Proof of Theorem fpwwe2lem5
| Step | Hyp | Ref
| Expression |
| 1 | | fpwwe2lem8.x |
. . . . . . 7
⊢ (𝜑 → 𝑋𝑊𝑅) |
| 2 | | fpwwe2.1 |
. . . . . . . 8
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} |
| 3 | | fpwwe2.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 4 | 2, 3 | fpwwe2lem2 10646 |
. . . . . . 7
⊢ (𝜑 → (𝑋𝑊𝑅 ↔ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)))) |
| 5 | 1, 4 | mpbid 232 |
. . . . . 6
⊢ (𝜑 → ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) |
| 6 | 5 | simplrd 769 |
. . . . 5
⊢ (𝜑 → 𝑅 ⊆ (𝑋 × 𝑋)) |
| 7 | 6 | ssbrd 5162 |
. . . 4
⊢ (𝜑 → (𝐶𝑅(𝑀‘𝐵) → 𝐶(𝑋 × 𝑋)(𝑀‘𝐵))) |
| 8 | | brxp 5703 |
. . . . 5
⊢ (𝐶(𝑋 × 𝑋)(𝑀‘𝐵) ↔ (𝐶 ∈ 𝑋 ∧ (𝑀‘𝐵) ∈ 𝑋)) |
| 9 | 8 | simplbi 497 |
. . . 4
⊢ (𝐶(𝑋 × 𝑋)(𝑀‘𝐵) → 𝐶 ∈ 𝑋) |
| 10 | 7, 9 | syl6 35 |
. . 3
⊢ (𝜑 → (𝐶𝑅(𝑀‘𝐵) → 𝐶 ∈ 𝑋)) |
| 11 | 10 | imp 406 |
. 2
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → 𝐶 ∈ 𝑋) |
| 12 | | imassrn 6058 |
. . . 4
⊢ (𝑁 “ 𝐵) ⊆ ran 𝑁 |
| 13 | | fpwwe2lem8.y |
. . . . . . . . 9
⊢ (𝜑 → 𝑌𝑊𝑆) |
| 14 | 2 | relopabiv 5799 |
. . . . . . . . . 10
⊢ Rel 𝑊 |
| 15 | 14 | brrelex1i 5710 |
. . . . . . . . 9
⊢ (𝑌𝑊𝑆 → 𝑌 ∈ V) |
| 16 | 13, 15 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ V) |
| 17 | 2, 3 | fpwwe2lem2 10646 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑌𝑊𝑆 ↔ ((𝑌 ⊆ 𝐴 ∧ 𝑆 ⊆ (𝑌 × 𝑌)) ∧ (𝑆 We 𝑌 ∧ ∀𝑦 ∈ 𝑌 [(◡𝑆 “ {𝑦}) / 𝑢](𝑢𝐹(𝑆 ∩ (𝑢 × 𝑢))) = 𝑦)))) |
| 18 | 13, 17 | mpbid 232 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑌 ⊆ 𝐴 ∧ 𝑆 ⊆ (𝑌 × 𝑌)) ∧ (𝑆 We 𝑌 ∧ ∀𝑦 ∈ 𝑌 [(◡𝑆 “ {𝑦}) / 𝑢](𝑢𝐹(𝑆 ∩ (𝑢 × 𝑢))) = 𝑦))) |
| 19 | 18 | simprld 771 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 We 𝑌) |
| 20 | | fpwwe2lem8.n |
. . . . . . . . 9
⊢ 𝑁 = OrdIso(𝑆, 𝑌) |
| 21 | 20 | oiiso 9551 |
. . . . . . . 8
⊢ ((𝑌 ∈ V ∧ 𝑆 We 𝑌) → 𝑁 Isom E , 𝑆 (dom 𝑁, 𝑌)) |
| 22 | 16, 19, 21 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → 𝑁 Isom E , 𝑆 (dom 𝑁, 𝑌)) |
| 23 | 22 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → 𝑁 Isom E , 𝑆 (dom 𝑁, 𝑌)) |
| 24 | | isof1o 7316 |
. . . . . 6
⊢ (𝑁 Isom E , 𝑆 (dom 𝑁, 𝑌) → 𝑁:dom 𝑁–1-1-onto→𝑌) |
| 25 | 23, 24 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → 𝑁:dom 𝑁–1-1-onto→𝑌) |
| 26 | | f1ofo 6825 |
. . . . 5
⊢ (𝑁:dom 𝑁–1-1-onto→𝑌 → 𝑁:dom 𝑁–onto→𝑌) |
| 27 | | forn 6793 |
. . . . 5
⊢ (𝑁:dom 𝑁–onto→𝑌 → ran 𝑁 = 𝑌) |
| 28 | 25, 26, 27 | 3syl 18 |
. . . 4
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → ran 𝑁 = 𝑌) |
| 29 | 12, 28 | sseqtrid 4001 |
. . 3
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → (𝑁 “ 𝐵) ⊆ 𝑌) |
| 30 | 14 | brrelex1i 5710 |
. . . . . . . . . . . . . 14
⊢ (𝑋𝑊𝑅 → 𝑋 ∈ V) |
| 31 | 1, 30 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ∈ V) |
| 32 | 5 | simprld 771 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 We 𝑋) |
| 33 | | fpwwe2lem8.m |
. . . . . . . . . . . . . 14
⊢ 𝑀 = OrdIso(𝑅, 𝑋) |
| 34 | 33 | oiiso 9551 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ V ∧ 𝑅 We 𝑋) → 𝑀 Isom E , 𝑅 (dom 𝑀, 𝑋)) |
| 35 | 31, 32, 34 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 Isom E , 𝑅 (dom 𝑀, 𝑋)) |
| 36 | 35 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → 𝑀 Isom E , 𝑅 (dom 𝑀, 𝑋)) |
| 37 | | isof1o 7316 |
. . . . . . . . . . 11
⊢ (𝑀 Isom E , 𝑅 (dom 𝑀, 𝑋) → 𝑀:dom 𝑀–1-1-onto→𝑋) |
| 38 | 36, 37 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → 𝑀:dom 𝑀–1-1-onto→𝑋) |
| 39 | | f1ocnvfv2 7270 |
. . . . . . . . . 10
⊢ ((𝑀:dom 𝑀–1-1-onto→𝑋 ∧ 𝐶 ∈ 𝑋) → (𝑀‘(◡𝑀‘𝐶)) = 𝐶) |
| 40 | 38, 11, 39 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → (𝑀‘(◡𝑀‘𝐶)) = 𝐶) |
| 41 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → 𝐶𝑅(𝑀‘𝐵)) |
| 42 | 40, 41 | eqbrtrd 5141 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → (𝑀‘(◡𝑀‘𝐶))𝑅(𝑀‘𝐵)) |
| 43 | | f1ocnv 6830 |
. . . . . . . . . . 11
⊢ (𝑀:dom 𝑀–1-1-onto→𝑋 → ◡𝑀:𝑋–1-1-onto→dom
𝑀) |
| 44 | | f1of 6818 |
. . . . . . . . . . 11
⊢ (◡𝑀:𝑋–1-1-onto→dom
𝑀 → ◡𝑀:𝑋⟶dom 𝑀) |
| 45 | 38, 43, 44 | 3syl 18 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → ◡𝑀:𝑋⟶dom 𝑀) |
| 46 | 45, 11 | ffvelcdmd 7075 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → (◡𝑀‘𝐶) ∈ dom 𝑀) |
| 47 | | fpwwe2lem5.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ dom 𝑀) |
| 48 | 47 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → 𝐵 ∈ dom 𝑀) |
| 49 | | isorel 7319 |
. . . . . . . . 9
⊢ ((𝑀 Isom E , 𝑅 (dom 𝑀, 𝑋) ∧ ((◡𝑀‘𝐶) ∈ dom 𝑀 ∧ 𝐵 ∈ dom 𝑀)) → ((◡𝑀‘𝐶) E 𝐵 ↔ (𝑀‘(◡𝑀‘𝐶))𝑅(𝑀‘𝐵))) |
| 50 | 36, 46, 48, 49 | syl12anc 836 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → ((◡𝑀‘𝐶) E 𝐵 ↔ (𝑀‘(◡𝑀‘𝐶))𝑅(𝑀‘𝐵))) |
| 51 | 42, 50 | mpbird 257 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → (◡𝑀‘𝐶) E 𝐵) |
| 52 | | epelg 5554 |
. . . . . . . 8
⊢ (𝐵 ∈ dom 𝑀 → ((◡𝑀‘𝐶) E 𝐵 ↔ (◡𝑀‘𝐶) ∈ 𝐵)) |
| 53 | 48, 52 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → ((◡𝑀‘𝐶) E 𝐵 ↔ (◡𝑀‘𝐶) ∈ 𝐵)) |
| 54 | 51, 53 | mpbid 232 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → (◡𝑀‘𝐶) ∈ 𝐵) |
| 55 | | ffn 6706 |
. . . . . . 7
⊢ (◡𝑀:𝑋⟶dom 𝑀 → ◡𝑀 Fn 𝑋) |
| 56 | | elpreima 7048 |
. . . . . . 7
⊢ (◡𝑀 Fn 𝑋 → (𝐶 ∈ (◡◡𝑀 “ 𝐵) ↔ (𝐶 ∈ 𝑋 ∧ (◡𝑀‘𝐶) ∈ 𝐵))) |
| 57 | 45, 55, 56 | 3syl 18 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → (𝐶 ∈ (◡◡𝑀 “ 𝐵) ↔ (𝐶 ∈ 𝑋 ∧ (◡𝑀‘𝐶) ∈ 𝐵))) |
| 58 | 11, 54, 57 | mpbir2and 713 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → 𝐶 ∈ (◡◡𝑀 “ 𝐵)) |
| 59 | | imacnvcnv 6195 |
. . . . 5
⊢ (◡◡𝑀 “ 𝐵) = (𝑀 “ 𝐵) |
| 60 | 58, 59 | eleqtrdi 2844 |
. . . 4
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → 𝐶 ∈ (𝑀 “ 𝐵)) |
| 61 | | fpwwe2lem5.3 |
. . . . . . 7
⊢ (𝜑 → (𝑀 ↾ 𝐵) = (𝑁 ↾ 𝐵)) |
| 62 | 61 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → (𝑀 ↾ 𝐵) = (𝑁 ↾ 𝐵)) |
| 63 | 62 | rneqd 5918 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → ran (𝑀 ↾ 𝐵) = ran (𝑁 ↾ 𝐵)) |
| 64 | | df-ima 5667 |
. . . . 5
⊢ (𝑀 “ 𝐵) = ran (𝑀 ↾ 𝐵) |
| 65 | | df-ima 5667 |
. . . . 5
⊢ (𝑁 “ 𝐵) = ran (𝑁 ↾ 𝐵) |
| 66 | 63, 64, 65 | 3eqtr4g 2795 |
. . . 4
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → (𝑀 “ 𝐵) = (𝑁 “ 𝐵)) |
| 67 | 60, 66 | eleqtrd 2836 |
. . 3
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → 𝐶 ∈ (𝑁 “ 𝐵)) |
| 68 | 29, 67 | sseldd 3959 |
. 2
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → 𝐶 ∈ 𝑌) |
| 69 | 62 | cnveqd 5855 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → ◡(𝑀 ↾ 𝐵) = ◡(𝑁 ↾ 𝐵)) |
| 70 | | dff1o3 6824 |
. . . . . . 7
⊢ (𝑀:dom 𝑀–1-1-onto→𝑋 ↔ (𝑀:dom 𝑀–onto→𝑋 ∧ Fun ◡𝑀)) |
| 71 | 70 | simprbi 496 |
. . . . . 6
⊢ (𝑀:dom 𝑀–1-1-onto→𝑋 → Fun ◡𝑀) |
| 72 | | funcnvres 6614 |
. . . . . 6
⊢ (Fun
◡𝑀 → ◡(𝑀 ↾ 𝐵) = (◡𝑀 ↾ (𝑀 “ 𝐵))) |
| 73 | 38, 71, 72 | 3syl 18 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → ◡(𝑀 ↾ 𝐵) = (◡𝑀 ↾ (𝑀 “ 𝐵))) |
| 74 | | dff1o3 6824 |
. . . . . . 7
⊢ (𝑁:dom 𝑁–1-1-onto→𝑌 ↔ (𝑁:dom 𝑁–onto→𝑌 ∧ Fun ◡𝑁)) |
| 75 | 74 | simprbi 496 |
. . . . . 6
⊢ (𝑁:dom 𝑁–1-1-onto→𝑌 → Fun ◡𝑁) |
| 76 | | funcnvres 6614 |
. . . . . 6
⊢ (Fun
◡𝑁 → ◡(𝑁 ↾ 𝐵) = (◡𝑁 ↾ (𝑁 “ 𝐵))) |
| 77 | 25, 75, 76 | 3syl 18 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → ◡(𝑁 ↾ 𝐵) = (◡𝑁 ↾ (𝑁 “ 𝐵))) |
| 78 | 69, 73, 77 | 3eqtr3d 2778 |
. . . 4
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → (◡𝑀 ↾ (𝑀 “ 𝐵)) = (◡𝑁 ↾ (𝑁 “ 𝐵))) |
| 79 | 78 | fveq1d 6878 |
. . 3
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → ((◡𝑀 ↾ (𝑀 “ 𝐵))‘𝐶) = ((◡𝑁 ↾ (𝑁 “ 𝐵))‘𝐶)) |
| 80 | 60 | fvresd 6896 |
. . 3
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → ((◡𝑀 ↾ (𝑀 “ 𝐵))‘𝐶) = (◡𝑀‘𝐶)) |
| 81 | 67 | fvresd 6896 |
. . 3
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → ((◡𝑁 ↾ (𝑁 “ 𝐵))‘𝐶) = (◡𝑁‘𝐶)) |
| 82 | 79, 80, 81 | 3eqtr3d 2778 |
. 2
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → (◡𝑀‘𝐶) = (◡𝑁‘𝐶)) |
| 83 | 11, 68, 82 | 3jca 1128 |
1
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → (𝐶 ∈ 𝑋 ∧ 𝐶 ∈ 𝑌 ∧ (◡𝑀‘𝐶) = (◡𝑁‘𝐶))) |