Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgcmnt2d Structured version   Visualization version   GIF version

Theorem mgcmnt2d 32814
Description: Galois connection implies monotonicity of the right adjoint. (Contributed by Thierry Arnoux, 21-Jul-2024.)
Hypotheses
Ref Expression
mgcmntd.1 𝐻 = (𝑉MGalConn𝑊)
mgcmntd.2 (𝜑𝑉 ∈ Proset )
mgcmntd.3 (𝜑𝑊 ∈ Proset )
mgcmntd.4 (𝜑𝐹𝐻𝐺)
Assertion
Ref Expression
mgcmnt2d (𝜑𝐺 ∈ (𝑊Monot𝑉))

Proof of Theorem mgcmnt2d
Dummy variables 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgcmntd.3 . 2 (𝜑𝑊 ∈ Proset )
2 mgcmntd.2 . 2 (𝜑𝑉 ∈ Proset )
3 eqid 2725 . . 3 (Base‘𝑉) = (Base‘𝑉)
4 eqid 2725 . . 3 (Base‘𝑊) = (Base‘𝑊)
5 eqid 2725 . . 3 (le‘𝑉) = (le‘𝑉)
6 eqid 2725 . . 3 (le‘𝑊) = (le‘𝑊)
7 mgcmntd.1 . . 3 𝐻 = (𝑉MGalConn𝑊)
8 mgcmntd.4 . . 3 (𝜑𝐹𝐻𝐺)
93, 4, 5, 6, 7, 2, 1, 8mgcf2 32805 . 2 (𝜑𝐺:(Base‘𝑊)⟶(Base‘𝑉))
103, 4, 5, 6, 7, 2, 1dfmgc2 32812 . . . . 5 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ((∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑉)(𝑥(le‘𝑉)𝑦 → (𝐹𝑥)(le‘𝑊)(𝐹𝑦)) ∧ ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺𝑢)(le‘𝑉)(𝐺𝑣))) ∧ (∀𝑢 ∈ (Base‘𝑊)(𝐹‘(𝐺𝑢))(le‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑉)𝑥(le‘𝑉)(𝐺‘(𝐹𝑥)))))))
118, 10mpbid 231 . . . 4 (𝜑 → ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ((∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑉)(𝑥(le‘𝑉)𝑦 → (𝐹𝑥)(le‘𝑊)(𝐹𝑦)) ∧ ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺𝑢)(le‘𝑉)(𝐺𝑣))) ∧ (∀𝑢 ∈ (Base‘𝑊)(𝐹‘(𝐺𝑢))(le‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑉)𝑥(le‘𝑉)(𝐺‘(𝐹𝑥))))))
1211simprld 770 . . 3 (𝜑 → (∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑉)(𝑥(le‘𝑉)𝑦 → (𝐹𝑥)(le‘𝑊)(𝐹𝑦)) ∧ ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺𝑢)(le‘𝑉)(𝐺𝑣))))
1312simprd 494 . 2 (𝜑 → ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺𝑢)(le‘𝑉)(𝐺𝑣)))
144, 3, 6, 5ismnt 32799 . . 3 ((𝑊 ∈ Proset ∧ 𝑉 ∈ Proset ) → (𝐺 ∈ (𝑊Monot𝑉) ↔ (𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺𝑢)(le‘𝑉)(𝐺𝑣)))))
1514biimpar 476 . 2 (((𝑊 ∈ Proset ∧ 𝑉 ∈ Proset ) ∧ (𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺𝑢)(le‘𝑉)(𝐺𝑣)))) → 𝐺 ∈ (𝑊Monot𝑉))
161, 2, 9, 13, 15syl22anc 837 1 (𝜑𝐺 ∈ (𝑊Monot𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3050   class class class wbr 5149  wf 6545  cfv 6549  (class class class)co 7419  Basecbs 17183  lecple 17243   Proset cproset 18288  Monotcmnt 32794  MGalConncmgc 32795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-map 8847  df-proset 18290  df-mnt 32796  df-mgc 32797
This theorem is referenced by:  mgcf1o  32819
  Copyright terms: Public domain W3C validator