Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem37 | Structured version Visualization version GIF version |
Description: This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, (𝐺‘𝑖) is used for p_(ti). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem37.1 | ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} |
stoweidlem37.2 | ⊢ 𝑃 = (𝑡 ∈ 𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡))) |
stoweidlem37.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
stoweidlem37.4 | ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝑄) |
stoweidlem37.5 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) |
stoweidlem37.6 | ⊢ (𝜑 → 𝑍 ∈ 𝑇) |
Ref | Expression |
---|---|
stoweidlem37 | ⊢ (𝜑 → (𝑃‘𝑍) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem37.6 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑇) | |
2 | stoweidlem37.1 | . . . 4 ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} | |
3 | stoweidlem37.2 | . . . 4 ⊢ 𝑃 = (𝑡 ∈ 𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡))) | |
4 | stoweidlem37.3 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
5 | stoweidlem37.4 | . . . 4 ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝑄) | |
6 | stoweidlem37.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) | |
7 | 2, 3, 4, 5, 6 | stoweidlem30 43461 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑇) → (𝑃‘𝑍) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑍))) |
8 | 1, 7 | mpdan 683 | . 2 ⊢ (𝜑 → (𝑃‘𝑍) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑍))) |
9 | 5 | ffvelrnda 6943 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐺‘𝑖) ∈ 𝑄) |
10 | fveq1 6755 | . . . . . . . . . 10 ⊢ (ℎ = (𝐺‘𝑖) → (ℎ‘𝑍) = ((𝐺‘𝑖)‘𝑍)) | |
11 | 10 | eqeq1d 2740 | . . . . . . . . 9 ⊢ (ℎ = (𝐺‘𝑖) → ((ℎ‘𝑍) = 0 ↔ ((𝐺‘𝑖)‘𝑍) = 0)) |
12 | fveq1 6755 | . . . . . . . . . . . 12 ⊢ (ℎ = (𝐺‘𝑖) → (ℎ‘𝑡) = ((𝐺‘𝑖)‘𝑡)) | |
13 | 12 | breq2d 5082 | . . . . . . . . . . 11 ⊢ (ℎ = (𝐺‘𝑖) → (0 ≤ (ℎ‘𝑡) ↔ 0 ≤ ((𝐺‘𝑖)‘𝑡))) |
14 | 12 | breq1d 5080 | . . . . . . . . . . 11 ⊢ (ℎ = (𝐺‘𝑖) → ((ℎ‘𝑡) ≤ 1 ↔ ((𝐺‘𝑖)‘𝑡) ≤ 1)) |
15 | 13, 14 | anbi12d 630 | . . . . . . . . . 10 ⊢ (ℎ = (𝐺‘𝑖) → ((0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ (0 ≤ ((𝐺‘𝑖)‘𝑡) ∧ ((𝐺‘𝑖)‘𝑡) ≤ 1))) |
16 | 15 | ralbidv 3120 | . . . . . . . . 9 ⊢ (ℎ = (𝐺‘𝑖) → (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝑖)‘𝑡) ∧ ((𝐺‘𝑖)‘𝑡) ≤ 1))) |
17 | 11, 16 | anbi12d 630 | . . . . . . . 8 ⊢ (ℎ = (𝐺‘𝑖) → (((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)) ↔ (((𝐺‘𝑖)‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝑖)‘𝑡) ∧ ((𝐺‘𝑖)‘𝑡) ≤ 1)))) |
18 | 17, 2 | elrab2 3620 | . . . . . . 7 ⊢ ((𝐺‘𝑖) ∈ 𝑄 ↔ ((𝐺‘𝑖) ∈ 𝐴 ∧ (((𝐺‘𝑖)‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝑖)‘𝑡) ∧ ((𝐺‘𝑖)‘𝑡) ≤ 1)))) |
19 | 9, 18 | sylib 217 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺‘𝑖) ∈ 𝐴 ∧ (((𝐺‘𝑖)‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝑖)‘𝑡) ∧ ((𝐺‘𝑖)‘𝑡) ≤ 1)))) |
20 | 19 | simprld 768 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺‘𝑖)‘𝑍) = 0) |
21 | 20 | sumeq2dv 15343 | . . . 4 ⊢ (𝜑 → Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑍) = Σ𝑖 ∈ (1...𝑀)0) |
22 | fzfi 13620 | . . . . 5 ⊢ (1...𝑀) ∈ Fin | |
23 | olc 864 | . . . . 5 ⊢ ((1...𝑀) ∈ Fin → ((1...𝑀) ⊆ (ℤ≥‘1) ∨ (1...𝑀) ∈ Fin)) | |
24 | sumz 15362 | . . . . 5 ⊢ (((1...𝑀) ⊆ (ℤ≥‘1) ∨ (1...𝑀) ∈ Fin) → Σ𝑖 ∈ (1...𝑀)0 = 0) | |
25 | 22, 23, 24 | mp2b 10 | . . . 4 ⊢ Σ𝑖 ∈ (1...𝑀)0 = 0 |
26 | 21, 25 | eqtrdi 2795 | . . 3 ⊢ (𝜑 → Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑍) = 0) |
27 | 26 | oveq2d 7271 | . 2 ⊢ (𝜑 → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑍)) = ((1 / 𝑀) · 0)) |
28 | 4 | nncnd 11919 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
29 | 4 | nnne0d 11953 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ 0) |
30 | 28, 29 | reccld 11674 | . . 3 ⊢ (𝜑 → (1 / 𝑀) ∈ ℂ) |
31 | 30 | mul01d 11104 | . 2 ⊢ (𝜑 → ((1 / 𝑀) · 0) = 0) |
32 | 8, 27, 31 | 3eqtrd 2782 | 1 ⊢ (𝜑 → (𝑃‘𝑍) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 ⊆ wss 3883 class class class wbr 5070 ↦ cmpt 5153 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 ℝcr 10801 0cc0 10802 1c1 10803 · cmul 10807 ≤ cle 10941 / cdiv 11562 ℕcn 11903 ℤ≥cuz 12511 ...cfz 13168 Σcsu 15325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 |
This theorem is referenced by: stoweidlem44 43475 |
Copyright terms: Public domain | W3C validator |