![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > maxsta | Structured version Visualization version GIF version |
Description: An axiom is a statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
maxsta.a | β’ π΄ = (mAxβπ) |
maxsta.s | β’ π = (mStatβπ) |
Ref | Expression |
---|---|
maxsta | β’ (π β mFS β π΄ β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2730 | . . . 4 β’ (mCNβπ) = (mCNβπ) | |
2 | eqid 2730 | . . . 4 β’ (mVRβπ) = (mVRβπ) | |
3 | eqid 2730 | . . . 4 β’ (mTypeβπ) = (mTypeβπ) | |
4 | eqid 2730 | . . . 4 β’ (mVTβπ) = (mVTβπ) | |
5 | eqid 2730 | . . . 4 β’ (mTCβπ) = (mTCβπ) | |
6 | maxsta.a | . . . 4 β’ π΄ = (mAxβπ) | |
7 | maxsta.s | . . . 4 β’ π = (mStatβπ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ismfs 34836 | . . 3 β’ (π β mFS β (π β mFS β ((((mCNβπ) β© (mVRβπ)) = β β§ (mTypeβπ):(mVRβπ)βΆ(mTCβπ)) β§ (π΄ β π β§ βπ£ β (mVTβπ) Β¬ (β‘(mTypeβπ) β {π£}) β Fin)))) |
9 | 8 | ibi 266 | . 2 β’ (π β mFS β ((((mCNβπ) β© (mVRβπ)) = β β§ (mTypeβπ):(mVRβπ)βΆ(mTCβπ)) β§ (π΄ β π β§ βπ£ β (mVTβπ) Β¬ (β‘(mTypeβπ) β {π£}) β Fin))) |
10 | 9 | simprld 768 | 1 β’ (π β mFS β π΄ β π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 βwral 3059 β© cin 3948 β wss 3949 β c0 4323 {csn 4629 β‘ccnv 5676 β cima 5680 βΆwf 6540 βcfv 6544 Fincfn 8943 mCNcmcn 34747 mVRcmvar 34748 mTypecmty 34749 mVTcmvt 34750 mTCcmtc 34751 mAxcmax 34752 mStatcmsta 34762 mFScmfs 34763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-mfs 34783 |
This theorem is referenced by: mclsssvlem 34849 mclsax 34856 mclsind 34857 mclsppslem 34870 |
Copyright terms: Public domain | W3C validator |