| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem37 | Structured version Visualization version GIF version | ||
| Description: This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, (𝐺‘𝑖) is used for p_(ti). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| stoweidlem37.1 | ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} |
| stoweidlem37.2 | ⊢ 𝑃 = (𝑡 ∈ 𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡))) |
| stoweidlem37.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| stoweidlem37.4 | ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝑄) |
| stoweidlem37.5 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) |
| stoweidlem37.6 | ⊢ (𝜑 → 𝑍 ∈ 𝑇) |
| Ref | Expression |
|---|---|
| stoweidlem37 | ⊢ (𝜑 → (𝑃‘𝑍) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stoweidlem37.6 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑇) | |
| 2 | stoweidlem37.1 | . . . 4 ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} | |
| 3 | stoweidlem37.2 | . . . 4 ⊢ 𝑃 = (𝑡 ∈ 𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡))) | |
| 4 | stoweidlem37.3 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 5 | stoweidlem37.4 | . . . 4 ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝑄) | |
| 6 | stoweidlem37.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) | |
| 7 | 2, 3, 4, 5, 6 | stoweidlem30 46059 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑇) → (𝑃‘𝑍) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑍))) |
| 8 | 1, 7 | mpdan 687 | . 2 ⊢ (𝜑 → (𝑃‘𝑍) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑍))) |
| 9 | 5 | ffvelcdmda 7074 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐺‘𝑖) ∈ 𝑄) |
| 10 | fveq1 6875 | . . . . . . . . . 10 ⊢ (ℎ = (𝐺‘𝑖) → (ℎ‘𝑍) = ((𝐺‘𝑖)‘𝑍)) | |
| 11 | 10 | eqeq1d 2737 | . . . . . . . . 9 ⊢ (ℎ = (𝐺‘𝑖) → ((ℎ‘𝑍) = 0 ↔ ((𝐺‘𝑖)‘𝑍) = 0)) |
| 12 | fveq1 6875 | . . . . . . . . . . . 12 ⊢ (ℎ = (𝐺‘𝑖) → (ℎ‘𝑡) = ((𝐺‘𝑖)‘𝑡)) | |
| 13 | 12 | breq2d 5131 | . . . . . . . . . . 11 ⊢ (ℎ = (𝐺‘𝑖) → (0 ≤ (ℎ‘𝑡) ↔ 0 ≤ ((𝐺‘𝑖)‘𝑡))) |
| 14 | 12 | breq1d 5129 | . . . . . . . . . . 11 ⊢ (ℎ = (𝐺‘𝑖) → ((ℎ‘𝑡) ≤ 1 ↔ ((𝐺‘𝑖)‘𝑡) ≤ 1)) |
| 15 | 13, 14 | anbi12d 632 | . . . . . . . . . 10 ⊢ (ℎ = (𝐺‘𝑖) → ((0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ (0 ≤ ((𝐺‘𝑖)‘𝑡) ∧ ((𝐺‘𝑖)‘𝑡) ≤ 1))) |
| 16 | 15 | ralbidv 3163 | . . . . . . . . 9 ⊢ (ℎ = (𝐺‘𝑖) → (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝑖)‘𝑡) ∧ ((𝐺‘𝑖)‘𝑡) ≤ 1))) |
| 17 | 11, 16 | anbi12d 632 | . . . . . . . 8 ⊢ (ℎ = (𝐺‘𝑖) → (((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)) ↔ (((𝐺‘𝑖)‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝑖)‘𝑡) ∧ ((𝐺‘𝑖)‘𝑡) ≤ 1)))) |
| 18 | 17, 2 | elrab2 3674 | . . . . . . 7 ⊢ ((𝐺‘𝑖) ∈ 𝑄 ↔ ((𝐺‘𝑖) ∈ 𝐴 ∧ (((𝐺‘𝑖)‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝑖)‘𝑡) ∧ ((𝐺‘𝑖)‘𝑡) ≤ 1)))) |
| 19 | 9, 18 | sylib 218 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺‘𝑖) ∈ 𝐴 ∧ (((𝐺‘𝑖)‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝑖)‘𝑡) ∧ ((𝐺‘𝑖)‘𝑡) ≤ 1)))) |
| 20 | 19 | simprld 771 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺‘𝑖)‘𝑍) = 0) |
| 21 | 20 | sumeq2dv 15718 | . . . 4 ⊢ (𝜑 → Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑍) = Σ𝑖 ∈ (1...𝑀)0) |
| 22 | fzfi 13990 | . . . . 5 ⊢ (1...𝑀) ∈ Fin | |
| 23 | olc 868 | . . . . 5 ⊢ ((1...𝑀) ∈ Fin → ((1...𝑀) ⊆ (ℤ≥‘1) ∨ (1...𝑀) ∈ Fin)) | |
| 24 | sumz 15738 | . . . . 5 ⊢ (((1...𝑀) ⊆ (ℤ≥‘1) ∨ (1...𝑀) ∈ Fin) → Σ𝑖 ∈ (1...𝑀)0 = 0) | |
| 25 | 22, 23, 24 | mp2b 10 | . . . 4 ⊢ Σ𝑖 ∈ (1...𝑀)0 = 0 |
| 26 | 21, 25 | eqtrdi 2786 | . . 3 ⊢ (𝜑 → Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑍) = 0) |
| 27 | 26 | oveq2d 7421 | . 2 ⊢ (𝜑 → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑍)) = ((1 / 𝑀) · 0)) |
| 28 | 4 | nncnd 12256 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 29 | 4 | nnne0d 12290 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ 0) |
| 30 | 28, 29 | reccld 12010 | . . 3 ⊢ (𝜑 → (1 / 𝑀) ∈ ℂ) |
| 31 | 30 | mul01d 11434 | . 2 ⊢ (𝜑 → ((1 / 𝑀) · 0) = 0) |
| 32 | 8, 27, 31 | 3eqtrd 2774 | 1 ⊢ (𝜑 → (𝑃‘𝑍) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ∀wral 3051 {crab 3415 ⊆ wss 3926 class class class wbr 5119 ↦ cmpt 5201 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 Fincfn 8959 ℝcr 11128 0cc0 11129 1c1 11130 · cmul 11134 ≤ cle 11270 / cdiv 11894 ℕcn 12240 ℤ≥cuz 12852 ...cfz 13524 Σcsu 15702 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-fz 13525 df-fzo 13672 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-sum 15703 |
| This theorem is referenced by: stoweidlem44 46073 |
| Copyright terms: Public domain | W3C validator |