| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > maxsta | Structured version Visualization version GIF version | ||
| Description: An axiom is a statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| maxsta.a | ⊢ 𝐴 = (mAx‘𝑇) |
| maxsta.s | ⊢ 𝑆 = (mStat‘𝑇) |
| Ref | Expression |
|---|---|
| maxsta | ⊢ (𝑇 ∈ mFS → 𝐴 ⊆ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . . 4 ⊢ (mCN‘𝑇) = (mCN‘𝑇) | |
| 2 | eqid 2734 | . . . 4 ⊢ (mVR‘𝑇) = (mVR‘𝑇) | |
| 3 | eqid 2734 | . . . 4 ⊢ (mType‘𝑇) = (mType‘𝑇) | |
| 4 | eqid 2734 | . . . 4 ⊢ (mVT‘𝑇) = (mVT‘𝑇) | |
| 5 | eqid 2734 | . . . 4 ⊢ (mTC‘𝑇) = (mTC‘𝑇) | |
| 6 | maxsta.a | . . . 4 ⊢ 𝐴 = (mAx‘𝑇) | |
| 7 | maxsta.s | . . . 4 ⊢ 𝑆 = (mStat‘𝑇) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ismfs 35529 | . . 3 ⊢ (𝑇 ∈ mFS → (𝑇 ∈ mFS ↔ ((((mCN‘𝑇) ∩ (mVR‘𝑇)) = ∅ ∧ (mType‘𝑇):(mVR‘𝑇)⟶(mTC‘𝑇)) ∧ (𝐴 ⊆ 𝑆 ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ (◡(mType‘𝑇) “ {𝑣}) ∈ Fin)))) |
| 9 | 8 | ibi 267 | . 2 ⊢ (𝑇 ∈ mFS → ((((mCN‘𝑇) ∩ (mVR‘𝑇)) = ∅ ∧ (mType‘𝑇):(mVR‘𝑇)⟶(mTC‘𝑇)) ∧ (𝐴 ⊆ 𝑆 ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ (◡(mType‘𝑇) “ {𝑣}) ∈ Fin))) |
| 10 | 9 | simprld 771 | 1 ⊢ (𝑇 ∈ mFS → 𝐴 ⊆ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 {csn 4606 ◡ccnv 5664 “ cima 5668 ⟶wf 6537 ‘cfv 6541 Fincfn 8967 mCNcmcn 35440 mVRcmvar 35441 mTypecmty 35442 mVTcmvt 35443 mTCcmtc 35444 mAxcmax 35445 mStatcmsta 35455 mFScmfs 35456 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-mfs 35476 |
| This theorem is referenced by: mclsssvlem 35542 mclsax 35549 mclsind 35550 mclsppslem 35563 |
| Copyright terms: Public domain | W3C validator |