Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme20c Structured version   Visualization version   GIF version

Theorem cdleme20c 40433
Description: Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114, second line. 𝐷, 𝐹, 𝑌, 𝐺 represent s2, f(s), t2, f(t). (Contributed by NM, 15-Nov-2012.)
Hypotheses
Ref Expression
cdleme19.l = (le‘𝐾)
cdleme19.j = (join‘𝐾)
cdleme19.m = (meet‘𝐾)
cdleme19.a 𝐴 = (Atoms‘𝐾)
cdleme19.h 𝐻 = (LHyp‘𝐾)
cdleme19.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme19.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme19.g 𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))
cdleme19.d 𝐷 = ((𝑅 𝑆) 𝑊)
cdleme19.y 𝑌 = ((𝑅 𝑇) 𝑊)
cdleme20.v 𝑉 = ((𝑆 𝑇) 𝑊)
Assertion
Ref Expression
cdleme20c (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (𝐷 𝑌) = (((𝑅 𝑆) 𝑇) 𝑊))

Proof of Theorem cdleme20c
StepHypRef Expression
1 cdleme19.d . . 3 𝐷 = ((𝑅 𝑆) 𝑊)
2 cdleme19.y . . 3 𝑌 = ((𝑅 𝑇) 𝑊)
31, 2oveq12i 7366 . 2 (𝐷 𝑌) = (((𝑅 𝑆) 𝑊) ((𝑅 𝑇) 𝑊))
4 simp1l 1198 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → 𝐾 ∈ HL)
5 simp21l 1291 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → 𝑅𝐴)
6 simp22l 1293 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → 𝑆𝐴)
7 eqid 2733 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
8 cdleme19.j . . . . . . . . . 10 = (join‘𝐾)
9 cdleme19.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
107, 8, 9hlatjcl 39489 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
114, 5, 6, 10syl3anc 1373 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (𝑅 𝑆) ∈ (Base‘𝐾))
12 simp1r 1199 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → 𝑊𝐻)
13 cdleme19.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
147, 13lhpbase 40120 . . . . . . . . 9 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1512, 14syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → 𝑊 ∈ (Base‘𝐾))
16 cdleme19.l . . . . . . . . . 10 = (le‘𝐾)
1716, 8, 9hlatlej1 39497 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → 𝑅 (𝑅 𝑆))
184, 5, 6, 17syl3anc 1373 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → 𝑅 (𝑅 𝑆))
19 cdleme19.m . . . . . . . . 9 = (meet‘𝐾)
207, 16, 8, 19, 9atmod2i1 39983 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑅𝐴 ∧ (𝑅 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑅 (𝑅 𝑆)) → (((𝑅 𝑆) 𝑊) 𝑅) = ((𝑅 𝑆) (𝑊 𝑅)))
214, 5, 11, 15, 18, 20syl131anc 1385 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (((𝑅 𝑆) 𝑊) 𝑅) = ((𝑅 𝑆) (𝑊 𝑅)))
22 simp21 1207 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
23 eqid 2733 . . . . . . . . . 10 (1.‘𝐾) = (1.‘𝐾)
2416, 8, 23, 9, 13lhpjat1 40142 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑊 𝑅) = (1.‘𝐾))
254, 12, 22, 24syl21anc 837 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (𝑊 𝑅) = (1.‘𝐾))
2625oveq2d 7370 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → ((𝑅 𝑆) (𝑊 𝑅)) = ((𝑅 𝑆) (1.‘𝐾)))
27 hlol 39483 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ OL)
284, 27syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → 𝐾 ∈ OL)
297, 19, 23olm11 39349 . . . . . . . 8 ((𝐾 ∈ OL ∧ (𝑅 𝑆) ∈ (Base‘𝐾)) → ((𝑅 𝑆) (1.‘𝐾)) = (𝑅 𝑆))
3028, 11, 29syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → ((𝑅 𝑆) (1.‘𝐾)) = (𝑅 𝑆))
3121, 26, 303eqtrrd 2773 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (𝑅 𝑆) = (((𝑅 𝑆) 𝑊) 𝑅))
3231oveq1d 7369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → ((𝑅 𝑆) 𝑇) = ((((𝑅 𝑆) 𝑊) 𝑅) 𝑇))
33 simp22r 1294 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → ¬ 𝑆 𝑊)
34 simp3r 1203 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → 𝑅 (𝑃 𝑄))
35 simp3l 1202 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → ¬ 𝑆 (𝑃 𝑄))
36 eqid 2733 . . . . . . . 8 ((𝑅 𝑆) 𝑊) = ((𝑅 𝑆) 𝑊)
3716, 8, 19, 9, 13, 36cdlemeda 40420 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑅𝐴𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝑅 𝑆) 𝑊) ∈ 𝐴)
384, 12, 6, 33, 5, 34, 35, 37syl223anc 1398 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → ((𝑅 𝑆) 𝑊) ∈ 𝐴)
39 simp23 1209 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → 𝑇𝐴)
408, 9hlatjass 39492 . . . . . 6 ((𝐾 ∈ HL ∧ (((𝑅 𝑆) 𝑊) ∈ 𝐴𝑅𝐴𝑇𝐴)) → ((((𝑅 𝑆) 𝑊) 𝑅) 𝑇) = (((𝑅 𝑆) 𝑊) (𝑅 𝑇)))
414, 38, 5, 39, 40syl13anc 1374 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → ((((𝑅 𝑆) 𝑊) 𝑅) 𝑇) = (((𝑅 𝑆) 𝑊) (𝑅 𝑇)))
4232, 41eqtrd 2768 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → ((𝑅 𝑆) 𝑇) = (((𝑅 𝑆) 𝑊) (𝑅 𝑇)))
4342oveq1d 7369 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (((𝑅 𝑆) 𝑇) 𝑊) = ((((𝑅 𝑆) 𝑊) (𝑅 𝑇)) 𝑊))
447, 8, 9hlatjcl 39489 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑇𝐴) → (𝑅 𝑇) ∈ (Base‘𝐾))
454, 5, 39, 44syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (𝑅 𝑇) ∈ (Base‘𝐾))
464hllatd 39486 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → 𝐾 ∈ Lat)
477, 16, 19latmle2 18375 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑅 𝑆) 𝑊) 𝑊)
4846, 11, 15, 47syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → ((𝑅 𝑆) 𝑊) 𝑊)
497, 16, 8, 19, 9atmod1i1 39979 . . . 4 ((𝐾 ∈ HL ∧ (((𝑅 𝑆) 𝑊) ∈ 𝐴 ∧ (𝑅 𝑇) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ ((𝑅 𝑆) 𝑊) 𝑊) → (((𝑅 𝑆) 𝑊) ((𝑅 𝑇) 𝑊)) = ((((𝑅 𝑆) 𝑊) (𝑅 𝑇)) 𝑊))
504, 38, 45, 15, 48, 49syl131anc 1385 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (((𝑅 𝑆) 𝑊) ((𝑅 𝑇) 𝑊)) = ((((𝑅 𝑆) 𝑊) (𝑅 𝑇)) 𝑊))
5143, 50eqtr4d 2771 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (((𝑅 𝑆) 𝑇) 𝑊) = (((𝑅 𝑆) 𝑊) ((𝑅 𝑇) 𝑊)))
523, 51eqtr4id 2787 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (𝐷 𝑌) = (((𝑅 𝑆) 𝑇) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5095  cfv 6488  (class class class)co 7354  Basecbs 17124  lecple 17172  joincjn 18221  meetcmee 18222  1.cp1 18332  Latclat 18341  OLcol 39296  Atomscatm 39385  HLchlt 39472  LHypclh 40106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-1st 7929  df-2nd 7930  df-proset 18204  df-poset 18223  df-plt 18238  df-lub 18254  df-glb 18255  df-join 18256  df-meet 18257  df-p0 18333  df-p1 18334  df-lat 18342  df-clat 18409  df-oposet 39298  df-ol 39300  df-oml 39301  df-covers 39388  df-ats 39389  df-atl 39420  df-cvlat 39444  df-hlat 39473  df-psubsp 39625  df-pmap 39626  df-padd 39918  df-lhyp 40110
This theorem is referenced by:  cdleme20d  40434
  Copyright terms: Public domain W3C validator