Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  maxsta Structured version   Visualization version   GIF version

Theorem maxsta 35586
Description: An axiom is a statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
maxsta.a 𝐴 = (mAx‘𝑇)
maxsta.s 𝑆 = (mStat‘𝑇)
Assertion
Ref Expression
maxsta (𝑇 ∈ mFS → 𝐴𝑆)

Proof of Theorem maxsta
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (mCN‘𝑇) = (mCN‘𝑇)
2 eqid 2731 . . . 4 (mVR‘𝑇) = (mVR‘𝑇)
3 eqid 2731 . . . 4 (mType‘𝑇) = (mType‘𝑇)
4 eqid 2731 . . . 4 (mVT‘𝑇) = (mVT‘𝑇)
5 eqid 2731 . . . 4 (mTC‘𝑇) = (mTC‘𝑇)
6 maxsta.a . . . 4 𝐴 = (mAx‘𝑇)
7 maxsta.s . . . 4 𝑆 = (mStat‘𝑇)
81, 2, 3, 4, 5, 6, 7ismfs 35581 . . 3 (𝑇 ∈ mFS → (𝑇 ∈ mFS ↔ ((((mCN‘𝑇) ∩ (mVR‘𝑇)) = ∅ ∧ (mType‘𝑇):(mVR‘𝑇)⟶(mTC‘𝑇)) ∧ (𝐴𝑆 ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ ((mType‘𝑇) “ {𝑣}) ∈ Fin))))
98ibi 267 . 2 (𝑇 ∈ mFS → ((((mCN‘𝑇) ∩ (mVR‘𝑇)) = ∅ ∧ (mType‘𝑇):(mVR‘𝑇)⟶(mTC‘𝑇)) ∧ (𝐴𝑆 ∧ ∀𝑣 ∈ (mVT‘𝑇) ¬ ((mType‘𝑇) “ {𝑣}) ∈ Fin)))
109simprld 771 1 (𝑇 ∈ mFS → 𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  cin 3901  wss 3902  c0 4283  {csn 4576  ccnv 5615  cima 5619  wf 6477  cfv 6481  Fincfn 8869  mCNcmcn 35492  mVRcmvar 35493  mTypecmty 35494  mVTcmvt 35495  mTCcmtc 35496  mAxcmax 35497  mStatcmsta 35507  mFScmfs 35508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-mfs 35528
This theorem is referenced by:  mclsssvlem  35594  mclsax  35601  mclsind  35602  mclsppslem  35615
  Copyright terms: Public domain W3C validator