Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > maxsta | Structured version Visualization version GIF version |
Description: An axiom is a statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
maxsta.a | ⊢ 𝐴 = (mAx‘𝑇) |
maxsta.s | ⊢ 𝑆 = (mStat‘𝑇) |
Ref | Expression |
---|---|
maxsta | ⊢ (𝑇 ∈ mFS → 𝐴 ⊆ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (mCN‘𝑇) = (mCN‘𝑇) | |
2 | eqid 2738 | . . . 4 ⊢ (mVR‘𝑇) = (mVR‘𝑇) | |
3 | eqid 2738 | . . . 4 ⊢ (mType‘𝑇) = (mType‘𝑇) | |
4 | eqid 2738 | . . . 4 ⊢ (mVT‘𝑇) = (mVT‘𝑇) | |
5 | eqid 2738 | . . . 4 ⊢ (mTC‘𝑇) = (mTC‘𝑇) | |
6 | maxsta.a | . . . 4 ⊢ 𝐴 = (mAx‘𝑇) | |
7 | maxsta.s | . . . 4 ⊢ 𝑆 = (mStat‘𝑇) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ismfs 33411 | . . 3 ⊢ (𝑇 ∈ mFS → (𝑇 ∈ mFS ↔ ((((mCN‘𝑇) ∩ (mVR‘𝑇)) = ∅ ∧ (mType‘𝑇):(mVR‘𝑇)⟶(mTC‘𝑇)) ∧ (𝐴 ⊆ 𝑆 ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ (◡(mType‘𝑇) “ {𝑣}) ∈ Fin)))) |
9 | 8 | ibi 266 | . 2 ⊢ (𝑇 ∈ mFS → ((((mCN‘𝑇) ∩ (mVR‘𝑇)) = ∅ ∧ (mType‘𝑇):(mVR‘𝑇)⟶(mTC‘𝑇)) ∧ (𝐴 ⊆ 𝑆 ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ (◡(mType‘𝑇) “ {𝑣}) ∈ Fin))) |
10 | 9 | simprld 768 | 1 ⊢ (𝑇 ∈ mFS → 𝐴 ⊆ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 {csn 4558 ◡ccnv 5579 “ cima 5583 ⟶wf 6414 ‘cfv 6418 Fincfn 8691 mCNcmcn 33322 mVRcmvar 33323 mTypecmty 33324 mVTcmvt 33325 mTCcmtc 33326 mAxcmax 33327 mStatcmsta 33337 mFScmfs 33338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-mfs 33358 |
This theorem is referenced by: mclsssvlem 33424 mclsax 33431 mclsind 33432 mclsppslem 33445 |
Copyright terms: Public domain | W3C validator |