Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgcmnt1d Structured version   Visualization version   GIF version

Theorem mgcmnt1d 32693
Description: Galois connection implies monotonicity of the left adjoint. (Contributed by Thierry Arnoux, 21-Jul-2024.)
Hypotheses
Ref Expression
mgcmntd.1 𝐻 = (𝑉MGalConn𝑊)
mgcmntd.2 (𝜑𝑉 ∈ Proset )
mgcmntd.3 (𝜑𝑊 ∈ Proset )
mgcmntd.4 (𝜑𝐹𝐻𝐺)
Assertion
Ref Expression
mgcmnt1d (𝜑𝐹 ∈ (𝑉Monot𝑊))

Proof of Theorem mgcmnt1d
Dummy variables 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgcmntd.2 . 2 (𝜑𝑉 ∈ Proset )
2 mgcmntd.3 . 2 (𝜑𝑊 ∈ Proset )
3 eqid 2727 . . 3 (Base‘𝑉) = (Base‘𝑉)
4 eqid 2727 . . 3 (Base‘𝑊) = (Base‘𝑊)
5 eqid 2727 . . 3 (le‘𝑉) = (le‘𝑉)
6 eqid 2727 . . 3 (le‘𝑊) = (le‘𝑊)
7 mgcmntd.1 . . 3 𝐻 = (𝑉MGalConn𝑊)
8 mgcmntd.4 . . 3 (𝜑𝐹𝐻𝐺)
93, 4, 5, 6, 7, 1, 2, 8mgcf1 32684 . 2 (𝜑𝐹:(Base‘𝑉)⟶(Base‘𝑊))
103, 4, 5, 6, 7, 1, 2dfmgc2 32692 . . . . 5 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ((∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑉)(𝑥(le‘𝑉)𝑦 → (𝐹𝑥)(le‘𝑊)(𝐹𝑦)) ∧ ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺𝑢)(le‘𝑉)(𝐺𝑣))) ∧ (∀𝑢 ∈ (Base‘𝑊)(𝐹‘(𝐺𝑢))(le‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑉)𝑥(le‘𝑉)(𝐺‘(𝐹𝑥)))))))
118, 10mpbid 231 . . . 4 (𝜑 → ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ((∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑉)(𝑥(le‘𝑉)𝑦 → (𝐹𝑥)(le‘𝑊)(𝐹𝑦)) ∧ ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺𝑢)(le‘𝑉)(𝐺𝑣))) ∧ (∀𝑢 ∈ (Base‘𝑊)(𝐹‘(𝐺𝑢))(le‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑉)𝑥(le‘𝑉)(𝐺‘(𝐹𝑥))))))
1211simprld 771 . . 3 (𝜑 → (∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑉)(𝑥(le‘𝑉)𝑦 → (𝐹𝑥)(le‘𝑊)(𝐹𝑦)) ∧ ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺𝑢)(le‘𝑉)(𝐺𝑣))))
1312simpld 494 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑉)(𝑥(le‘𝑉)𝑦 → (𝐹𝑥)(le‘𝑊)(𝐹𝑦)))
143, 4, 5, 6ismnt 32679 . . 3 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ ∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑉)(𝑥(le‘𝑉)𝑦 → (𝐹𝑥)(le‘𝑊)(𝐹𝑦)))))
1514biimpar 477 . 2 (((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ (𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ ∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑉)(𝑥(le‘𝑉)𝑦 → (𝐹𝑥)(le‘𝑊)(𝐹𝑦)))) → 𝐹 ∈ (𝑉Monot𝑊))
161, 2, 9, 13, 15syl22anc 838 1 (𝜑𝐹 ∈ (𝑉Monot𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wral 3056   class class class wbr 5142  wf 6538  cfv 6542  (class class class)co 7414  Basecbs 17165  lecple 17225   Proset cproset 18270  Monotcmnt 32674  MGalConncmgc 32675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-map 8836  df-proset 18272  df-mnt 32676  df-mgc 32677
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator