| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mircgr | Structured version Visualization version GIF version | ||
| Description: Property of the image by the point inversion function. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
| mirfv.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| mircgr | ⊢ (𝜑 → (𝐴 − (𝑀‘𝐵)) = (𝐴 − 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mirval.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | mirval.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
| 3 | mirval.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | mirval.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | mirval.s | . . . . 5 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 6 | mirval.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | mirval.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 8 | mirfv.m | . . . . 5 ⊢ 𝑀 = (𝑆‘𝐴) | |
| 9 | mirfv.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mirfv 28627 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐵) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))) |
| 11 | 1, 2, 3, 6, 9, 7 | mirreu3 28625 | . . . . 5 ⊢ (𝜑 → ∃!𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) |
| 12 | riotacl2 7314 | . . . . 5 ⊢ (∃!𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)) → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ {𝑧 ∈ 𝑃 ∣ ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))}) | |
| 13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝜑 → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ {𝑧 ∈ 𝑃 ∣ ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))}) |
| 14 | 10, 13 | eqeltrd 2829 | . . 3 ⊢ (𝜑 → (𝑀‘𝐵) ∈ {𝑧 ∈ 𝑃 ∣ ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))}) |
| 15 | oveq2 7349 | . . . . . 6 ⊢ (𝑧 = (𝑀‘𝐵) → (𝐴 − 𝑧) = (𝐴 − (𝑀‘𝐵))) | |
| 16 | 15 | eqeq1d 2732 | . . . . 5 ⊢ (𝑧 = (𝑀‘𝐵) → ((𝐴 − 𝑧) = (𝐴 − 𝐵) ↔ (𝐴 − (𝑀‘𝐵)) = (𝐴 − 𝐵))) |
| 17 | oveq1 7348 | . . . . . 6 ⊢ (𝑧 = (𝑀‘𝐵) → (𝑧𝐼𝐵) = ((𝑀‘𝐵)𝐼𝐵)) | |
| 18 | 17 | eleq2d 2815 | . . . . 5 ⊢ (𝑧 = (𝑀‘𝐵) → (𝐴 ∈ (𝑧𝐼𝐵) ↔ 𝐴 ∈ ((𝑀‘𝐵)𝐼𝐵))) |
| 19 | 16, 18 | anbi12d 632 | . . . 4 ⊢ (𝑧 = (𝑀‘𝐵) → (((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)) ↔ ((𝐴 − (𝑀‘𝐵)) = (𝐴 − 𝐵) ∧ 𝐴 ∈ ((𝑀‘𝐵)𝐼𝐵)))) |
| 20 | 19 | elrab 3645 | . . 3 ⊢ ((𝑀‘𝐵) ∈ {𝑧 ∈ 𝑃 ∣ ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))} ↔ ((𝑀‘𝐵) ∈ 𝑃 ∧ ((𝐴 − (𝑀‘𝐵)) = (𝐴 − 𝐵) ∧ 𝐴 ∈ ((𝑀‘𝐵)𝐼𝐵)))) |
| 21 | 14, 20 | sylib 218 | . 2 ⊢ (𝜑 → ((𝑀‘𝐵) ∈ 𝑃 ∧ ((𝐴 − (𝑀‘𝐵)) = (𝐴 − 𝐵) ∧ 𝐴 ∈ ((𝑀‘𝐵)𝐼𝐵)))) |
| 22 | 21 | simprld 771 | 1 ⊢ (𝜑 → (𝐴 − (𝑀‘𝐵)) = (𝐴 − 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∃!wreu 3342 {crab 3393 ‘cfv 6477 ℩crio 7297 (class class class)co 7341 Basecbs 17112 distcds 17162 TarskiGcstrkg 28398 Itvcitv 28404 LineGclng 28405 pInvGcmir 28623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-trkgc 28419 df-trkgb 28420 df-trkgcb 28421 df-trkg 28424 df-mir 28624 |
| This theorem is referenced by: mirmir 28633 miriso 28641 mirmir2 28645 mircgrextend 28653 mirtrcgr 28654 mirauto 28655 miduniq 28656 krippenlem 28661 ragcol 28670 ragflat 28675 ragcgr 28678 footexALT 28689 footexlem2 28691 colperpexlem1 28701 colperpexlem3 28703 mideulem2 28705 opphllem 28706 midcgr 28751 lmiisolem 28767 |
| Copyright terms: Public domain | W3C validator |