Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem37 Structured version   Visualization version   GIF version

Theorem stoweidlem37 45958
Description: This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, (𝐺𝑖) is used for p_(ti). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem37.1 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem37.2 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
stoweidlem37.3 (𝜑𝑀 ∈ ℕ)
stoweidlem37.4 (𝜑𝐺:(1...𝑀)⟶𝑄)
stoweidlem37.5 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem37.6 (𝜑𝑍𝑇)
Assertion
Ref Expression
stoweidlem37 (𝜑 → (𝑃𝑍) = 0)
Distinct variable groups:   𝑓,𝑖,𝑇   𝐴,𝑓   𝑓,𝐺   𝜑,𝑓,𝑖   ,𝑖,𝑡,𝑇   𝐴,   ,𝐺,𝑡   ,𝑍,𝑖,𝑡   𝑖,𝑀,𝑡
Allowed substitution hints:   𝜑(𝑡,)   𝐴(𝑡,𝑖)   𝑃(𝑡,𝑓,,𝑖)   𝑄(𝑡,𝑓,,𝑖)   𝐺(𝑖)   𝑀(𝑓,)   𝑍(𝑓)

Proof of Theorem stoweidlem37
StepHypRef Expression
1 stoweidlem37.6 . . 3 (𝜑𝑍𝑇)
2 stoweidlem37.1 . . . 4 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
3 stoweidlem37.2 . . . 4 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
4 stoweidlem37.3 . . . 4 (𝜑𝑀 ∈ ℕ)
5 stoweidlem37.4 . . . 4 (𝜑𝐺:(1...𝑀)⟶𝑄)
6 stoweidlem37.5 . . . 4 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
72, 3, 4, 5, 6stoweidlem30 45951 . . 3 ((𝜑𝑍𝑇) → (𝑃𝑍) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑍)))
81, 7mpdan 686 . 2 (𝜑 → (𝑃𝑍) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑍)))
95ffvelcdmda 7118 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺𝑖) ∈ 𝑄)
10 fveq1 6919 . . . . . . . . . 10 ( = (𝐺𝑖) → (𝑍) = ((𝐺𝑖)‘𝑍))
1110eqeq1d 2742 . . . . . . . . 9 ( = (𝐺𝑖) → ((𝑍) = 0 ↔ ((𝐺𝑖)‘𝑍) = 0))
12 fveq1 6919 . . . . . . . . . . . 12 ( = (𝐺𝑖) → (𝑡) = ((𝐺𝑖)‘𝑡))
1312breq2d 5178 . . . . . . . . . . 11 ( = (𝐺𝑖) → (0 ≤ (𝑡) ↔ 0 ≤ ((𝐺𝑖)‘𝑡)))
1412breq1d 5176 . . . . . . . . . . 11 ( = (𝐺𝑖) → ((𝑡) ≤ 1 ↔ ((𝐺𝑖)‘𝑡) ≤ 1))
1513, 14anbi12d 631 . . . . . . . . . 10 ( = (𝐺𝑖) → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1)))
1615ralbidv 3184 . . . . . . . . 9 ( = (𝐺𝑖) → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1)))
1711, 16anbi12d 631 . . . . . . . 8 ( = (𝐺𝑖) → (((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)) ↔ (((𝐺𝑖)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1))))
1817, 2elrab2 3711 . . . . . . 7 ((𝐺𝑖) ∈ 𝑄 ↔ ((𝐺𝑖) ∈ 𝐴 ∧ (((𝐺𝑖)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1))))
199, 18sylib 218 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐺𝑖) ∈ 𝐴 ∧ (((𝐺𝑖)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1))))
2019simprld 771 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑍) = 0)
2120sumeq2dv 15750 . . . 4 (𝜑 → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑍) = Σ𝑖 ∈ (1...𝑀)0)
22 fzfi 14023 . . . . 5 (1...𝑀) ∈ Fin
23 olc 867 . . . . 5 ((1...𝑀) ∈ Fin → ((1...𝑀) ⊆ (ℤ‘1) ∨ (1...𝑀) ∈ Fin))
24 sumz 15770 . . . . 5 (((1...𝑀) ⊆ (ℤ‘1) ∨ (1...𝑀) ∈ Fin) → Σ𝑖 ∈ (1...𝑀)0 = 0)
2522, 23, 24mp2b 10 . . . 4 Σ𝑖 ∈ (1...𝑀)0 = 0
2621, 25eqtrdi 2796 . . 3 (𝜑 → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑍) = 0)
2726oveq2d 7464 . 2 (𝜑 → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑍)) = ((1 / 𝑀) · 0))
284nncnd 12309 . . . 4 (𝜑𝑀 ∈ ℂ)
294nnne0d 12343 . . . 4 (𝜑𝑀 ≠ 0)
3028, 29reccld 12063 . . 3 (𝜑 → (1 / 𝑀) ∈ ℂ)
3130mul01d 11489 . 2 (𝜑 → ((1 / 𝑀) · 0) = 0)
328, 27, 313eqtrd 2784 1 (𝜑 → (𝑃𝑍) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  wral 3067  {crab 3443  wss 3976   class class class wbr 5166  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  Fincfn 9003  cr 11183  0cc0 11184  1c1 11185   · cmul 11189  cle 11325   / cdiv 11947  cn 12293  cuz 12903  ...cfz 13567  Σcsu 15734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735
This theorem is referenced by:  stoweidlem44  45965
  Copyright terms: Public domain W3C validator