Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme20c Structured version   Visualization version   GIF version

Theorem cdleme20c 37607
Description: Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114, second line. 𝐷, 𝐹, 𝑌, 𝐺 represent s2, f(s), t2, f(t). (Contributed by NM, 15-Nov-2012.)
Hypotheses
Ref Expression
cdleme19.l = (le‘𝐾)
cdleme19.j = (join‘𝐾)
cdleme19.m = (meet‘𝐾)
cdleme19.a 𝐴 = (Atoms‘𝐾)
cdleme19.h 𝐻 = (LHyp‘𝐾)
cdleme19.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme19.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme19.g 𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))
cdleme19.d 𝐷 = ((𝑅 𝑆) 𝑊)
cdleme19.y 𝑌 = ((𝑅 𝑇) 𝑊)
cdleme20.v 𝑉 = ((𝑆 𝑇) 𝑊)
Assertion
Ref Expression
cdleme20c (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (𝐷 𝑌) = (((𝑅 𝑆) 𝑇) 𝑊))

Proof of Theorem cdleme20c
StepHypRef Expression
1 cdleme19.d . . 3 𝐷 = ((𝑅 𝑆) 𝑊)
2 cdleme19.y . . 3 𝑌 = ((𝑅 𝑇) 𝑊)
31, 2oveq12i 7147 . 2 (𝐷 𝑌) = (((𝑅 𝑆) 𝑊) ((𝑅 𝑇) 𝑊))
4 simp1l 1194 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → 𝐾 ∈ HL)
5 simp21l 1287 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → 𝑅𝐴)
6 simp22l 1289 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → 𝑆𝐴)
7 eqid 2798 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
8 cdleme19.j . . . . . . . . . 10 = (join‘𝐾)
9 cdleme19.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
107, 8, 9hlatjcl 36663 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
114, 5, 6, 10syl3anc 1368 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (𝑅 𝑆) ∈ (Base‘𝐾))
12 simp1r 1195 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → 𝑊𝐻)
13 cdleme19.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
147, 13lhpbase 37294 . . . . . . . . 9 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1512, 14syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → 𝑊 ∈ (Base‘𝐾))
16 cdleme19.l . . . . . . . . . 10 = (le‘𝐾)
1716, 8, 9hlatlej1 36671 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → 𝑅 (𝑅 𝑆))
184, 5, 6, 17syl3anc 1368 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → 𝑅 (𝑅 𝑆))
19 cdleme19.m . . . . . . . . 9 = (meet‘𝐾)
207, 16, 8, 19, 9atmod2i1 37157 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑅𝐴 ∧ (𝑅 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑅 (𝑅 𝑆)) → (((𝑅 𝑆) 𝑊) 𝑅) = ((𝑅 𝑆) (𝑊 𝑅)))
214, 5, 11, 15, 18, 20syl131anc 1380 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (((𝑅 𝑆) 𝑊) 𝑅) = ((𝑅 𝑆) (𝑊 𝑅)))
22 simp21 1203 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
23 eqid 2798 . . . . . . . . . 10 (1.‘𝐾) = (1.‘𝐾)
2416, 8, 23, 9, 13lhpjat1 37316 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑊 𝑅) = (1.‘𝐾))
254, 12, 22, 24syl21anc 836 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (𝑊 𝑅) = (1.‘𝐾))
2625oveq2d 7151 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → ((𝑅 𝑆) (𝑊 𝑅)) = ((𝑅 𝑆) (1.‘𝐾)))
27 hlol 36657 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ OL)
284, 27syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → 𝐾 ∈ OL)
297, 19, 23olm11 36523 . . . . . . . 8 ((𝐾 ∈ OL ∧ (𝑅 𝑆) ∈ (Base‘𝐾)) → ((𝑅 𝑆) (1.‘𝐾)) = (𝑅 𝑆))
3028, 11, 29syl2anc 587 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → ((𝑅 𝑆) (1.‘𝐾)) = (𝑅 𝑆))
3121, 26, 303eqtrrd 2838 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (𝑅 𝑆) = (((𝑅 𝑆) 𝑊) 𝑅))
3231oveq1d 7150 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → ((𝑅 𝑆) 𝑇) = ((((𝑅 𝑆) 𝑊) 𝑅) 𝑇))
33 simp22r 1290 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → ¬ 𝑆 𝑊)
34 simp3r 1199 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → 𝑅 (𝑃 𝑄))
35 simp3l 1198 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → ¬ 𝑆 (𝑃 𝑄))
36 eqid 2798 . . . . . . . 8 ((𝑅 𝑆) 𝑊) = ((𝑅 𝑆) 𝑊)
3716, 8, 19, 9, 13, 36cdlemeda 37594 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑅𝐴𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝑅 𝑆) 𝑊) ∈ 𝐴)
384, 12, 6, 33, 5, 34, 35, 37syl223anc 1393 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → ((𝑅 𝑆) 𝑊) ∈ 𝐴)
39 simp23 1205 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → 𝑇𝐴)
408, 9hlatjass 36666 . . . . . 6 ((𝐾 ∈ HL ∧ (((𝑅 𝑆) 𝑊) ∈ 𝐴𝑅𝐴𝑇𝐴)) → ((((𝑅 𝑆) 𝑊) 𝑅) 𝑇) = (((𝑅 𝑆) 𝑊) (𝑅 𝑇)))
414, 38, 5, 39, 40syl13anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → ((((𝑅 𝑆) 𝑊) 𝑅) 𝑇) = (((𝑅 𝑆) 𝑊) (𝑅 𝑇)))
4232, 41eqtrd 2833 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → ((𝑅 𝑆) 𝑇) = (((𝑅 𝑆) 𝑊) (𝑅 𝑇)))
4342oveq1d 7150 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (((𝑅 𝑆) 𝑇) 𝑊) = ((((𝑅 𝑆) 𝑊) (𝑅 𝑇)) 𝑊))
447, 8, 9hlatjcl 36663 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑇𝐴) → (𝑅 𝑇) ∈ (Base‘𝐾))
454, 5, 39, 44syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (𝑅 𝑇) ∈ (Base‘𝐾))
464hllatd 36660 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → 𝐾 ∈ Lat)
477, 16, 19latmle2 17679 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑅 𝑆) 𝑊) 𝑊)
4846, 11, 15, 47syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → ((𝑅 𝑆) 𝑊) 𝑊)
497, 16, 8, 19, 9atmod1i1 37153 . . . 4 ((𝐾 ∈ HL ∧ (((𝑅 𝑆) 𝑊) ∈ 𝐴 ∧ (𝑅 𝑇) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ ((𝑅 𝑆) 𝑊) 𝑊) → (((𝑅 𝑆) 𝑊) ((𝑅 𝑇) 𝑊)) = ((((𝑅 𝑆) 𝑊) (𝑅 𝑇)) 𝑊))
504, 38, 45, 15, 48, 49syl131anc 1380 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (((𝑅 𝑆) 𝑊) ((𝑅 𝑇) 𝑊)) = ((((𝑅 𝑆) 𝑊) (𝑅 𝑇)) 𝑊))
5143, 50eqtr4d 2836 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (((𝑅 𝑆) 𝑇) 𝑊) = (((𝑅 𝑆) 𝑊) ((𝑅 𝑇) 𝑊)))
523, 51eqtr4id 2852 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (𝐷 𝑌) = (((𝑅 𝑆) 𝑇) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111   class class class wbr 5030  cfv 6324  (class class class)co 7135  Basecbs 16475  lecple 16564  joincjn 17546  meetcmee 17547  1.cp1 17640  Latclat 17647  OLcol 36470  Atomscatm 36559  HLchlt 36646  LHypclh 37280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647  df-psubsp 36799  df-pmap 36800  df-padd 37092  df-lhyp 37284
This theorem is referenced by:  cdleme20d  37608
  Copyright terms: Public domain W3C validator