Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  maxsta Structured version   Visualization version   GIF version

Theorem maxsta 35526
Description: An axiom is a statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
maxsta.a 𝐴 = (mAx‘𝑇)
maxsta.s 𝑆 = (mStat‘𝑇)
Assertion
Ref Expression
maxsta (𝑇 ∈ mFS → 𝐴𝑆)

Proof of Theorem maxsta
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (mCN‘𝑇) = (mCN‘𝑇)
2 eqid 2729 . . . 4 (mVR‘𝑇) = (mVR‘𝑇)
3 eqid 2729 . . . 4 (mType‘𝑇) = (mType‘𝑇)
4 eqid 2729 . . . 4 (mVT‘𝑇) = (mVT‘𝑇)
5 eqid 2729 . . . 4 (mTC‘𝑇) = (mTC‘𝑇)
6 maxsta.a . . . 4 𝐴 = (mAx‘𝑇)
7 maxsta.s . . . 4 𝑆 = (mStat‘𝑇)
81, 2, 3, 4, 5, 6, 7ismfs 35521 . . 3 (𝑇 ∈ mFS → (𝑇 ∈ mFS ↔ ((((mCN‘𝑇) ∩ (mVR‘𝑇)) = ∅ ∧ (mType‘𝑇):(mVR‘𝑇)⟶(mTC‘𝑇)) ∧ (𝐴𝑆 ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ ((mType‘𝑇) “ {𝑣}) ∈ Fin))))
98ibi 267 . 2 (𝑇 ∈ mFS → ((((mCN‘𝑇) ∩ (mVR‘𝑇)) = ∅ ∧ (mType‘𝑇):(mVR‘𝑇)⟶(mTC‘𝑇)) ∧ (𝐴𝑆 ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ ((mType‘𝑇) “ {𝑣}) ∈ Fin)))
109simprld 771 1 (𝑇 ∈ mFS → 𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cin 3904  wss 3905  c0 4286  {csn 4579  ccnv 5622  cima 5626  wf 6482  cfv 6486  Fincfn 8879  mCNcmcn 35432  mVRcmvar 35433  mTypecmty 35434  mVTcmvt 35435  mTCcmtc 35436  mAxcmax 35437  mStatcmsta 35447  mFScmfs 35448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-mfs 35468
This theorem is referenced by:  mclsssvlem  35534  mclsax  35541  mclsind  35542  mclsppslem  35555
  Copyright terms: Public domain W3C validator