Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgcmnt2d Structured version   Visualization version   GIF version

Theorem mgcmnt2d 31178
Description: Galois connection implies monotonicity of the right adjoint. (Contributed by Thierry Arnoux, 21-Jul-2024.)
Hypotheses
Ref Expression
mgcmntd.1 𝐻 = (𝑉MGalConn𝑊)
mgcmntd.2 (𝜑𝑉 ∈ Proset )
mgcmntd.3 (𝜑𝑊 ∈ Proset )
mgcmntd.4 (𝜑𝐹𝐻𝐺)
Assertion
Ref Expression
mgcmnt2d (𝜑𝐺 ∈ (𝑊Monot𝑉))

Proof of Theorem mgcmnt2d
Dummy variables 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgcmntd.3 . 2 (𝜑𝑊 ∈ Proset )
2 mgcmntd.2 . 2 (𝜑𝑉 ∈ Proset )
3 eqid 2738 . . 3 (Base‘𝑉) = (Base‘𝑉)
4 eqid 2738 . . 3 (Base‘𝑊) = (Base‘𝑊)
5 eqid 2738 . . 3 (le‘𝑉) = (le‘𝑉)
6 eqid 2738 . . 3 (le‘𝑊) = (le‘𝑊)
7 mgcmntd.1 . . 3 𝐻 = (𝑉MGalConn𝑊)
8 mgcmntd.4 . . 3 (𝜑𝐹𝐻𝐺)
93, 4, 5, 6, 7, 2, 1, 8mgcf2 31169 . 2 (𝜑𝐺:(Base‘𝑊)⟶(Base‘𝑉))
103, 4, 5, 6, 7, 2, 1dfmgc2 31176 . . . . 5 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ((∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑉)(𝑥(le‘𝑉)𝑦 → (𝐹𝑥)(le‘𝑊)(𝐹𝑦)) ∧ ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺𝑢)(le‘𝑉)(𝐺𝑣))) ∧ (∀𝑢 ∈ (Base‘𝑊)(𝐹‘(𝐺𝑢))(le‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑉)𝑥(le‘𝑉)(𝐺‘(𝐹𝑥)))))))
118, 10mpbid 231 . . . 4 (𝜑 → ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ((∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑉)(𝑥(le‘𝑉)𝑦 → (𝐹𝑥)(le‘𝑊)(𝐹𝑦)) ∧ ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺𝑢)(le‘𝑉)(𝐺𝑣))) ∧ (∀𝑢 ∈ (Base‘𝑊)(𝐹‘(𝐺𝑢))(le‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑉)𝑥(le‘𝑉)(𝐺‘(𝐹𝑥))))))
1211simprld 768 . . 3 (𝜑 → (∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑉)(𝑥(le‘𝑉)𝑦 → (𝐹𝑥)(le‘𝑊)(𝐹𝑦)) ∧ ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺𝑢)(le‘𝑉)(𝐺𝑣))))
1312simprd 495 . 2 (𝜑 → ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺𝑢)(le‘𝑉)(𝐺𝑣)))
144, 3, 6, 5ismnt 31163 . . 3 ((𝑊 ∈ Proset ∧ 𝑉 ∈ Proset ) → (𝐺 ∈ (𝑊Monot𝑉) ↔ (𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺𝑢)(le‘𝑉)(𝐺𝑣)))))
1514biimpar 477 . 2 (((𝑊 ∈ Proset ∧ 𝑉 ∈ Proset ) ∧ (𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺𝑢)(le‘𝑉)(𝐺𝑣)))) → 𝐺 ∈ (𝑊Monot𝑉))
161, 2, 9, 13, 15syl22anc 835 1 (𝜑𝐺 ∈ (𝑊Monot𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895   Proset cproset 17926  Monotcmnt 31158  MGalConncmgc 31159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-proset 17928  df-mnt 31160  df-mgc 31161
This theorem is referenced by:  mgcf1o  31183
  Copyright terms: Public domain W3C validator