| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mircgr | Structured version Visualization version GIF version | ||
| Description: Property of the image by the point inversion function. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
| mirfv.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| mircgr | ⊢ (𝜑 → (𝐴 − (𝑀‘𝐵)) = (𝐴 − 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mirval.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | mirval.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
| 3 | mirval.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | mirval.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | mirval.s | . . . . 5 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 6 | mirval.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | mirval.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 8 | mirfv.m | . . . . 5 ⊢ 𝑀 = (𝑆‘𝐴) | |
| 9 | mirfv.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mirfv 28601 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐵) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))) |
| 11 | 1, 2, 3, 6, 9, 7 | mirreu3 28599 | . . . . 5 ⊢ (𝜑 → ∃!𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) |
| 12 | riotacl2 7386 | . . . . 5 ⊢ (∃!𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)) → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ {𝑧 ∈ 𝑃 ∣ ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))}) | |
| 13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝜑 → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ {𝑧 ∈ 𝑃 ∣ ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))}) |
| 14 | 10, 13 | eqeltrd 2833 | . . 3 ⊢ (𝜑 → (𝑀‘𝐵) ∈ {𝑧 ∈ 𝑃 ∣ ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))}) |
| 15 | oveq2 7421 | . . . . . 6 ⊢ (𝑧 = (𝑀‘𝐵) → (𝐴 − 𝑧) = (𝐴 − (𝑀‘𝐵))) | |
| 16 | 15 | eqeq1d 2736 | . . . . 5 ⊢ (𝑧 = (𝑀‘𝐵) → ((𝐴 − 𝑧) = (𝐴 − 𝐵) ↔ (𝐴 − (𝑀‘𝐵)) = (𝐴 − 𝐵))) |
| 17 | oveq1 7420 | . . . . . 6 ⊢ (𝑧 = (𝑀‘𝐵) → (𝑧𝐼𝐵) = ((𝑀‘𝐵)𝐼𝐵)) | |
| 18 | 17 | eleq2d 2819 | . . . . 5 ⊢ (𝑧 = (𝑀‘𝐵) → (𝐴 ∈ (𝑧𝐼𝐵) ↔ 𝐴 ∈ ((𝑀‘𝐵)𝐼𝐵))) |
| 19 | 16, 18 | anbi12d 632 | . . . 4 ⊢ (𝑧 = (𝑀‘𝐵) → (((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)) ↔ ((𝐴 − (𝑀‘𝐵)) = (𝐴 − 𝐵) ∧ 𝐴 ∈ ((𝑀‘𝐵)𝐼𝐵)))) |
| 20 | 19 | elrab 3675 | . . 3 ⊢ ((𝑀‘𝐵) ∈ {𝑧 ∈ 𝑃 ∣ ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))} ↔ ((𝑀‘𝐵) ∈ 𝑃 ∧ ((𝐴 − (𝑀‘𝐵)) = (𝐴 − 𝐵) ∧ 𝐴 ∈ ((𝑀‘𝐵)𝐼𝐵)))) |
| 21 | 14, 20 | sylib 218 | . 2 ⊢ (𝜑 → ((𝑀‘𝐵) ∈ 𝑃 ∧ ((𝐴 − (𝑀‘𝐵)) = (𝐴 − 𝐵) ∧ 𝐴 ∈ ((𝑀‘𝐵)𝐼𝐵)))) |
| 22 | 21 | simprld 771 | 1 ⊢ (𝜑 → (𝐴 − (𝑀‘𝐵)) = (𝐴 − 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃!wreu 3361 {crab 3419 ‘cfv 6541 ℩crio 7369 (class class class)co 7413 Basecbs 17230 distcds 17283 TarskiGcstrkg 28372 Itvcitv 28378 LineGclng 28379 pInvGcmir 28597 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-trkgc 28393 df-trkgb 28394 df-trkgcb 28395 df-trkg 28398 df-mir 28598 |
| This theorem is referenced by: mirmir 28607 miriso 28615 mirmir2 28619 mircgrextend 28627 mirtrcgr 28628 mirauto 28629 miduniq 28630 krippenlem 28635 ragcol 28644 ragflat 28649 ragcgr 28652 footexALT 28663 footexlem2 28665 colperpexlem1 28675 colperpexlem3 28677 mideulem2 28679 opphllem 28680 midcgr 28725 lmiisolem 28741 |
| Copyright terms: Public domain | W3C validator |