Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem37 | Structured version Visualization version GIF version |
Description: This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, (𝐺‘𝑖) is used for p_(ti). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem37.1 | ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} |
stoweidlem37.2 | ⊢ 𝑃 = (𝑡 ∈ 𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡))) |
stoweidlem37.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
stoweidlem37.4 | ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝑄) |
stoweidlem37.5 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) |
stoweidlem37.6 | ⊢ (𝜑 → 𝑍 ∈ 𝑇) |
Ref | Expression |
---|---|
stoweidlem37 | ⊢ (𝜑 → (𝑃‘𝑍) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem37.6 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑇) | |
2 | stoweidlem37.1 | . . . 4 ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} | |
3 | stoweidlem37.2 | . . . 4 ⊢ 𝑃 = (𝑡 ∈ 𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡))) | |
4 | stoweidlem37.3 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
5 | stoweidlem37.4 | . . . 4 ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝑄) | |
6 | stoweidlem37.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) | |
7 | 2, 3, 4, 5, 6 | stoweidlem30 43542 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑇) → (𝑃‘𝑍) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑍))) |
8 | 1, 7 | mpdan 684 | . 2 ⊢ (𝜑 → (𝑃‘𝑍) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑍))) |
9 | 5 | ffvelrnda 6958 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐺‘𝑖) ∈ 𝑄) |
10 | fveq1 6770 | . . . . . . . . . 10 ⊢ (ℎ = (𝐺‘𝑖) → (ℎ‘𝑍) = ((𝐺‘𝑖)‘𝑍)) | |
11 | 10 | eqeq1d 2742 | . . . . . . . . 9 ⊢ (ℎ = (𝐺‘𝑖) → ((ℎ‘𝑍) = 0 ↔ ((𝐺‘𝑖)‘𝑍) = 0)) |
12 | fveq1 6770 | . . . . . . . . . . . 12 ⊢ (ℎ = (𝐺‘𝑖) → (ℎ‘𝑡) = ((𝐺‘𝑖)‘𝑡)) | |
13 | 12 | breq2d 5091 | . . . . . . . . . . 11 ⊢ (ℎ = (𝐺‘𝑖) → (0 ≤ (ℎ‘𝑡) ↔ 0 ≤ ((𝐺‘𝑖)‘𝑡))) |
14 | 12 | breq1d 5089 | . . . . . . . . . . 11 ⊢ (ℎ = (𝐺‘𝑖) → ((ℎ‘𝑡) ≤ 1 ↔ ((𝐺‘𝑖)‘𝑡) ≤ 1)) |
15 | 13, 14 | anbi12d 631 | . . . . . . . . . 10 ⊢ (ℎ = (𝐺‘𝑖) → ((0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ (0 ≤ ((𝐺‘𝑖)‘𝑡) ∧ ((𝐺‘𝑖)‘𝑡) ≤ 1))) |
16 | 15 | ralbidv 3123 | . . . . . . . . 9 ⊢ (ℎ = (𝐺‘𝑖) → (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝑖)‘𝑡) ∧ ((𝐺‘𝑖)‘𝑡) ≤ 1))) |
17 | 11, 16 | anbi12d 631 | . . . . . . . 8 ⊢ (ℎ = (𝐺‘𝑖) → (((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)) ↔ (((𝐺‘𝑖)‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝑖)‘𝑡) ∧ ((𝐺‘𝑖)‘𝑡) ≤ 1)))) |
18 | 17, 2 | elrab2 3629 | . . . . . . 7 ⊢ ((𝐺‘𝑖) ∈ 𝑄 ↔ ((𝐺‘𝑖) ∈ 𝐴 ∧ (((𝐺‘𝑖)‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝑖)‘𝑡) ∧ ((𝐺‘𝑖)‘𝑡) ≤ 1)))) |
19 | 9, 18 | sylib 217 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺‘𝑖) ∈ 𝐴 ∧ (((𝐺‘𝑖)‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝑖)‘𝑡) ∧ ((𝐺‘𝑖)‘𝑡) ≤ 1)))) |
20 | 19 | simprld 769 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺‘𝑖)‘𝑍) = 0) |
21 | 20 | sumeq2dv 15413 | . . . 4 ⊢ (𝜑 → Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑍) = Σ𝑖 ∈ (1...𝑀)0) |
22 | fzfi 13690 | . . . . 5 ⊢ (1...𝑀) ∈ Fin | |
23 | olc 865 | . . . . 5 ⊢ ((1...𝑀) ∈ Fin → ((1...𝑀) ⊆ (ℤ≥‘1) ∨ (1...𝑀) ∈ Fin)) | |
24 | sumz 15432 | . . . . 5 ⊢ (((1...𝑀) ⊆ (ℤ≥‘1) ∨ (1...𝑀) ∈ Fin) → Σ𝑖 ∈ (1...𝑀)0 = 0) | |
25 | 22, 23, 24 | mp2b 10 | . . . 4 ⊢ Σ𝑖 ∈ (1...𝑀)0 = 0 |
26 | 21, 25 | eqtrdi 2796 | . . 3 ⊢ (𝜑 → Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑍) = 0) |
27 | 26 | oveq2d 7287 | . 2 ⊢ (𝜑 → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑍)) = ((1 / 𝑀) · 0)) |
28 | 4 | nncnd 11989 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
29 | 4 | nnne0d 12023 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ 0) |
30 | 28, 29 | reccld 11744 | . . 3 ⊢ (𝜑 → (1 / 𝑀) ∈ ℂ) |
31 | 30 | mul01d 11174 | . 2 ⊢ (𝜑 → ((1 / 𝑀) · 0) = 0) |
32 | 8, 27, 31 | 3eqtrd 2784 | 1 ⊢ (𝜑 → (𝑃‘𝑍) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 = wceq 1542 ∈ wcel 2110 ∀wral 3066 {crab 3070 ⊆ wss 3892 class class class wbr 5079 ↦ cmpt 5162 ⟶wf 6428 ‘cfv 6432 (class class class)co 7271 Fincfn 8716 ℝcr 10871 0cc0 10872 1c1 10873 · cmul 10877 ≤ cle 11011 / cdiv 11632 ℕcn 11973 ℤ≥cuz 12581 ...cfz 13238 Σcsu 15395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-inf2 9377 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-sup 9179 df-oi 9247 df-card 9698 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12582 df-rp 12730 df-fz 13239 df-fzo 13382 df-seq 13720 df-exp 13781 df-hash 14043 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-clim 15195 df-sum 15396 |
This theorem is referenced by: stoweidlem44 43556 |
Copyright terms: Public domain | W3C validator |