![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem37 | Structured version Visualization version GIF version |
Description: This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, (𝐺‘𝑖) is used for p_(ti). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem37.1 | ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} |
stoweidlem37.2 | ⊢ 𝑃 = (𝑡 ∈ 𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡))) |
stoweidlem37.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
stoweidlem37.4 | ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝑄) |
stoweidlem37.5 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) |
stoweidlem37.6 | ⊢ (𝜑 → 𝑍 ∈ 𝑇) |
Ref | Expression |
---|---|
stoweidlem37 | ⊢ (𝜑 → (𝑃‘𝑍) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem37.6 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑇) | |
2 | stoweidlem37.1 | . . . 4 ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} | |
3 | stoweidlem37.2 | . . . 4 ⊢ 𝑃 = (𝑡 ∈ 𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡))) | |
4 | stoweidlem37.3 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
5 | stoweidlem37.4 | . . . 4 ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝑄) | |
6 | stoweidlem37.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) | |
7 | 2, 3, 4, 5, 6 | stoweidlem30 45986 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑇) → (𝑃‘𝑍) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑍))) |
8 | 1, 7 | mpdan 687 | . 2 ⊢ (𝜑 → (𝑃‘𝑍) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑍))) |
9 | 5 | ffvelcdmda 7104 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐺‘𝑖) ∈ 𝑄) |
10 | fveq1 6906 | . . . . . . . . . 10 ⊢ (ℎ = (𝐺‘𝑖) → (ℎ‘𝑍) = ((𝐺‘𝑖)‘𝑍)) | |
11 | 10 | eqeq1d 2737 | . . . . . . . . 9 ⊢ (ℎ = (𝐺‘𝑖) → ((ℎ‘𝑍) = 0 ↔ ((𝐺‘𝑖)‘𝑍) = 0)) |
12 | fveq1 6906 | . . . . . . . . . . . 12 ⊢ (ℎ = (𝐺‘𝑖) → (ℎ‘𝑡) = ((𝐺‘𝑖)‘𝑡)) | |
13 | 12 | breq2d 5160 | . . . . . . . . . . 11 ⊢ (ℎ = (𝐺‘𝑖) → (0 ≤ (ℎ‘𝑡) ↔ 0 ≤ ((𝐺‘𝑖)‘𝑡))) |
14 | 12 | breq1d 5158 | . . . . . . . . . . 11 ⊢ (ℎ = (𝐺‘𝑖) → ((ℎ‘𝑡) ≤ 1 ↔ ((𝐺‘𝑖)‘𝑡) ≤ 1)) |
15 | 13, 14 | anbi12d 632 | . . . . . . . . . 10 ⊢ (ℎ = (𝐺‘𝑖) → ((0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ (0 ≤ ((𝐺‘𝑖)‘𝑡) ∧ ((𝐺‘𝑖)‘𝑡) ≤ 1))) |
16 | 15 | ralbidv 3176 | . . . . . . . . 9 ⊢ (ℎ = (𝐺‘𝑖) → (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝑖)‘𝑡) ∧ ((𝐺‘𝑖)‘𝑡) ≤ 1))) |
17 | 11, 16 | anbi12d 632 | . . . . . . . 8 ⊢ (ℎ = (𝐺‘𝑖) → (((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)) ↔ (((𝐺‘𝑖)‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝑖)‘𝑡) ∧ ((𝐺‘𝑖)‘𝑡) ≤ 1)))) |
18 | 17, 2 | elrab2 3698 | . . . . . . 7 ⊢ ((𝐺‘𝑖) ∈ 𝑄 ↔ ((𝐺‘𝑖) ∈ 𝐴 ∧ (((𝐺‘𝑖)‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝑖)‘𝑡) ∧ ((𝐺‘𝑖)‘𝑡) ≤ 1)))) |
19 | 9, 18 | sylib 218 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺‘𝑖) ∈ 𝐴 ∧ (((𝐺‘𝑖)‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝑖)‘𝑡) ∧ ((𝐺‘𝑖)‘𝑡) ≤ 1)))) |
20 | 19 | simprld 772 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺‘𝑖)‘𝑍) = 0) |
21 | 20 | sumeq2dv 15735 | . . . 4 ⊢ (𝜑 → Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑍) = Σ𝑖 ∈ (1...𝑀)0) |
22 | fzfi 14010 | . . . . 5 ⊢ (1...𝑀) ∈ Fin | |
23 | olc 868 | . . . . 5 ⊢ ((1...𝑀) ∈ Fin → ((1...𝑀) ⊆ (ℤ≥‘1) ∨ (1...𝑀) ∈ Fin)) | |
24 | sumz 15755 | . . . . 5 ⊢ (((1...𝑀) ⊆ (ℤ≥‘1) ∨ (1...𝑀) ∈ Fin) → Σ𝑖 ∈ (1...𝑀)0 = 0) | |
25 | 22, 23, 24 | mp2b 10 | . . . 4 ⊢ Σ𝑖 ∈ (1...𝑀)0 = 0 |
26 | 21, 25 | eqtrdi 2791 | . . 3 ⊢ (𝜑 → Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑍) = 0) |
27 | 26 | oveq2d 7447 | . 2 ⊢ (𝜑 → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑍)) = ((1 / 𝑀) · 0)) |
28 | 4 | nncnd 12280 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
29 | 4 | nnne0d 12314 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ 0) |
30 | 28, 29 | reccld 12034 | . . 3 ⊢ (𝜑 → (1 / 𝑀) ∈ ℂ) |
31 | 30 | mul01d 11458 | . 2 ⊢ (𝜑 → ((1 / 𝑀) · 0) = 0) |
32 | 8, 27, 31 | 3eqtrd 2779 | 1 ⊢ (𝜑 → (𝑃‘𝑍) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ∀wral 3059 {crab 3433 ⊆ wss 3963 class class class wbr 5148 ↦ cmpt 5231 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 Fincfn 8984 ℝcr 11152 0cc0 11153 1c1 11154 · cmul 11158 ≤ cle 11294 / cdiv 11918 ℕcn 12264 ℤ≥cuz 12876 ...cfz 13544 Σcsu 15719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-sum 15720 |
This theorem is referenced by: stoweidlem44 46000 |
Copyright terms: Public domain | W3C validator |