MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mircgr Structured version   Visualization version   GIF version

Theorem mircgr 28636
Description: Property of the image by the point inversion function. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mirfv.b (𝜑𝐵𝑃)
Assertion
Ref Expression
mircgr (𝜑 → (𝐴 (𝑀𝐵)) = (𝐴 𝐵))

Proof of Theorem mircgr
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mirval.p . . . . 5 𝑃 = (Base‘𝐺)
2 mirval.d . . . . 5 = (dist‘𝐺)
3 mirval.i . . . . 5 𝐼 = (Itv‘𝐺)
4 mirval.l . . . . 5 𝐿 = (LineG‘𝐺)
5 mirval.s . . . . 5 𝑆 = (pInvG‘𝐺)
6 mirval.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
7 mirval.a . . . . 5 (𝜑𝐴𝑃)
8 mirfv.m . . . . 5 𝑀 = (𝑆𝐴)
9 mirfv.b . . . . 5 (𝜑𝐵𝑃)
101, 2, 3, 4, 5, 6, 7, 8, 9mirfv 28635 . . . 4 (𝜑 → (𝑀𝐵) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))))
111, 2, 3, 6, 9, 7mirreu3 28633 . . . . 5 (𝜑 → ∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))
12 riotacl2 7378 . . . . 5 (∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)) → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ {𝑧𝑃 ∣ ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))})
1311, 12syl 17 . . . 4 (𝜑 → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ {𝑧𝑃 ∣ ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))})
1410, 13eqeltrd 2834 . . 3 (𝜑 → (𝑀𝐵) ∈ {𝑧𝑃 ∣ ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))})
15 oveq2 7413 . . . . . 6 (𝑧 = (𝑀𝐵) → (𝐴 𝑧) = (𝐴 (𝑀𝐵)))
1615eqeq1d 2737 . . . . 5 (𝑧 = (𝑀𝐵) → ((𝐴 𝑧) = (𝐴 𝐵) ↔ (𝐴 (𝑀𝐵)) = (𝐴 𝐵)))
17 oveq1 7412 . . . . . 6 (𝑧 = (𝑀𝐵) → (𝑧𝐼𝐵) = ((𝑀𝐵)𝐼𝐵))
1817eleq2d 2820 . . . . 5 (𝑧 = (𝑀𝐵) → (𝐴 ∈ (𝑧𝐼𝐵) ↔ 𝐴 ∈ ((𝑀𝐵)𝐼𝐵)))
1916, 18anbi12d 632 . . . 4 (𝑧 = (𝑀𝐵) → (((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)) ↔ ((𝐴 (𝑀𝐵)) = (𝐴 𝐵) ∧ 𝐴 ∈ ((𝑀𝐵)𝐼𝐵))))
2019elrab 3671 . . 3 ((𝑀𝐵) ∈ {𝑧𝑃 ∣ ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))} ↔ ((𝑀𝐵) ∈ 𝑃 ∧ ((𝐴 (𝑀𝐵)) = (𝐴 𝐵) ∧ 𝐴 ∈ ((𝑀𝐵)𝐼𝐵))))
2114, 20sylib 218 . 2 (𝜑 → ((𝑀𝐵) ∈ 𝑃 ∧ ((𝐴 (𝑀𝐵)) = (𝐴 𝐵) ∧ 𝐴 ∈ ((𝑀𝐵)𝐼𝐵))))
2221simprld 771 1 (𝜑 → (𝐴 (𝑀𝐵)) = (𝐴 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  ∃!wreu 3357  {crab 3415  cfv 6531  crio 7361  (class class class)co 7405  Basecbs 17228  distcds 17280  TarskiGcstrkg 28406  Itvcitv 28412  LineGclng 28413  pInvGcmir 28631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-trkgc 28427  df-trkgb 28428  df-trkgcb 28429  df-trkg 28432  df-mir 28632
This theorem is referenced by:  mirmir  28641  miriso  28649  mirmir2  28653  mircgrextend  28661  mirtrcgr  28662  mirauto  28663  miduniq  28664  krippenlem  28669  ragcol  28678  ragflat  28683  ragcgr  28686  footexALT  28697  footexlem2  28699  colperpexlem1  28709  colperpexlem3  28711  mideulem2  28713  opphllem  28714  midcgr  28759  lmiisolem  28775
  Copyright terms: Public domain W3C validator