![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mgcmnt1d | Structured version Visualization version GIF version |
Description: Galois connection implies monotonicity of the left adjoint. (Contributed by Thierry Arnoux, 21-Jul-2024.) |
Ref | Expression |
---|---|
mgcmntd.1 | ⊢ 𝐻 = (𝑉MGalConn𝑊) |
mgcmntd.2 | ⊢ (𝜑 → 𝑉 ∈ Proset ) |
mgcmntd.3 | ⊢ (𝜑 → 𝑊 ∈ Proset ) |
mgcmntd.4 | ⊢ (𝜑 → 𝐹𝐻𝐺) |
Ref | Expression |
---|---|
mgcmnt1d | ⊢ (𝜑 → 𝐹 ∈ (𝑉Monot𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgcmntd.2 | . 2 ⊢ (𝜑 → 𝑉 ∈ Proset ) | |
2 | mgcmntd.3 | . 2 ⊢ (𝜑 → 𝑊 ∈ Proset ) | |
3 | eqid 2740 | . . 3 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
4 | eqid 2740 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
5 | eqid 2740 | . . 3 ⊢ (le‘𝑉) = (le‘𝑉) | |
6 | eqid 2740 | . . 3 ⊢ (le‘𝑊) = (le‘𝑊) | |
7 | mgcmntd.1 | . . 3 ⊢ 𝐻 = (𝑉MGalConn𝑊) | |
8 | mgcmntd.4 | . . 3 ⊢ (𝜑 → 𝐹𝐻𝐺) | |
9 | 3, 4, 5, 6, 7, 1, 2, 8 | mgcf1 32961 | . 2 ⊢ (𝜑 → 𝐹:(Base‘𝑉)⟶(Base‘𝑊)) |
10 | 3, 4, 5, 6, 7, 1, 2 | dfmgc2 32969 | . . . . 5 ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ((∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑉)(𝑥(le‘𝑉)𝑦 → (𝐹‘𝑥)(le‘𝑊)(𝐹‘𝑦)) ∧ ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺‘𝑢)(le‘𝑉)(𝐺‘𝑣))) ∧ (∀𝑢 ∈ (Base‘𝑊)(𝐹‘(𝐺‘𝑢))(le‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑉)𝑥(le‘𝑉)(𝐺‘(𝐹‘𝑥))))))) |
11 | 8, 10 | mpbid 232 | . . . 4 ⊢ (𝜑 → ((𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐺:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ((∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑉)(𝑥(le‘𝑉)𝑦 → (𝐹‘𝑥)(le‘𝑊)(𝐹‘𝑦)) ∧ ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺‘𝑢)(le‘𝑉)(𝐺‘𝑣))) ∧ (∀𝑢 ∈ (Base‘𝑊)(𝐹‘(𝐺‘𝑢))(le‘𝑊)𝑢 ∧ ∀𝑥 ∈ (Base‘𝑉)𝑥(le‘𝑉)(𝐺‘(𝐹‘𝑥)))))) |
12 | 11 | simprld 771 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑉)(𝑥(le‘𝑉)𝑦 → (𝐹‘𝑥)(le‘𝑊)(𝐹‘𝑦)) ∧ ∀𝑢 ∈ (Base‘𝑊)∀𝑣 ∈ (Base‘𝑊)(𝑢(le‘𝑊)𝑣 → (𝐺‘𝑢)(le‘𝑉)(𝐺‘𝑣)))) |
13 | 12 | simpld 494 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑉)(𝑥(le‘𝑉)𝑦 → (𝐹‘𝑥)(le‘𝑊)(𝐹‘𝑦))) |
14 | 3, 4, 5, 6 | ismnt 32956 | . . 3 ⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ ∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑉)(𝑥(le‘𝑉)𝑦 → (𝐹‘𝑥)(le‘𝑊)(𝐹‘𝑦))))) |
15 | 14 | biimpar 477 | . 2 ⊢ (((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ (𝐹:(Base‘𝑉)⟶(Base‘𝑊) ∧ ∀𝑥 ∈ (Base‘𝑉)∀𝑦 ∈ (Base‘𝑉)(𝑥(le‘𝑉)𝑦 → (𝐹‘𝑥)(le‘𝑊)(𝐹‘𝑦)))) → 𝐹 ∈ (𝑉Monot𝑊)) |
16 | 1, 2, 9, 13, 15 | syl22anc 838 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑉Monot𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 class class class wbr 5166 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 lecple 17318 Proset cproset 18363 Monotcmnt 32951 MGalConncmgc 32952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-proset 18365 df-mnt 32953 df-mgc 32954 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |