| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mgcmnt1d | Structured version Visualization version GIF version | ||
| Description: Galois connection implies monotonicity of the left adjoint. (Contributed by Thierry Arnoux, 21-Jul-2024.) |
| Ref | Expression |
|---|---|
| mgcmntd.1 | ⊢ 𝐻 = (𝑉MGalConn𝑊) |
| mgcmntd.2 | ⊢ (𝜑 → 𝑉 ∈ Proset ) |
| mgcmntd.3 | ⊢ (𝜑 → 𝑊 ∈ Proset ) |
| mgcmntd.4 | ⊢ (𝜑 → 𝐹𝐻𝐺) |
| Ref | Expression |
|---|---|
| mgcmnt1d | ⊢ (𝜑 → 𝐹 ∈ (𝑉Monot𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgcmntd.2 | . 2 ⊢ (𝜑 → 𝑉 ∈ Proset ) | |
| 2 | mgcmntd.3 | . 2 ⊢ (𝜑 → 𝑊 ∈ Proset ) | |
| 3 | eqid 2736 | . . 3 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
| 4 | eqid 2736 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 5 | eqid 2736 | . . 3 ⊢ (le‘𝑉) = (le‘𝑉) | |
| 6 | eqid 2736 | . . 3 ⊢ (le‘𝑊) = (le‘𝑊) | |
| 7 | mgcmntd.1 | . . 3 ⊢ 𝐻 = (𝑉MGalConn𝑊) | |
| 8 | mgcmntd.4 | . . 3 ⊢ (𝜑 → 𝐹𝐻𝐺) | |
| 9 | 3, 4, 5, 6, 7, 1, 2, 8 | mgcf1 32973 | . 2 ⊢ (𝜑 → 𝐹:(Base‘𝑉)⟶(Base‘𝑊)) |
| 10 | 3, 4, 5, 6, 7, 1, 2 | dfmgc2 32981 | . . . . 5 ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ((∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑉)(𝑥(le‘𝑉)𝑦 → (𝐹‘𝑥)(le‘𝑊)(𝐹‘𝑦)) ∧ ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺‘𝑢)(le‘𝑉)(𝐺‘𝑣))) ∧ (∀𝑢 ∈ (Base‘𝑊)(𝐹‘(𝐺‘𝑢))(le‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑉)𝑥(le‘𝑉)(𝐺‘(𝐹‘𝑥))))))) |
| 11 | 8, 10 | mpbid 232 | . . . 4 ⊢ (𝜑 → ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ((∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑉)(𝑥(le‘𝑉)𝑦 → (𝐹‘𝑥)(le‘𝑊)(𝐹‘𝑦)) ∧ ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺‘𝑢)(le‘𝑉)(𝐺‘𝑣))) ∧ (∀𝑢 ∈ (Base‘𝑊)(𝐹‘(𝐺‘𝑢))(le‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑉)𝑥(le‘𝑉)(𝐺‘(𝐹‘𝑥)))))) |
| 12 | 11 | simprld 771 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑉)(𝑥(le‘𝑉)𝑦 → (𝐹‘𝑥)(le‘𝑊)(𝐹‘𝑦)) ∧ ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺‘𝑢)(le‘𝑉)(𝐺‘𝑣)))) |
| 13 | 12 | simpld 494 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑉)(𝑥(le‘𝑉)𝑦 → (𝐹‘𝑥)(le‘𝑊)(𝐹‘𝑦))) |
| 14 | 3, 4, 5, 6 | ismnt 32968 | . . 3 ⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ ∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑉)(𝑥(le‘𝑉)𝑦 → (𝐹‘𝑥)(le‘𝑊)(𝐹‘𝑦))))) |
| 15 | 14 | biimpar 477 | . 2 ⊢ (((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ (𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ ∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑉)(𝑥(le‘𝑉)𝑦 → (𝐹‘𝑥)(le‘𝑊)(𝐹‘𝑦)))) → 𝐹 ∈ (𝑉Monot𝑊)) |
| 16 | 1, 2, 9, 13, 15 | syl22anc 838 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑉Monot𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 class class class wbr 5124 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 lecple 17283 Proset cproset 18309 Monotcmnt 32963 MGalConncmgc 32964 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-map 8847 df-proset 18311 df-mnt 32965 df-mgc 32966 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |