Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgcmnt2d Structured version   Visualization version   GIF version

Theorem mgcmnt2d 32163
Description: Galois connection implies monotonicity of the right adjoint. (Contributed by Thierry Arnoux, 21-Jul-2024.)
Hypotheses
Ref Expression
mgcmntd.1 𝐻 = (𝑉MGalConnπ‘Š)
mgcmntd.2 (πœ‘ β†’ 𝑉 ∈ Proset )
mgcmntd.3 (πœ‘ β†’ π‘Š ∈ Proset )
mgcmntd.4 (πœ‘ β†’ 𝐹𝐻𝐺)
Assertion
Ref Expression
mgcmnt2d (πœ‘ β†’ 𝐺 ∈ (π‘ŠMonot𝑉))

Proof of Theorem mgcmnt2d
Dummy variables 𝑒 𝑣 π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgcmntd.3 . 2 (πœ‘ β†’ π‘Š ∈ Proset )
2 mgcmntd.2 . 2 (πœ‘ β†’ 𝑉 ∈ Proset )
3 eqid 2732 . . 3 (Baseβ€˜π‘‰) = (Baseβ€˜π‘‰)
4 eqid 2732 . . 3 (Baseβ€˜π‘Š) = (Baseβ€˜π‘Š)
5 eqid 2732 . . 3 (leβ€˜π‘‰) = (leβ€˜π‘‰)
6 eqid 2732 . . 3 (leβ€˜π‘Š) = (leβ€˜π‘Š)
7 mgcmntd.1 . . 3 𝐻 = (𝑉MGalConnπ‘Š)
8 mgcmntd.4 . . 3 (πœ‘ β†’ 𝐹𝐻𝐺)
93, 4, 5, 6, 7, 2, 1, 8mgcf2 32154 . 2 (πœ‘ β†’ 𝐺:(Baseβ€˜π‘Š)⟢(Baseβ€˜π‘‰))
103, 4, 5, 6, 7, 2, 1dfmgc2 32161 . . . . 5 (πœ‘ β†’ (𝐹𝐻𝐺 ↔ ((𝐹:(Baseβ€˜π‘‰)⟢(Baseβ€˜π‘Š) ∧ 𝐺:(Baseβ€˜π‘Š)⟢(Baseβ€˜π‘‰)) ∧ ((βˆ€π‘₯ ∈ (Baseβ€˜π‘‰)βˆ€π‘¦ ∈ (Baseβ€˜π‘‰)(π‘₯(leβ€˜π‘‰)𝑦 β†’ (πΉβ€˜π‘₯)(leβ€˜π‘Š)(πΉβ€˜π‘¦)) ∧ βˆ€π‘’ ∈ (Baseβ€˜π‘Š)βˆ€π‘£ ∈ (Baseβ€˜π‘Š)(𝑒(leβ€˜π‘Š)𝑣 β†’ (πΊβ€˜π‘’)(leβ€˜π‘‰)(πΊβ€˜π‘£))) ∧ (βˆ€π‘’ ∈ (Baseβ€˜π‘Š)(πΉβ€˜(πΊβ€˜π‘’))(leβ€˜π‘Š)𝑒 ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘‰)π‘₯(leβ€˜π‘‰)(πΊβ€˜(πΉβ€˜π‘₯)))))))
118, 10mpbid 231 . . . 4 (πœ‘ β†’ ((𝐹:(Baseβ€˜π‘‰)⟢(Baseβ€˜π‘Š) ∧ 𝐺:(Baseβ€˜π‘Š)⟢(Baseβ€˜π‘‰)) ∧ ((βˆ€π‘₯ ∈ (Baseβ€˜π‘‰)βˆ€π‘¦ ∈ (Baseβ€˜π‘‰)(π‘₯(leβ€˜π‘‰)𝑦 β†’ (πΉβ€˜π‘₯)(leβ€˜π‘Š)(πΉβ€˜π‘¦)) ∧ βˆ€π‘’ ∈ (Baseβ€˜π‘Š)βˆ€π‘£ ∈ (Baseβ€˜π‘Š)(𝑒(leβ€˜π‘Š)𝑣 β†’ (πΊβ€˜π‘’)(leβ€˜π‘‰)(πΊβ€˜π‘£))) ∧ (βˆ€π‘’ ∈ (Baseβ€˜π‘Š)(πΉβ€˜(πΊβ€˜π‘’))(leβ€˜π‘Š)𝑒 ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘‰)π‘₯(leβ€˜π‘‰)(πΊβ€˜(πΉβ€˜π‘₯))))))
1211simprld 770 . . 3 (πœ‘ β†’ (βˆ€π‘₯ ∈ (Baseβ€˜π‘‰)βˆ€π‘¦ ∈ (Baseβ€˜π‘‰)(π‘₯(leβ€˜π‘‰)𝑦 β†’ (πΉβ€˜π‘₯)(leβ€˜π‘Š)(πΉβ€˜π‘¦)) ∧ βˆ€π‘’ ∈ (Baseβ€˜π‘Š)βˆ€π‘£ ∈ (Baseβ€˜π‘Š)(𝑒(leβ€˜π‘Š)𝑣 β†’ (πΊβ€˜π‘’)(leβ€˜π‘‰)(πΊβ€˜π‘£))))
1312simprd 496 . 2 (πœ‘ β†’ βˆ€π‘’ ∈ (Baseβ€˜π‘Š)βˆ€π‘£ ∈ (Baseβ€˜π‘Š)(𝑒(leβ€˜π‘Š)𝑣 β†’ (πΊβ€˜π‘’)(leβ€˜π‘‰)(πΊβ€˜π‘£)))
144, 3, 6, 5ismnt 32148 . . 3 ((π‘Š ∈ Proset ∧ 𝑉 ∈ Proset ) β†’ (𝐺 ∈ (π‘ŠMonot𝑉) ↔ (𝐺:(Baseβ€˜π‘Š)⟢(Baseβ€˜π‘‰) ∧ βˆ€π‘’ ∈ (Baseβ€˜π‘Š)βˆ€π‘£ ∈ (Baseβ€˜π‘Š)(𝑒(leβ€˜π‘Š)𝑣 β†’ (πΊβ€˜π‘’)(leβ€˜π‘‰)(πΊβ€˜π‘£)))))
1514biimpar 478 . 2 (((π‘Š ∈ Proset ∧ 𝑉 ∈ Proset ) ∧ (𝐺:(Baseβ€˜π‘Š)⟢(Baseβ€˜π‘‰) ∧ βˆ€π‘’ ∈ (Baseβ€˜π‘Š)βˆ€π‘£ ∈ (Baseβ€˜π‘Š)(𝑒(leβ€˜π‘Š)𝑣 β†’ (πΊβ€˜π‘’)(leβ€˜π‘‰)(πΊβ€˜π‘£)))) β†’ 𝐺 ∈ (π‘ŠMonot𝑉))
161, 2, 9, 13, 15syl22anc 837 1 (πœ‘ β†’ 𝐺 ∈ (π‘ŠMonot𝑉))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   class class class wbr 5148  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143  lecple 17203   Proset cproset 18245  Monotcmnt 32143  MGalConncmgc 32144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-map 8821  df-proset 18247  df-mnt 32145  df-mgc 32146
This theorem is referenced by:  mgcf1o  32168
  Copyright terms: Public domain W3C validator