![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > maxsta | Structured version Visualization version GIF version |
Description: An axiom is a statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
maxsta.a | ⊢ 𝐴 = (mAx‘𝑇) |
maxsta.s | ⊢ 𝑆 = (mStat‘𝑇) |
Ref | Expression |
---|---|
maxsta | ⊢ (𝑇 ∈ mFS → 𝐴 ⊆ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2778 | . . . 4 ⊢ (mCN‘𝑇) = (mCN‘𝑇) | |
2 | eqid 2778 | . . . 4 ⊢ (mVR‘𝑇) = (mVR‘𝑇) | |
3 | eqid 2778 | . . . 4 ⊢ (mType‘𝑇) = (mType‘𝑇) | |
4 | eqid 2778 | . . . 4 ⊢ (mVT‘𝑇) = (mVT‘𝑇) | |
5 | eqid 2778 | . . . 4 ⊢ (mTC‘𝑇) = (mTC‘𝑇) | |
6 | maxsta.a | . . . 4 ⊢ 𝐴 = (mAx‘𝑇) | |
7 | maxsta.s | . . . 4 ⊢ 𝑆 = (mStat‘𝑇) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ismfs 32049 | . . 3 ⊢ (𝑇 ∈ mFS → (𝑇 ∈ mFS ↔ ((((mCN‘𝑇) ∩ (mVR‘𝑇)) = ∅ ∧ (mType‘𝑇):(mVR‘𝑇)⟶(mTC‘𝑇)) ∧ (𝐴 ⊆ 𝑆 ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ (◡(mType‘𝑇) “ {𝑣}) ∈ Fin)))) |
9 | 8 | ibi 259 | . 2 ⊢ (𝑇 ∈ mFS → ((((mCN‘𝑇) ∩ (mVR‘𝑇)) = ∅ ∧ (mType‘𝑇):(mVR‘𝑇)⟶(mTC‘𝑇)) ∧ (𝐴 ⊆ 𝑆 ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ (◡(mType‘𝑇) “ {𝑣}) ∈ Fin))) |
10 | 9 | simprld 762 | 1 ⊢ (𝑇 ∈ mFS → 𝐴 ⊆ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∀wral 3090 ∩ cin 3791 ⊆ wss 3792 ∅c0 4141 {csn 4398 ◡ccnv 5356 “ cima 5360 ⟶wf 6133 ‘cfv 6137 Fincfn 8243 mCNcmcn 31960 mVRcmvar 31961 mTypecmty 31962 mVTcmvt 31963 mTCcmtc 31964 mAxcmax 31965 mStatcmsta 31975 mFScmfs 31976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-br 4889 df-opab 4951 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-fv 6145 df-mfs 31996 |
This theorem is referenced by: mclsssvlem 32062 mclsax 32069 mclsind 32070 mclsppslem 32083 |
Copyright terms: Public domain | W3C validator |