MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmghm Structured version   Visualization version   GIF version

Theorem lmghm 20641
Description: A homomorphism of left modules is a homomorphism of groups. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Assertion
Ref Expression
lmghm (𝐹 ∈ (𝑆 LMHom 𝑇) β†’ 𝐹 ∈ (𝑆 GrpHom 𝑇))

Proof of Theorem lmghm
StepHypRef Expression
1 eqid 2732 . . 3 (Scalarβ€˜π‘†) = (Scalarβ€˜π‘†)
2 eqid 2732 . . 3 (Scalarβ€˜π‘‡) = (Scalarβ€˜π‘‡)
31, 2lmhmlem 20639 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) β†’ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (Scalarβ€˜π‘‡) = (Scalarβ€˜π‘†))))
43simprld 770 1 (𝐹 ∈ (𝑆 LMHom 𝑇) β†’ 𝐹 ∈ (𝑆 GrpHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  β€˜cfv 6543  (class class class)co 7408  Scalarcsca 17199   GrpHom cghm 19088  LModclmod 20470   LMHom clmhm 20629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-lmhm 20632
This theorem is referenced by:  lmhmf  20644  islmhm2  20648  lmhmco  20653  lmhmplusg  20654  lmhmvsca  20655  lmhmf1o  20656  lmhmima  20657  lmhmpreima  20658  reslmhm  20662  reslmhm2  20663  reslmhm2b  20664  lmhmeql  20665  lmimgim  20675  ip0l  21188  ipdir  21191  islindf5  21393  isnmhm2  24268  nmoleub2lem  24629  nmoleub2lem2  24631  nmhmcn  24635  lmhmqusker  32529  dimkerim  32707  kercvrlsm  41815  pwssplit4  41821  mendring  41924
  Copyright terms: Public domain W3C validator