| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mircgr | Structured version Visualization version GIF version | ||
| Description: Property of the image by the point inversion function. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
| mirfv.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| mircgr | ⊢ (𝜑 → (𝐴 − (𝑀‘𝐵)) = (𝐴 − 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mirval.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | mirval.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
| 3 | mirval.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | mirval.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | mirval.s | . . . . 5 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 6 | mirval.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | mirval.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 8 | mirfv.m | . . . . 5 ⊢ 𝑀 = (𝑆‘𝐴) | |
| 9 | mirfv.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mirfv 28619 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐵) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))) |
| 11 | 1, 2, 3, 6, 9, 7 | mirreu3 28617 | . . . . 5 ⊢ (𝜑 → ∃!𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) |
| 12 | riotacl2 7326 | . . . . 5 ⊢ (∃!𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)) → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ {𝑧 ∈ 𝑃 ∣ ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))}) | |
| 13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝜑 → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ {𝑧 ∈ 𝑃 ∣ ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))}) |
| 14 | 10, 13 | eqeltrd 2828 | . . 3 ⊢ (𝜑 → (𝑀‘𝐵) ∈ {𝑧 ∈ 𝑃 ∣ ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))}) |
| 15 | oveq2 7361 | . . . . . 6 ⊢ (𝑧 = (𝑀‘𝐵) → (𝐴 − 𝑧) = (𝐴 − (𝑀‘𝐵))) | |
| 16 | 15 | eqeq1d 2731 | . . . . 5 ⊢ (𝑧 = (𝑀‘𝐵) → ((𝐴 − 𝑧) = (𝐴 − 𝐵) ↔ (𝐴 − (𝑀‘𝐵)) = (𝐴 − 𝐵))) |
| 17 | oveq1 7360 | . . . . . 6 ⊢ (𝑧 = (𝑀‘𝐵) → (𝑧𝐼𝐵) = ((𝑀‘𝐵)𝐼𝐵)) | |
| 18 | 17 | eleq2d 2814 | . . . . 5 ⊢ (𝑧 = (𝑀‘𝐵) → (𝐴 ∈ (𝑧𝐼𝐵) ↔ 𝐴 ∈ ((𝑀‘𝐵)𝐼𝐵))) |
| 19 | 16, 18 | anbi12d 632 | . . . 4 ⊢ (𝑧 = (𝑀‘𝐵) → (((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)) ↔ ((𝐴 − (𝑀‘𝐵)) = (𝐴 − 𝐵) ∧ 𝐴 ∈ ((𝑀‘𝐵)𝐼𝐵)))) |
| 20 | 19 | elrab 3650 | . . 3 ⊢ ((𝑀‘𝐵) ∈ {𝑧 ∈ 𝑃 ∣ ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))} ↔ ((𝑀‘𝐵) ∈ 𝑃 ∧ ((𝐴 − (𝑀‘𝐵)) = (𝐴 − 𝐵) ∧ 𝐴 ∈ ((𝑀‘𝐵)𝐼𝐵)))) |
| 21 | 14, 20 | sylib 218 | . 2 ⊢ (𝜑 → ((𝑀‘𝐵) ∈ 𝑃 ∧ ((𝐴 − (𝑀‘𝐵)) = (𝐴 − 𝐵) ∧ 𝐴 ∈ ((𝑀‘𝐵)𝐼𝐵)))) |
| 22 | 21 | simprld 771 | 1 ⊢ (𝜑 → (𝐴 − (𝑀‘𝐵)) = (𝐴 − 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!wreu 3343 {crab 3396 ‘cfv 6486 ℩crio 7309 (class class class)co 7353 Basecbs 17138 distcds 17188 TarskiGcstrkg 28390 Itvcitv 28396 LineGclng 28397 pInvGcmir 28615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-trkgc 28411 df-trkgb 28412 df-trkgcb 28413 df-trkg 28416 df-mir 28616 |
| This theorem is referenced by: mirmir 28625 miriso 28633 mirmir2 28637 mircgrextend 28645 mirtrcgr 28646 mirauto 28647 miduniq 28648 krippenlem 28653 ragcol 28662 ragflat 28667 ragcgr 28670 footexALT 28681 footexlem2 28683 colperpexlem1 28693 colperpexlem3 28695 mideulem2 28697 opphllem 28698 midcgr 28743 lmiisolem 28759 |
| Copyright terms: Public domain | W3C validator |