Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme20c Structured version   Visualization version   GIF version

Theorem cdleme20c 38820
Description: Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114, second line. 𝐷, 𝐹, π‘Œ, 𝐺 represent s2, f(s), t2, f(t). (Contributed by NM, 15-Nov-2012.)
Hypotheses
Ref Expression
cdleme19.l ≀ = (leβ€˜πΎ)
cdleme19.j ∨ = (joinβ€˜πΎ)
cdleme19.m ∧ = (meetβ€˜πΎ)
cdleme19.a 𝐴 = (Atomsβ€˜πΎ)
cdleme19.h 𝐻 = (LHypβ€˜πΎ)
cdleme19.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdleme19.f 𝐹 = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))
cdleme19.g 𝐺 = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))
cdleme19.d 𝐷 = ((𝑅 ∨ 𝑆) ∧ π‘Š)
cdleme19.y π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)
cdleme20.v 𝑉 = ((𝑆 ∨ 𝑇) ∧ π‘Š)
Assertion
Ref Expression
cdleme20c (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝐷 ∨ π‘Œ) = (((𝑅 ∨ 𝑆) ∨ 𝑇) ∧ π‘Š))

Proof of Theorem cdleme20c
StepHypRef Expression
1 cdleme19.d . . 3 𝐷 = ((𝑅 ∨ 𝑆) ∧ π‘Š)
2 cdleme19.y . . 3 π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)
31, 2oveq12i 7370 . 2 (𝐷 ∨ π‘Œ) = (((𝑅 ∨ 𝑆) ∧ π‘Š) ∨ ((𝑅 ∨ 𝑇) ∧ π‘Š))
4 simp1l 1198 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐾 ∈ HL)
5 simp21l 1291 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑅 ∈ 𝐴)
6 simp22l 1293 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑆 ∈ 𝐴)
7 eqid 2733 . . . . . . . . . 10 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
8 cdleme19.j . . . . . . . . . 10 ∨ = (joinβ€˜πΎ)
9 cdleme19.a . . . . . . . . . 10 𝐴 = (Atomsβ€˜πΎ)
107, 8, 9hlatjcl 37875 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
114, 5, 6, 10syl3anc 1372 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
12 simp1r 1199 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ π‘Š ∈ 𝐻)
13 cdleme19.h . . . . . . . . . 10 𝐻 = (LHypβ€˜πΎ)
147, 13lhpbase 38507 . . . . . . . . 9 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
1512, 14syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ π‘Š ∈ (Baseβ€˜πΎ))
16 cdleme19.l . . . . . . . . . 10 ≀ = (leβ€˜πΎ)
1716, 8, 9hlatlej1 37883 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ 𝑅 ≀ (𝑅 ∨ 𝑆))
184, 5, 6, 17syl3anc 1372 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑅 ≀ (𝑅 ∨ 𝑆))
19 cdleme19.m . . . . . . . . 9 ∧ = (meetβ€˜πΎ)
207, 16, 8, 19, 9atmod2i1 38370 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) ∧ 𝑅 ≀ (𝑅 ∨ 𝑆)) β†’ (((𝑅 ∨ 𝑆) ∧ π‘Š) ∨ 𝑅) = ((𝑅 ∨ 𝑆) ∧ (π‘Š ∨ 𝑅)))
214, 5, 11, 15, 18, 20syl131anc 1384 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (((𝑅 ∨ 𝑆) ∧ π‘Š) ∨ 𝑅) = ((𝑅 ∨ 𝑆) ∧ (π‘Š ∨ 𝑅)))
22 simp21 1207 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))
23 eqid 2733 . . . . . . . . . 10 (1.β€˜πΎ) = (1.β€˜πΎ)
2416, 8, 23, 9, 13lhpjat1 38529 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ (π‘Š ∨ 𝑅) = (1.β€˜πΎ))
254, 12, 22, 24syl21anc 837 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (π‘Š ∨ 𝑅) = (1.β€˜πΎ))
2625oveq2d 7374 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑅 ∨ 𝑆) ∧ (π‘Š ∨ 𝑅)) = ((𝑅 ∨ 𝑆) ∧ (1.β€˜πΎ)))
27 hlol 37869 . . . . . . . . 9 (𝐾 ∈ HL β†’ 𝐾 ∈ OL)
284, 27syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐾 ∈ OL)
297, 19, 23olm11 37735 . . . . . . . 8 ((𝐾 ∈ OL ∧ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ)) β†’ ((𝑅 ∨ 𝑆) ∧ (1.β€˜πΎ)) = (𝑅 ∨ 𝑆))
3028, 11, 29syl2anc 585 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑅 ∨ 𝑆) ∧ (1.β€˜πΎ)) = (𝑅 ∨ 𝑆))
3121, 26, 303eqtrrd 2778 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ 𝑆) = (((𝑅 ∨ 𝑆) ∧ π‘Š) ∨ 𝑅))
3231oveq1d 7373 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑅 ∨ 𝑆) ∨ 𝑇) = ((((𝑅 ∨ 𝑆) ∧ π‘Š) ∨ 𝑅) ∨ 𝑇))
33 simp22r 1294 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ Β¬ 𝑆 ≀ π‘Š)
34 simp3r 1203 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑅 ≀ (𝑃 ∨ 𝑄))
35 simp3l 1202 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))
36 eqid 2733 . . . . . . . 8 ((𝑅 ∨ 𝑆) ∧ π‘Š) = ((𝑅 ∨ 𝑆) ∧ π‘Š)
3716, 8, 19, 9, 13, 36cdlemeda 38807 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑅 ∨ 𝑆) ∧ π‘Š) ∈ 𝐴)
384, 12, 6, 33, 5, 34, 35, 37syl223anc 1397 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑅 ∨ 𝑆) ∧ π‘Š) ∈ 𝐴)
39 simp23 1209 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑇 ∈ 𝐴)
408, 9hlatjass 37878 . . . . . 6 ((𝐾 ∈ HL ∧ (((𝑅 ∨ 𝑆) ∧ π‘Š) ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ ((((𝑅 ∨ 𝑆) ∧ π‘Š) ∨ 𝑅) ∨ 𝑇) = (((𝑅 ∨ 𝑆) ∧ π‘Š) ∨ (𝑅 ∨ 𝑇)))
414, 38, 5, 39, 40syl13anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ ((((𝑅 ∨ 𝑆) ∧ π‘Š) ∨ 𝑅) ∨ 𝑇) = (((𝑅 ∨ 𝑆) ∧ π‘Š) ∨ (𝑅 ∨ 𝑇)))
4232, 41eqtrd 2773 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑅 ∨ 𝑆) ∨ 𝑇) = (((𝑅 ∨ 𝑆) ∧ π‘Š) ∨ (𝑅 ∨ 𝑇)))
4342oveq1d 7373 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (((𝑅 ∨ 𝑆) ∨ 𝑇) ∧ π‘Š) = ((((𝑅 ∨ 𝑆) ∧ π‘Š) ∨ (𝑅 ∨ 𝑇)) ∧ π‘Š))
447, 8, 9hlatjcl 37875 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) β†’ (𝑅 ∨ 𝑇) ∈ (Baseβ€˜πΎ))
454, 5, 39, 44syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ 𝑇) ∈ (Baseβ€˜πΎ))
464hllatd 37872 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐾 ∈ Lat)
477, 16, 19latmle2 18359 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((𝑅 ∨ 𝑆) ∧ π‘Š) ≀ π‘Š)
4846, 11, 15, 47syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑅 ∨ 𝑆) ∧ π‘Š) ≀ π‘Š)
497, 16, 8, 19, 9atmod1i1 38366 . . . 4 ((𝐾 ∈ HL ∧ (((𝑅 ∨ 𝑆) ∧ π‘Š) ∈ 𝐴 ∧ (𝑅 ∨ 𝑇) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) ∧ ((𝑅 ∨ 𝑆) ∧ π‘Š) ≀ π‘Š) β†’ (((𝑅 ∨ 𝑆) ∧ π‘Š) ∨ ((𝑅 ∨ 𝑇) ∧ π‘Š)) = ((((𝑅 ∨ 𝑆) ∧ π‘Š) ∨ (𝑅 ∨ 𝑇)) ∧ π‘Š))
504, 38, 45, 15, 48, 49syl131anc 1384 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (((𝑅 ∨ 𝑆) ∧ π‘Š) ∨ ((𝑅 ∨ 𝑇) ∧ π‘Š)) = ((((𝑅 ∨ 𝑆) ∧ π‘Š) ∨ (𝑅 ∨ 𝑇)) ∧ π‘Š))
5143, 50eqtr4d 2776 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (((𝑅 ∨ 𝑆) ∨ 𝑇) ∧ π‘Š) = (((𝑅 ∨ 𝑆) ∧ π‘Š) ∨ ((𝑅 ∨ 𝑇) ∧ π‘Š)))
523, 51eqtr4id 2792 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝐷 ∨ π‘Œ) = (((𝑅 ∨ 𝑆) ∨ 𝑇) ∧ π‘Š))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   class class class wbr 5106  β€˜cfv 6497  (class class class)co 7358  Basecbs 17088  lecple 17145  joincjn 18205  meetcmee 18206  1.cp1 18318  Latclat 18325  OLcol 37682  Atomscatm 37771  HLchlt 37858  LHypclh 38493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-iin 4958  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923  df-proset 18189  df-poset 18207  df-plt 18224  df-lub 18240  df-glb 18241  df-join 18242  df-meet 18243  df-p0 18319  df-p1 18320  df-lat 18326  df-clat 18393  df-oposet 37684  df-ol 37686  df-oml 37687  df-covers 37774  df-ats 37775  df-atl 37806  df-cvlat 37830  df-hlat 37859  df-psubsp 38012  df-pmap 38013  df-padd 38305  df-lhyp 38497
This theorem is referenced by:  cdleme20d  38821
  Copyright terms: Public domain W3C validator