![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mircgr | Structured version Visualization version GIF version |
Description: Property of the image by the point inversion function. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
mirfv.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
Ref | Expression |
---|---|
mircgr | ⊢ (𝜑 → (𝐴 − (𝑀‘𝐵)) = (𝐴 − 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
3 | mirval.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | mirval.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | mirval.s | . . . . 5 ⊢ 𝑆 = (pInvG‘𝐺) | |
6 | mirval.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | mirval.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
8 | mirfv.m | . . . . 5 ⊢ 𝑀 = (𝑆‘𝐴) | |
9 | mirfv.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mirfv 28532 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐵) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))) |
11 | 1, 2, 3, 6, 9, 7 | mirreu3 28530 | . . . . 5 ⊢ (𝜑 → ∃!𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) |
12 | riotacl2 7392 | . . . . 5 ⊢ (∃!𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)) → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ {𝑧 ∈ 𝑃 ∣ ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))}) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝜑 → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ {𝑧 ∈ 𝑃 ∣ ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))}) |
14 | 10, 13 | eqeltrd 2825 | . . 3 ⊢ (𝜑 → (𝑀‘𝐵) ∈ {𝑧 ∈ 𝑃 ∣ ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))}) |
15 | oveq2 7427 | . . . . . 6 ⊢ (𝑧 = (𝑀‘𝐵) → (𝐴 − 𝑧) = (𝐴 − (𝑀‘𝐵))) | |
16 | 15 | eqeq1d 2727 | . . . . 5 ⊢ (𝑧 = (𝑀‘𝐵) → ((𝐴 − 𝑧) = (𝐴 − 𝐵) ↔ (𝐴 − (𝑀‘𝐵)) = (𝐴 − 𝐵))) |
17 | oveq1 7426 | . . . . . 6 ⊢ (𝑧 = (𝑀‘𝐵) → (𝑧𝐼𝐵) = ((𝑀‘𝐵)𝐼𝐵)) | |
18 | 17 | eleq2d 2811 | . . . . 5 ⊢ (𝑧 = (𝑀‘𝐵) → (𝐴 ∈ (𝑧𝐼𝐵) ↔ 𝐴 ∈ ((𝑀‘𝐵)𝐼𝐵))) |
19 | 16, 18 | anbi12d 630 | . . . 4 ⊢ (𝑧 = (𝑀‘𝐵) → (((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)) ↔ ((𝐴 − (𝑀‘𝐵)) = (𝐴 − 𝐵) ∧ 𝐴 ∈ ((𝑀‘𝐵)𝐼𝐵)))) |
20 | 19 | elrab 3679 | . . 3 ⊢ ((𝑀‘𝐵) ∈ {𝑧 ∈ 𝑃 ∣ ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))} ↔ ((𝑀‘𝐵) ∈ 𝑃 ∧ ((𝐴 − (𝑀‘𝐵)) = (𝐴 − 𝐵) ∧ 𝐴 ∈ ((𝑀‘𝐵)𝐼𝐵)))) |
21 | 14, 20 | sylib 217 | . 2 ⊢ (𝜑 → ((𝑀‘𝐵) ∈ 𝑃 ∧ ((𝐴 − (𝑀‘𝐵)) = (𝐴 − 𝐵) ∧ 𝐴 ∈ ((𝑀‘𝐵)𝐼𝐵)))) |
22 | 21 | simprld 770 | 1 ⊢ (𝜑 → (𝐴 − (𝑀‘𝐵)) = (𝐴 − 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃!wreu 3361 {crab 3418 ‘cfv 6549 ℩crio 7374 (class class class)co 7419 Basecbs 17183 distcds 17245 TarskiGcstrkg 28303 Itvcitv 28309 LineGclng 28310 pInvGcmir 28528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-trkgc 28324 df-trkgb 28325 df-trkgcb 28326 df-trkg 28329 df-mir 28529 |
This theorem is referenced by: mirmir 28538 miriso 28546 mirmir2 28550 mircgrextend 28558 mirtrcgr 28559 mirauto 28560 miduniq 28561 krippenlem 28566 ragcol 28575 ragflat 28580 ragcgr 28583 footexALT 28594 footexlem2 28596 colperpexlem1 28606 colperpexlem3 28608 mideulem2 28610 opphllem 28611 midcgr 28656 lmiisolem 28672 |
Copyright terms: Public domain | W3C validator |