| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mgcmnt2d | Structured version Visualization version GIF version | ||
| Description: Galois connection implies monotonicity of the right adjoint. (Contributed by Thierry Arnoux, 21-Jul-2024.) |
| Ref | Expression |
|---|---|
| mgcmntd.1 | ⊢ 𝐻 = (𝑉MGalConn𝑊) |
| mgcmntd.2 | ⊢ (𝜑 → 𝑉 ∈ Proset ) |
| mgcmntd.3 | ⊢ (𝜑 → 𝑊 ∈ Proset ) |
| mgcmntd.4 | ⊢ (𝜑 → 𝐹𝐻𝐺) |
| Ref | Expression |
|---|---|
| mgcmnt2d | ⊢ (𝜑 → 𝐺 ∈ (𝑊Monot𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgcmntd.3 | . 2 ⊢ (𝜑 → 𝑊 ∈ Proset ) | |
| 2 | mgcmntd.2 | . 2 ⊢ (𝜑 → 𝑉 ∈ Proset ) | |
| 3 | eqid 2731 | . . 3 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
| 4 | eqid 2731 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 5 | eqid 2731 | . . 3 ⊢ (le‘𝑉) = (le‘𝑉) | |
| 6 | eqid 2731 | . . 3 ⊢ (le‘𝑊) = (le‘𝑊) | |
| 7 | mgcmntd.1 | . . 3 ⊢ 𝐻 = (𝑉MGalConn𝑊) | |
| 8 | mgcmntd.4 | . . 3 ⊢ (𝜑 → 𝐹𝐻𝐺) | |
| 9 | 3, 4, 5, 6, 7, 2, 1, 8 | mgcf2 32970 | . 2 ⊢ (𝜑 → 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) |
| 10 | 3, 4, 5, 6, 7, 2, 1 | dfmgc2 32977 | . . . . 5 ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ((∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑉)(𝑥(le‘𝑉)𝑦 → (𝐹‘𝑥)(le‘𝑊)(𝐹‘𝑦)) ∧ ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺‘𝑢)(le‘𝑉)(𝐺‘𝑣))) ∧ (∀𝑢 ∈ (Base‘𝑊)(𝐹‘(𝐺‘𝑢))(le‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑉)𝑥(le‘𝑉)(𝐺‘(𝐹‘𝑥))))))) |
| 11 | 8, 10 | mpbid 232 | . . . 4 ⊢ (𝜑 → ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ((∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑉)(𝑥(le‘𝑉)𝑦 → (𝐹‘𝑥)(le‘𝑊)(𝐹‘𝑦)) ∧ ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺‘𝑢)(le‘𝑉)(𝐺‘𝑣))) ∧ (∀𝑢 ∈ (Base‘𝑊)(𝐹‘(𝐺‘𝑢))(le‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑉)𝑥(le‘𝑉)(𝐺‘(𝐹‘𝑥)))))) |
| 12 | 11 | simprld 771 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑉)(𝑥(le‘𝑉)𝑦 → (𝐹‘𝑥)(le‘𝑊)(𝐹‘𝑦)) ∧ ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺‘𝑢)(le‘𝑉)(𝐺‘𝑣)))) |
| 13 | 12 | simprd 495 | . 2 ⊢ (𝜑 → ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺‘𝑢)(le‘𝑉)(𝐺‘𝑣))) |
| 14 | 4, 3, 6, 5 | ismnt 32964 | . . 3 ⊢ ((𝑊 ∈ Proset ∧ 𝑉 ∈ Proset ) → (𝐺 ∈ (𝑊Monot𝑉) ↔ (𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺‘𝑢)(le‘𝑉)(𝐺‘𝑣))))) |
| 15 | 14 | biimpar 477 | . 2 ⊢ (((𝑊 ∈ Proset ∧ 𝑉 ∈ Proset ) ∧ (𝐺:(Base‘𝑊)⟶(Base‘𝑉) ∧ ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺‘𝑢)(le‘𝑉)(𝐺‘𝑣)))) → 𝐺 ∈ (𝑊Monot𝑉)) |
| 16 | 1, 2, 9, 13, 15 | syl22anc 838 | 1 ⊢ (𝜑 → 𝐺 ∈ (𝑊Monot𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 class class class wbr 5089 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 lecple 17168 Proset cproset 18198 Monotcmnt 32959 MGalConncmgc 32960 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-proset 18200 df-mnt 32961 df-mgc 32962 |
| This theorem is referenced by: mgcf1o 32984 |
| Copyright terms: Public domain | W3C validator |