| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > maxsta | Structured version Visualization version GIF version | ||
| Description: An axiom is a statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| maxsta.a | ⊢ 𝐴 = (mAx‘𝑇) |
| maxsta.s | ⊢ 𝑆 = (mStat‘𝑇) |
| Ref | Expression |
|---|---|
| maxsta | ⊢ (𝑇 ∈ mFS → 𝐴 ⊆ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (mCN‘𝑇) = (mCN‘𝑇) | |
| 2 | eqid 2729 | . . . 4 ⊢ (mVR‘𝑇) = (mVR‘𝑇) | |
| 3 | eqid 2729 | . . . 4 ⊢ (mType‘𝑇) = (mType‘𝑇) | |
| 4 | eqid 2729 | . . . 4 ⊢ (mVT‘𝑇) = (mVT‘𝑇) | |
| 5 | eqid 2729 | . . . 4 ⊢ (mTC‘𝑇) = (mTC‘𝑇) | |
| 6 | maxsta.a | . . . 4 ⊢ 𝐴 = (mAx‘𝑇) | |
| 7 | maxsta.s | . . . 4 ⊢ 𝑆 = (mStat‘𝑇) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ismfs 35521 | . . 3 ⊢ (𝑇 ∈ mFS → (𝑇 ∈ mFS ↔ ((((mCN‘𝑇) ∩ (mVR‘𝑇)) = ∅ ∧ (mType‘𝑇):(mVR‘𝑇)⟶(mTC‘𝑇)) ∧ (𝐴 ⊆ 𝑆 ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ (◡(mType‘𝑇) “ {𝑣}) ∈ Fin)))) |
| 9 | 8 | ibi 267 | . 2 ⊢ (𝑇 ∈ mFS → ((((mCN‘𝑇) ∩ (mVR‘𝑇)) = ∅ ∧ (mType‘𝑇):(mVR‘𝑇)⟶(mTC‘𝑇)) ∧ (𝐴 ⊆ 𝑆 ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ (◡(mType‘𝑇) “ {𝑣}) ∈ Fin))) |
| 10 | 9 | simprld 771 | 1 ⊢ (𝑇 ∈ mFS → 𝐴 ⊆ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∩ cin 3904 ⊆ wss 3905 ∅c0 4286 {csn 4579 ◡ccnv 5622 “ cima 5626 ⟶wf 6482 ‘cfv 6486 Fincfn 8879 mCNcmcn 35432 mVRcmvar 35433 mTypecmty 35434 mVTcmvt 35435 mTCcmtc 35436 mAxcmax 35437 mStatcmsta 35447 mFScmfs 35448 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-mfs 35468 |
| This theorem is referenced by: mclsssvlem 35534 mclsax 35541 mclsind 35542 mclsppslem 35555 |
| Copyright terms: Public domain | W3C validator |