈𝐷, 𝑠〉Cgr〈𝐴, 𝐵〉)) → 𝑟 = 𝑠)) |
21 | 20 | 3expa 1120 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷)) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → (((𝐷 Btwn 〈𝐶, 𝑟〉 ∧ 〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉) ∧ (𝐷 Btwn 〈𝐶, 𝑠〉 ∧ 〈𝐷, 𝑠〉Cgr〈𝐴, 𝐵〉)) → 𝑟 = 𝑠)) |
22 | 21 | ralrimivva 3112 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷)) → ∀𝑟 ∈ (𝔼‘𝑁)∀𝑠 ∈ (𝔼‘𝑁)(((𝐷 Btwn 〈𝐶, 𝑟〉 ∧ 〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉) ∧ (𝐷 Btwn 〈𝐶, 𝑠〉 ∧ 〈𝐷, 𝑠〉Cgr〈𝐴, 𝐵〉)) → 𝑟 = 𝑠)) |
23 | | opeq2 4785 |
. . . . 5
⊢ (𝑟 = 𝑠 → 〈𝐶, 𝑟〉 = 〈𝐶, 𝑠〉) |
24 | 23 | breq2d 5065 |
. . . 4
⊢ (𝑟 = 𝑠 → (𝐷 Btwn 〈𝐶, 𝑟〉 ↔ 𝐷 Btwn 〈𝐶, 𝑠〉)) |
25 | | opeq2 4785 |
. . . . 5
⊢ (𝑟 = 𝑠 → 〈𝐷, 𝑟〉 = 〈𝐷, 𝑠〉) |
26 | 25 | breq1d 5063 |
. . . 4
⊢ (𝑟 = 𝑠 → (〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉 ↔ 〈𝐷, 𝑠〉Cgr〈𝐴, 𝐵〉)) |
27 | 24, 26 | anbi12d 634 |
. . 3
⊢ (𝑟 = 𝑠 → ((𝐷 Btwn 〈𝐶, 𝑟〉 ∧ 〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉) ↔ (𝐷 Btwn 〈𝐶, 𝑠〉 ∧ 〈𝐷, 𝑠〉Cgr〈𝐴, 𝐵〉))) |
28 | 27 | reu4 3644 |
. 2
⊢
(∃!𝑟 ∈
(𝔼‘𝑁)(𝐷 Btwn 〈𝐶, 𝑟〉 ∧ 〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉) ↔ (∃𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn 〈𝐶, 𝑟〉 ∧ 〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉) ∧ ∀𝑟 ∈ (𝔼‘𝑁)∀𝑠 ∈ (𝔼‘𝑁)(((𝐷 Btwn 〈𝐶, 𝑟〉 ∧ 〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉) ∧ (𝐷 Btwn 〈𝐶, 𝑠〉 ∧ 〈𝐷, 𝑠〉Cgr〈𝐴, 𝐵〉)) → 𝑟 = 𝑠))) |
29 | 5, 22, 28 | sylanbrc 586 |
1
⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷)) → ∃!𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn 〈𝐶, 𝑟〉 ∧ 〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉)) |