Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem37 Structured version   Visualization version   GIF version

Theorem stoweidlem37 42329
Description: This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, (𝐺𝑖) is used for p_(ti). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem37.1 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem37.2 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
stoweidlem37.3 (𝜑𝑀 ∈ ℕ)
stoweidlem37.4 (𝜑𝐺:(1...𝑀)⟶𝑄)
stoweidlem37.5 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem37.6 (𝜑𝑍𝑇)
Assertion
Ref Expression
stoweidlem37 (𝜑 → (𝑃𝑍) = 0)
Distinct variable groups:   𝑓,𝑖,𝑇   𝐴,𝑓   𝑓,𝐺   𝜑,𝑓,𝑖   ,𝑖,𝑡,𝑇   𝐴,   ,𝐺,𝑡   ,𝑍,𝑖,𝑡   𝑖,𝑀,𝑡
Allowed substitution hints:   𝜑(𝑡,)   𝐴(𝑡,𝑖)   𝑃(𝑡,𝑓,,𝑖)   𝑄(𝑡,𝑓,,𝑖)   𝐺(𝑖)   𝑀(𝑓,)   𝑍(𝑓)

Proof of Theorem stoweidlem37
StepHypRef Expression
1 stoweidlem37.6 . . 3 (𝜑𝑍𝑇)
2 stoweidlem37.1 . . . 4 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
3 stoweidlem37.2 . . . 4 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
4 stoweidlem37.3 . . . 4 (𝜑𝑀 ∈ ℕ)
5 stoweidlem37.4 . . . 4 (𝜑𝐺:(1...𝑀)⟶𝑄)
6 stoweidlem37.5 . . . 4 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
72, 3, 4, 5, 6stoweidlem30 42322 . . 3 ((𝜑𝑍𝑇) → (𝑃𝑍) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑍)))
81, 7mpdan 685 . 2 (𝜑 → (𝑃𝑍) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑍)))
95ffvelrnda 6853 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺𝑖) ∈ 𝑄)
10 fveq1 6671 . . . . . . . . . 10 ( = (𝐺𝑖) → (𝑍) = ((𝐺𝑖)‘𝑍))
1110eqeq1d 2825 . . . . . . . . 9 ( = (𝐺𝑖) → ((𝑍) = 0 ↔ ((𝐺𝑖)‘𝑍) = 0))
12 fveq1 6671 . . . . . . . . . . . 12 ( = (𝐺𝑖) → (𝑡) = ((𝐺𝑖)‘𝑡))
1312breq2d 5080 . . . . . . . . . . 11 ( = (𝐺𝑖) → (0 ≤ (𝑡) ↔ 0 ≤ ((𝐺𝑖)‘𝑡)))
1412breq1d 5078 . . . . . . . . . . 11 ( = (𝐺𝑖) → ((𝑡) ≤ 1 ↔ ((𝐺𝑖)‘𝑡) ≤ 1))
1513, 14anbi12d 632 . . . . . . . . . 10 ( = (𝐺𝑖) → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1)))
1615ralbidv 3199 . . . . . . . . 9 ( = (𝐺𝑖) → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1)))
1711, 16anbi12d 632 . . . . . . . 8 ( = (𝐺𝑖) → (((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)) ↔ (((𝐺𝑖)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1))))
1817, 2elrab2 3685 . . . . . . 7 ((𝐺𝑖) ∈ 𝑄 ↔ ((𝐺𝑖) ∈ 𝐴 ∧ (((𝐺𝑖)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1))))
199, 18sylib 220 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐺𝑖) ∈ 𝐴 ∧ (((𝐺𝑖)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1))))
2019simprld 770 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑍) = 0)
2120sumeq2dv 15062 . . . 4 (𝜑 → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑍) = Σ𝑖 ∈ (1...𝑀)0)
22 fzfi 13343 . . . . 5 (1...𝑀) ∈ Fin
23 olc 864 . . . . 5 ((1...𝑀) ∈ Fin → ((1...𝑀) ⊆ (ℤ‘1) ∨ (1...𝑀) ∈ Fin))
24 sumz 15081 . . . . 5 (((1...𝑀) ⊆ (ℤ‘1) ∨ (1...𝑀) ∈ Fin) → Σ𝑖 ∈ (1...𝑀)0 = 0)
2522, 23, 24mp2b 10 . . . 4 Σ𝑖 ∈ (1...𝑀)0 = 0
2621, 25syl6eq 2874 . . 3 (𝜑 → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑍) = 0)
2726oveq2d 7174 . 2 (𝜑 → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑍)) = ((1 / 𝑀) · 0))
284nncnd 11656 . . . 4 (𝜑𝑀 ∈ ℂ)
294nnne0d 11690 . . . 4 (𝜑𝑀 ≠ 0)
3028, 29reccld 11411 . . 3 (𝜑 → (1 / 𝑀) ∈ ℂ)
3130mul01d 10841 . 2 (𝜑 → ((1 / 𝑀) · 0) = 0)
328, 27, 313eqtrd 2862 1 (𝜑 → (𝑃𝑍) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1537  wcel 2114  wral 3140  {crab 3144  wss 3938   class class class wbr 5068  cmpt 5148  wf 6353  cfv 6357  (class class class)co 7158  Fincfn 8511  cr 10538  0cc0 10539  1c1 10540   · cmul 10544  cle 10678   / cdiv 11299  cn 11640  cuz 12246  ...cfz 12895  Σcsu 15044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045
This theorem is referenced by:  stoweidlem44  42336
  Copyright terms: Public domain W3C validator