Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem37 Structured version   Visualization version   GIF version

Theorem stoweidlem37 46035
Description: This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, (𝐺𝑖) is used for p_(ti). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem37.1 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem37.2 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
stoweidlem37.3 (𝜑𝑀 ∈ ℕ)
stoweidlem37.4 (𝜑𝐺:(1...𝑀)⟶𝑄)
stoweidlem37.5 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem37.6 (𝜑𝑍𝑇)
Assertion
Ref Expression
stoweidlem37 (𝜑 → (𝑃𝑍) = 0)
Distinct variable groups:   𝑓,𝑖,𝑇   𝐴,𝑓   𝑓,𝐺   𝜑,𝑓,𝑖   ,𝑖,𝑡,𝑇   𝐴,   ,𝐺,𝑡   ,𝑍,𝑖,𝑡   𝑖,𝑀,𝑡
Allowed substitution hints:   𝜑(𝑡,)   𝐴(𝑡,𝑖)   𝑃(𝑡,𝑓,,𝑖)   𝑄(𝑡,𝑓,,𝑖)   𝐺(𝑖)   𝑀(𝑓,)   𝑍(𝑓)

Proof of Theorem stoweidlem37
StepHypRef Expression
1 stoweidlem37.6 . . 3 (𝜑𝑍𝑇)
2 stoweidlem37.1 . . . 4 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
3 stoweidlem37.2 . . . 4 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
4 stoweidlem37.3 . . . 4 (𝜑𝑀 ∈ ℕ)
5 stoweidlem37.4 . . . 4 (𝜑𝐺:(1...𝑀)⟶𝑄)
6 stoweidlem37.5 . . . 4 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
72, 3, 4, 5, 6stoweidlem30 46028 . . 3 ((𝜑𝑍𝑇) → (𝑃𝑍) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑍)))
81, 7mpdan 687 . 2 (𝜑 → (𝑃𝑍) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑍)))
95ffvelcdmda 7056 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺𝑖) ∈ 𝑄)
10 fveq1 6857 . . . . . . . . . 10 ( = (𝐺𝑖) → (𝑍) = ((𝐺𝑖)‘𝑍))
1110eqeq1d 2731 . . . . . . . . 9 ( = (𝐺𝑖) → ((𝑍) = 0 ↔ ((𝐺𝑖)‘𝑍) = 0))
12 fveq1 6857 . . . . . . . . . . . 12 ( = (𝐺𝑖) → (𝑡) = ((𝐺𝑖)‘𝑡))
1312breq2d 5119 . . . . . . . . . . 11 ( = (𝐺𝑖) → (0 ≤ (𝑡) ↔ 0 ≤ ((𝐺𝑖)‘𝑡)))
1412breq1d 5117 . . . . . . . . . . 11 ( = (𝐺𝑖) → ((𝑡) ≤ 1 ↔ ((𝐺𝑖)‘𝑡) ≤ 1))
1513, 14anbi12d 632 . . . . . . . . . 10 ( = (𝐺𝑖) → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1)))
1615ralbidv 3156 . . . . . . . . 9 ( = (𝐺𝑖) → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1)))
1711, 16anbi12d 632 . . . . . . . 8 ( = (𝐺𝑖) → (((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)) ↔ (((𝐺𝑖)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1))))
1817, 2elrab2 3662 . . . . . . 7 ((𝐺𝑖) ∈ 𝑄 ↔ ((𝐺𝑖) ∈ 𝐴 ∧ (((𝐺𝑖)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1))))
199, 18sylib 218 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐺𝑖) ∈ 𝐴 ∧ (((𝐺𝑖)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1))))
2019simprld 771 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑍) = 0)
2120sumeq2dv 15668 . . . 4 (𝜑 → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑍) = Σ𝑖 ∈ (1...𝑀)0)
22 fzfi 13937 . . . . 5 (1...𝑀) ∈ Fin
23 olc 868 . . . . 5 ((1...𝑀) ∈ Fin → ((1...𝑀) ⊆ (ℤ‘1) ∨ (1...𝑀) ∈ Fin))
24 sumz 15688 . . . . 5 (((1...𝑀) ⊆ (ℤ‘1) ∨ (1...𝑀) ∈ Fin) → Σ𝑖 ∈ (1...𝑀)0 = 0)
2522, 23, 24mp2b 10 . . . 4 Σ𝑖 ∈ (1...𝑀)0 = 0
2621, 25eqtrdi 2780 . . 3 (𝜑 → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑍) = 0)
2726oveq2d 7403 . 2 (𝜑 → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑍)) = ((1 / 𝑀) · 0))
284nncnd 12202 . . . 4 (𝜑𝑀 ∈ ℂ)
294nnne0d 12236 . . . 4 (𝜑𝑀 ≠ 0)
3028, 29reccld 11951 . . 3 (𝜑 → (1 / 𝑀) ∈ ℂ)
3130mul01d 11373 . 2 (𝜑 → ((1 / 𝑀) · 0) = 0)
328, 27, 313eqtrd 2768 1 (𝜑 → (𝑃𝑍) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  {crab 3405  wss 3914   class class class wbr 5107  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  Fincfn 8918  cr 11067  0cc0 11068  1c1 11069   · cmul 11073  cle 11209   / cdiv 11835  cn 12186  cuz 12793  ...cfz 13468  Σcsu 15652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653
This theorem is referenced by:  stoweidlem44  46042
  Copyright terms: Public domain W3C validator