Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem37 Structured version   Visualization version   GIF version

Theorem stoweidlem37 45692
Description: This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, (𝐺𝑖) is used for p_(ti). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem37.1 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem37.2 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
stoweidlem37.3 (𝜑𝑀 ∈ ℕ)
stoweidlem37.4 (𝜑𝐺:(1...𝑀)⟶𝑄)
stoweidlem37.5 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem37.6 (𝜑𝑍𝑇)
Assertion
Ref Expression
stoweidlem37 (𝜑 → (𝑃𝑍) = 0)
Distinct variable groups:   𝑓,𝑖,𝑇   𝐴,𝑓   𝑓,𝐺   𝜑,𝑓,𝑖   ,𝑖,𝑡,𝑇   𝐴,   ,𝐺,𝑡   ,𝑍,𝑖,𝑡   𝑖,𝑀,𝑡
Allowed substitution hints:   𝜑(𝑡,)   𝐴(𝑡,𝑖)   𝑃(𝑡,𝑓,,𝑖)   𝑄(𝑡,𝑓,,𝑖)   𝐺(𝑖)   𝑀(𝑓,)   𝑍(𝑓)

Proof of Theorem stoweidlem37
StepHypRef Expression
1 stoweidlem37.6 . . 3 (𝜑𝑍𝑇)
2 stoweidlem37.1 . . . 4 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
3 stoweidlem37.2 . . . 4 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
4 stoweidlem37.3 . . . 4 (𝜑𝑀 ∈ ℕ)
5 stoweidlem37.4 . . . 4 (𝜑𝐺:(1...𝑀)⟶𝑄)
6 stoweidlem37.5 . . . 4 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
72, 3, 4, 5, 6stoweidlem30 45685 . . 3 ((𝜑𝑍𝑇) → (𝑃𝑍) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑍)))
81, 7mpdan 685 . 2 (𝜑 → (𝑃𝑍) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑍)))
95ffvelcdmda 7088 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺𝑖) ∈ 𝑄)
10 fveq1 6890 . . . . . . . . . 10 ( = (𝐺𝑖) → (𝑍) = ((𝐺𝑖)‘𝑍))
1110eqeq1d 2728 . . . . . . . . 9 ( = (𝐺𝑖) → ((𝑍) = 0 ↔ ((𝐺𝑖)‘𝑍) = 0))
12 fveq1 6890 . . . . . . . . . . . 12 ( = (𝐺𝑖) → (𝑡) = ((𝐺𝑖)‘𝑡))
1312breq2d 5156 . . . . . . . . . . 11 ( = (𝐺𝑖) → (0 ≤ (𝑡) ↔ 0 ≤ ((𝐺𝑖)‘𝑡)))
1412breq1d 5154 . . . . . . . . . . 11 ( = (𝐺𝑖) → ((𝑡) ≤ 1 ↔ ((𝐺𝑖)‘𝑡) ≤ 1))
1513, 14anbi12d 630 . . . . . . . . . 10 ( = (𝐺𝑖) → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1)))
1615ralbidv 3168 . . . . . . . . 9 ( = (𝐺𝑖) → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1)))
1711, 16anbi12d 630 . . . . . . . 8 ( = (𝐺𝑖) → (((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)) ↔ (((𝐺𝑖)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1))))
1817, 2elrab2 3684 . . . . . . 7 ((𝐺𝑖) ∈ 𝑄 ↔ ((𝐺𝑖) ∈ 𝐴 ∧ (((𝐺𝑖)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1))))
199, 18sylib 217 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐺𝑖) ∈ 𝐴 ∧ (((𝐺𝑖)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1))))
2019simprld 770 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑍) = 0)
2120sumeq2dv 15700 . . . 4 (𝜑 → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑍) = Σ𝑖 ∈ (1...𝑀)0)
22 fzfi 13984 . . . . 5 (1...𝑀) ∈ Fin
23 olc 866 . . . . 5 ((1...𝑀) ∈ Fin → ((1...𝑀) ⊆ (ℤ‘1) ∨ (1...𝑀) ∈ Fin))
24 sumz 15719 . . . . 5 (((1...𝑀) ⊆ (ℤ‘1) ∨ (1...𝑀) ∈ Fin) → Σ𝑖 ∈ (1...𝑀)0 = 0)
2522, 23, 24mp2b 10 . . . 4 Σ𝑖 ∈ (1...𝑀)0 = 0
2621, 25eqtrdi 2782 . . 3 (𝜑 → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑍) = 0)
2726oveq2d 7430 . 2 (𝜑 → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑍)) = ((1 / 𝑀) · 0))
284nncnd 12272 . . . 4 (𝜑𝑀 ∈ ℂ)
294nnne0d 12306 . . . 4 (𝜑𝑀 ≠ 0)
3028, 29reccld 12026 . . 3 (𝜑 → (1 / 𝑀) ∈ ℂ)
3130mul01d 11452 . 2 (𝜑 → ((1 / 𝑀) · 0) = 0)
328, 27, 313eqtrd 2770 1 (𝜑 → (𝑃𝑍) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845   = wceq 1534  wcel 2099  wral 3051  {crab 3420  wss 3947   class class class wbr 5144  cmpt 5227  wf 6540  cfv 6544  (class class class)co 7414  Fincfn 8964  cr 11146  0cc0 11147  1c1 11148   · cmul 11152  cle 11288   / cdiv 11910  cn 12256  cuz 12866  ...cfz 13530  Σcsu 15683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7736  ax-inf2 9675  ax-cnex 11203  ax-resscn 11204  ax-1cn 11205  ax-icn 11206  ax-addcl 11207  ax-addrcl 11208  ax-mulcl 11209  ax-mulrcl 11210  ax-mulcom 11211  ax-addass 11212  ax-mulass 11213  ax-distr 11214  ax-i2m1 11215  ax-1ne0 11216  ax-1rid 11217  ax-rnegex 11218  ax-rrecex 11219  ax-cnre 11220  ax-pre-lttri 11221  ax-pre-lttrn 11222  ax-pre-ltadd 11223  ax-pre-mulgt0 11224  ax-pre-sup 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3365  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-int 4948  df-iun 4996  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6303  df-ord 6369  df-on 6370  df-lim 6371  df-suc 6372  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9476  df-oi 9544  df-card 9973  df-pnf 11289  df-mnf 11290  df-xr 11291  df-ltxr 11292  df-le 11293  df-sub 11485  df-neg 11486  df-div 11911  df-nn 12257  df-2 12319  df-3 12320  df-n0 12517  df-z 12603  df-uz 12867  df-rp 13021  df-fz 13531  df-fzo 13674  df-seq 14014  df-exp 14074  df-hash 14341  df-cj 15097  df-re 15098  df-im 15099  df-sqrt 15233  df-abs 15234  df-clim 15483  df-sum 15684
This theorem is referenced by:  stoweidlem44  45699
  Copyright terms: Public domain W3C validator