![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > maxsta | Structured version Visualization version GIF version |
Description: An axiom is a statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
maxsta.a | ⊢ 𝐴 = (mAx‘𝑇) |
maxsta.s | ⊢ 𝑆 = (mStat‘𝑇) |
Ref | Expression |
---|---|
maxsta | ⊢ (𝑇 ∈ mFS → 𝐴 ⊆ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ (mCN‘𝑇) = (mCN‘𝑇) | |
2 | eqid 2740 | . . . 4 ⊢ (mVR‘𝑇) = (mVR‘𝑇) | |
3 | eqid 2740 | . . . 4 ⊢ (mType‘𝑇) = (mType‘𝑇) | |
4 | eqid 2740 | . . . 4 ⊢ (mVT‘𝑇) = (mVT‘𝑇) | |
5 | eqid 2740 | . . . 4 ⊢ (mTC‘𝑇) = (mTC‘𝑇) | |
6 | maxsta.a | . . . 4 ⊢ 𝐴 = (mAx‘𝑇) | |
7 | maxsta.s | . . . 4 ⊢ 𝑆 = (mStat‘𝑇) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ismfs 35517 | . . 3 ⊢ (𝑇 ∈ mFS → (𝑇 ∈ mFS ↔ ((((mCN‘𝑇) ∩ (mVR‘𝑇)) = ∅ ∧ (mType‘𝑇):(mVR‘𝑇)⟶(mTC‘𝑇)) ∧ (𝐴 ⊆ 𝑆 ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ (◡(mType‘𝑇) “ {𝑣}) ∈ Fin)))) |
9 | 8 | ibi 267 | . 2 ⊢ (𝑇 ∈ mFS → ((((mCN‘𝑇) ∩ (mVR‘𝑇)) = ∅ ∧ (mType‘𝑇):(mVR‘𝑇)⟶(mTC‘𝑇)) ∧ (𝐴 ⊆ 𝑆 ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ (◡(mType‘𝑇) “ {𝑣}) ∈ Fin))) |
10 | 9 | simprld 771 | 1 ⊢ (𝑇 ∈ mFS → 𝐴 ⊆ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 {csn 4648 ◡ccnv 5699 “ cima 5703 ⟶wf 6569 ‘cfv 6573 Fincfn 9003 mCNcmcn 35428 mVRcmvar 35429 mTypecmty 35430 mVTcmvt 35431 mTCcmtc 35432 mAxcmax 35433 mStatcmsta 35443 mFScmfs 35444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-mfs 35464 |
This theorem is referenced by: mclsssvlem 35530 mclsax 35537 mclsind 35538 mclsppslem 35551 |
Copyright terms: Public domain | W3C validator |