MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmghm Structured version   Visualization version   GIF version

Theorem lmghm 20987
Description: A homomorphism of left modules is a homomorphism of groups. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Assertion
Ref Expression
lmghm (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))

Proof of Theorem lmghm
StepHypRef Expression
1 eqid 2735 . . 3 (Scalar‘𝑆) = (Scalar‘𝑆)
2 eqid 2735 . . 3 (Scalar‘𝑇) = (Scalar‘𝑇)
31, 2lmhmlem 20985 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (Scalar‘𝑇) = (Scalar‘𝑆))))
43simprld 771 1 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cfv 6530  (class class class)co 7403  Scalarcsca 17272   GrpHom cghm 19193  LModclmod 20815   LMHom clmhm 20975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6483  df-fun 6532  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-lmhm 20978
This theorem is referenced by:  lmhmf  20990  islmhm2  20994  lmhmco  20999  lmhmplusg  21000  lmhmvsca  21001  lmhmf1o  21002  lmhmima  21003  lmhmpreima  21004  reslmhm  21008  reslmhm2  21009  reslmhm2b  21010  lmhmeql  21011  lmimgim  21021  ip0l  21594  ipdir  21597  islindf5  21797  isnmhm2  24689  nmoleub2lem  25063  nmoleub2lem2  25065  nmhmcn  25069  lmhmghmd  32978  lmhmqusker  33378  dimkerim  33613  kercvrlsm  43054  pwssplit4  43060  mendring  43159
  Copyright terms: Public domain W3C validator