| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmghm | Structured version Visualization version GIF version | ||
| Description: A homomorphism of left modules is a homomorphism of groups. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| Ref | Expression |
|---|---|
| lmghm | ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (Scalar‘𝑆) = (Scalar‘𝑆) | |
| 2 | eqid 2735 | . . 3 ⊢ (Scalar‘𝑇) = (Scalar‘𝑇) | |
| 3 | 1, 2 | lmhmlem 20987 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (Scalar‘𝑇) = (Scalar‘𝑆)))) |
| 4 | 3 | simprld 771 | 1 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 Scalarcsca 17274 GrpHom cghm 19195 LModclmod 20817 LMHom clmhm 20977 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-lmhm 20980 |
| This theorem is referenced by: lmhmf 20992 islmhm2 20996 lmhmco 21001 lmhmplusg 21002 lmhmvsca 21003 lmhmf1o 21004 lmhmima 21005 lmhmpreima 21006 reslmhm 21010 reslmhm2 21011 reslmhm2b 21012 lmhmeql 21013 lmimgim 21023 ip0l 21596 ipdir 21599 islindf5 21799 isnmhm2 24691 nmoleub2lem 25065 nmoleub2lem2 25067 nmhmcn 25071 lmhmghmd 33032 lmhmqusker 33432 dimkerim 33667 kercvrlsm 43107 pwssplit4 43113 mendring 43212 |
| Copyright terms: Public domain | W3C validator |