Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > maxsta | Structured version Visualization version GIF version |
Description: An axiom is a statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
maxsta.a | ⊢ 𝐴 = (mAx‘𝑇) |
maxsta.s | ⊢ 𝑆 = (mStat‘𝑇) |
Ref | Expression |
---|---|
maxsta | ⊢ (𝑇 ∈ mFS → 𝐴 ⊆ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (mCN‘𝑇) = (mCN‘𝑇) | |
2 | eqid 2738 | . . . 4 ⊢ (mVR‘𝑇) = (mVR‘𝑇) | |
3 | eqid 2738 | . . . 4 ⊢ (mType‘𝑇) = (mType‘𝑇) | |
4 | eqid 2738 | . . . 4 ⊢ (mVT‘𝑇) = (mVT‘𝑇) | |
5 | eqid 2738 | . . . 4 ⊢ (mTC‘𝑇) = (mTC‘𝑇) | |
6 | maxsta.a | . . . 4 ⊢ 𝐴 = (mAx‘𝑇) | |
7 | maxsta.s | . . . 4 ⊢ 𝑆 = (mStat‘𝑇) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ismfs 33511 | . . 3 ⊢ (𝑇 ∈ mFS → (𝑇 ∈ mFS ↔ ((((mCN‘𝑇) ∩ (mVR‘𝑇)) = ∅ ∧ (mType‘𝑇):(mVR‘𝑇)⟶(mTC‘𝑇)) ∧ (𝐴 ⊆ 𝑆 ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ (◡(mType‘𝑇) “ {𝑣}) ∈ Fin)))) |
9 | 8 | ibi 266 | . 2 ⊢ (𝑇 ∈ mFS → ((((mCN‘𝑇) ∩ (mVR‘𝑇)) = ∅ ∧ (mType‘𝑇):(mVR‘𝑇)⟶(mTC‘𝑇)) ∧ (𝐴 ⊆ 𝑆 ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ (◡(mType‘𝑇) “ {𝑣}) ∈ Fin))) |
10 | 9 | simprld 769 | 1 ⊢ (𝑇 ∈ mFS → 𝐴 ⊆ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 {csn 4561 ◡ccnv 5588 “ cima 5592 ⟶wf 6429 ‘cfv 6433 Fincfn 8733 mCNcmcn 33422 mVRcmvar 33423 mTypecmty 33424 mVTcmvt 33425 mTCcmtc 33426 mAxcmax 33427 mStatcmsta 33437 mFScmfs 33438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-mfs 33458 |
This theorem is referenced by: mclsssvlem 33524 mclsax 33531 mclsind 33532 mclsppslem 33545 |
Copyright terms: Public domain | W3C validator |