Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issalgend Structured version   Visualization version   GIF version

Theorem issalgend 46259
Description: One side of dfsalgen2 46262. If a sigma-algebra on 𝑋 includes 𝑋 and it is included in all the sigma-algebras with such two properties, then it is the sigma-algebra generated by 𝑋. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
issalgend.x (𝜑𝑋𝑉)
issalgend.s (𝜑𝑆 ∈ SAlg)
issalgend.u (𝜑 𝑆 = 𝑋)
issalgend.i (𝜑𝑋𝑆)
issalgend.a ((𝜑 ∧ (𝑦 ∈ SAlg ∧ 𝑦 = 𝑋𝑋𝑦)) → 𝑆𝑦)
Assertion
Ref Expression
issalgend (𝜑 → (SalGen‘𝑋) = 𝑆)
Distinct variable groups:   𝑦,𝑆   𝑦,𝑋   𝜑,𝑦
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem issalgend
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 issalgend.x . . 3 (𝜑𝑋𝑉)
2 eqid 2740 . . 3 (SalGen‘𝑋) = (SalGen‘𝑋)
3 issalgend.s . . 3 (𝜑𝑆 ∈ SAlg)
4 issalgend.i . . 3 (𝜑𝑋𝑆)
5 issalgend.u . . 3 (𝜑 𝑆 = 𝑋)
61, 2, 3, 4, 5salgenss 46257 . 2 (𝜑 → (SalGen‘𝑋) ⊆ 𝑆)
7 simpl 482 . . . . . 6 ((𝜑𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)}) → 𝜑)
8 elrabi 3703 . . . . . . 7 (𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → 𝑦 ∈ SAlg)
98adantl 481 . . . . . 6 ((𝜑𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)}) → 𝑦 ∈ SAlg)
10 unieq 4942 . . . . . . . . . . . 12 (𝑠 = 𝑦 𝑠 = 𝑦)
1110eqeq1d 2742 . . . . . . . . . . 11 (𝑠 = 𝑦 → ( 𝑠 = 𝑋 𝑦 = 𝑋))
12 sseq2 4035 . . . . . . . . . . 11 (𝑠 = 𝑦 → (𝑋𝑠𝑋𝑦))
1311, 12anbi12d 631 . . . . . . . . . 10 (𝑠 = 𝑦 → (( 𝑠 = 𝑋𝑋𝑠) ↔ ( 𝑦 = 𝑋𝑋𝑦)))
1413elrab 3708 . . . . . . . . 9 (𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ↔ (𝑦 ∈ SAlg ∧ ( 𝑦 = 𝑋𝑋𝑦)))
1514biimpi 216 . . . . . . . 8 (𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → (𝑦 ∈ SAlg ∧ ( 𝑦 = 𝑋𝑋𝑦)))
1615simprld 771 . . . . . . 7 (𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → 𝑦 = 𝑋)
1716adantl 481 . . . . . 6 ((𝜑𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)}) → 𝑦 = 𝑋)
1815simprrd 773 . . . . . . 7 (𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → 𝑋𝑦)
1918adantl 481 . . . . . 6 ((𝜑𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)}) → 𝑋𝑦)
20 issalgend.a . . . . . 6 ((𝜑 ∧ (𝑦 ∈ SAlg ∧ 𝑦 = 𝑋𝑋𝑦)) → 𝑆𝑦)
217, 9, 17, 19, 20syl13anc 1372 . . . . 5 ((𝜑𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)}) → 𝑆𝑦)
2221ralrimiva 3152 . . . 4 (𝜑 → ∀𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)}𝑆𝑦)
23 ssint 4988 . . . 4 (𝑆 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ↔ ∀𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)}𝑆𝑦)
2422, 23sylibr 234 . . 3 (𝜑𝑆 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
25 salgenval 46242 . . . 4 (𝑋𝑉 → (SalGen‘𝑋) = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
261, 25syl 17 . . 3 (𝜑 → (SalGen‘𝑋) = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
2724, 26sseqtrrd 4050 . 2 (𝜑𝑆 ⊆ (SalGen‘𝑋))
286, 27eqssd 4026 1 (𝜑 → (SalGen‘𝑋) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  {crab 3443  wss 3976   cuni 4931   cint 4970  cfv 6573  SAlgcsalg 46229  SalGencsalgen 46233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-salg 46230  df-salgen 46234
This theorem is referenced by:  dfsalgen2  46262
  Copyright terms: Public domain W3C validator