| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > maxsta | Structured version Visualization version GIF version | ||
| Description: An axiom is a statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| maxsta.a | ⊢ 𝐴 = (mAx‘𝑇) |
| maxsta.s | ⊢ 𝑆 = (mStat‘𝑇) |
| Ref | Expression |
|---|---|
| maxsta | ⊢ (𝑇 ∈ mFS → 𝐴 ⊆ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (mCN‘𝑇) = (mCN‘𝑇) | |
| 2 | eqid 2731 | . . . 4 ⊢ (mVR‘𝑇) = (mVR‘𝑇) | |
| 3 | eqid 2731 | . . . 4 ⊢ (mType‘𝑇) = (mType‘𝑇) | |
| 4 | eqid 2731 | . . . 4 ⊢ (mVT‘𝑇) = (mVT‘𝑇) | |
| 5 | eqid 2731 | . . . 4 ⊢ (mTC‘𝑇) = (mTC‘𝑇) | |
| 6 | maxsta.a | . . . 4 ⊢ 𝐴 = (mAx‘𝑇) | |
| 7 | maxsta.s | . . . 4 ⊢ 𝑆 = (mStat‘𝑇) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ismfs 35581 | . . 3 ⊢ (𝑇 ∈ mFS → (𝑇 ∈ mFS ↔ ((((mCN‘𝑇) ∩ (mVR‘𝑇)) = ∅ ∧ (mType‘𝑇):(mVR‘𝑇)⟶(mTC‘𝑇)) ∧ (𝐴 ⊆ 𝑆 ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ (◡(mType‘𝑇) “ {𝑣}) ∈ Fin)))) |
| 9 | 8 | ibi 267 | . 2 ⊢ (𝑇 ∈ mFS → ((((mCN‘𝑇) ∩ (mVR‘𝑇)) = ∅ ∧ (mType‘𝑇):(mVR‘𝑇)⟶(mTC‘𝑇)) ∧ (𝐴 ⊆ 𝑆 ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ (◡(mType‘𝑇) “ {𝑣}) ∈ Fin))) |
| 10 | 9 | simprld 771 | 1 ⊢ (𝑇 ∈ mFS → 𝐴 ⊆ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∩ cin 3901 ⊆ wss 3902 ∅c0 4283 {csn 4576 ◡ccnv 5615 “ cima 5619 ⟶wf 6477 ‘cfv 6481 Fincfn 8869 mCNcmcn 35492 mVRcmvar 35493 mTypecmty 35494 mVTcmvt 35495 mTCcmtc 35496 mAxcmax 35497 mStatcmsta 35507 mFScmfs 35508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-mfs 35528 |
| This theorem is referenced by: mclsssvlem 35594 mclsax 35601 mclsind 35602 mclsppslem 35615 |
| Copyright terms: Public domain | W3C validator |