| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mgcmnt2d | Structured version Visualization version GIF version | ||
| Description: Galois connection implies monotonicity of the right adjoint. (Contributed by Thierry Arnoux, 21-Jul-2024.) |
| Ref | Expression |
|---|---|
| mgcmntd.1 | ⊢ 𝐻 = (𝑉MGalConn𝑊) |
| mgcmntd.2 | ⊢ (𝜑 → 𝑉 ∈ Proset ) |
| mgcmntd.3 | ⊢ (𝜑 → 𝑊 ∈ Proset ) |
| mgcmntd.4 | ⊢ (𝜑 → 𝐹𝐻𝐺) |
| Ref | Expression |
|---|---|
| mgcmnt2d | ⊢ (𝜑 → 𝐺 ∈ (𝑊Monot𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgcmntd.3 | . 2 ⊢ (𝜑 → 𝑊 ∈ Proset ) | |
| 2 | mgcmntd.2 | . 2 ⊢ (𝜑 → 𝑉 ∈ Proset ) | |
| 3 | eqid 2735 | . . 3 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
| 4 | eqid 2735 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 5 | eqid 2735 | . . 3 ⊢ (le‘𝑉) = (le‘𝑉) | |
| 6 | eqid 2735 | . . 3 ⊢ (le‘𝑊) = (le‘𝑊) | |
| 7 | mgcmntd.1 | . . 3 ⊢ 𝐻 = (𝑉MGalConn𝑊) | |
| 8 | mgcmntd.4 | . . 3 ⊢ (𝜑 → 𝐹𝐻𝐺) | |
| 9 | 3, 4, 5, 6, 7, 2, 1, 8 | mgcf2 32969 | . 2 ⊢ (𝜑 → 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) |
| 10 | 3, 4, 5, 6, 7, 2, 1 | dfmgc2 32976 | . . . . 5 ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ((∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑉)(𝑥(le‘𝑉)𝑦 → (𝐹‘𝑥)(le‘𝑊)(𝐹‘𝑦)) ∧ ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺‘𝑢)(le‘𝑉)(𝐺‘𝑣))) ∧ (∀𝑢 ∈ (Base‘𝑊)(𝐹‘(𝐺‘𝑢))(le‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑉)𝑥(le‘𝑉)(𝐺‘(𝐹‘𝑥))))))) |
| 11 | 8, 10 | mpbid 232 | . . . 4 ⊢ (𝜑 → ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ((∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑉)(𝑥(le‘𝑉)𝑦 → (𝐹‘𝑥)(le‘𝑊)(𝐹‘𝑦)) ∧ ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺‘𝑢)(le‘𝑉)(𝐺‘𝑣))) ∧ (∀𝑢 ∈ (Base‘𝑊)(𝐹‘(𝐺‘𝑢))(le‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑉)𝑥(le‘𝑉)(𝐺‘(𝐹‘𝑥)))))) |
| 12 | 11 | simprld 771 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑉)(𝑥(le‘𝑉)𝑦 → (𝐹‘𝑥)(le‘𝑊)(𝐹‘𝑦)) ∧ ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺‘𝑢)(le‘𝑉)(𝐺‘𝑣)))) |
| 13 | 12 | simprd 495 | . 2 ⊢ (𝜑 → ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺‘𝑢)(le‘𝑉)(𝐺‘𝑣))) |
| 14 | 4, 3, 6, 5 | ismnt 32963 | . . 3 ⊢ ((𝑊 ∈ Proset ∧ 𝑉 ∈ Proset ) → (𝐺 ∈ (𝑊Monot𝑉) ↔ (𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺‘𝑢)(le‘𝑉)(𝐺‘𝑣))))) |
| 15 | 14 | biimpar 477 | . 2 ⊢ (((𝑊 ∈ Proset ∧ 𝑉 ∈ Proset ) ∧ (𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺‘𝑢)(le‘𝑉)(𝐺‘𝑣)))) → 𝐺 ∈ (𝑊Monot𝑉)) |
| 16 | 1, 2, 9, 13, 15 | syl22anc 838 | 1 ⊢ (𝜑 → 𝐺 ∈ (𝑊Monot𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 class class class wbr 5119 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 lecple 17278 Proset cproset 18304 Monotcmnt 32958 MGalConncmgc 32959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8842 df-proset 18306 df-mnt 32960 df-mgc 32961 |
| This theorem is referenced by: mgcf1o 32983 |
| Copyright terms: Public domain | W3C validator |