Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issalgend Structured version   Visualization version   GIF version

Theorem issalgend 42611
Description: One side of dfsalgen2 42614. If a sigma-algebra on 𝑋 includes 𝑋 and it is included in all the sigma-algebras with such two properties, then it is the sigma-algebra generated by 𝑋. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
issalgend.x (𝜑𝑋𝑉)
issalgend.s (𝜑𝑆 ∈ SAlg)
issalgend.u (𝜑 𝑆 = 𝑋)
issalgend.i (𝜑𝑋𝑆)
issalgend.a ((𝜑 ∧ (𝑦 ∈ SAlg ∧ 𝑦 = 𝑋𝑋𝑦)) → 𝑆𝑦)
Assertion
Ref Expression
issalgend (𝜑 → (SalGen‘𝑋) = 𝑆)
Distinct variable groups:   𝑦,𝑆   𝑦,𝑋   𝜑,𝑦
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem issalgend
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 issalgend.x . . 3 (𝜑𝑋𝑉)
2 eqid 2819 . . 3 (SalGen‘𝑋) = (SalGen‘𝑋)
3 issalgend.s . . 3 (𝜑𝑆 ∈ SAlg)
4 issalgend.i . . 3 (𝜑𝑋𝑆)
5 issalgend.u . . 3 (𝜑 𝑆 = 𝑋)
61, 2, 3, 4, 5salgenss 42609 . 2 (𝜑 → (SalGen‘𝑋) ⊆ 𝑆)
7 simpl 485 . . . . . 6 ((𝜑𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)}) → 𝜑)
8 elrabi 3673 . . . . . . 7 (𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → 𝑦 ∈ SAlg)
98adantl 484 . . . . . 6 ((𝜑𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)}) → 𝑦 ∈ SAlg)
10 unieq 4838 . . . . . . . . . . . 12 (𝑠 = 𝑦 𝑠 = 𝑦)
1110eqeq1d 2821 . . . . . . . . . . 11 (𝑠 = 𝑦 → ( 𝑠 = 𝑋 𝑦 = 𝑋))
12 sseq2 3991 . . . . . . . . . . 11 (𝑠 = 𝑦 → (𝑋𝑠𝑋𝑦))
1311, 12anbi12d 632 . . . . . . . . . 10 (𝑠 = 𝑦 → (( 𝑠 = 𝑋𝑋𝑠) ↔ ( 𝑦 = 𝑋𝑋𝑦)))
1413elrab 3678 . . . . . . . . 9 (𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ↔ (𝑦 ∈ SAlg ∧ ( 𝑦 = 𝑋𝑋𝑦)))
1514biimpi 218 . . . . . . . 8 (𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → (𝑦 ∈ SAlg ∧ ( 𝑦 = 𝑋𝑋𝑦)))
1615simprld 770 . . . . . . 7 (𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → 𝑦 = 𝑋)
1716adantl 484 . . . . . 6 ((𝜑𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)}) → 𝑦 = 𝑋)
1815simprrd 772 . . . . . . 7 (𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → 𝑋𝑦)
1918adantl 484 . . . . . 6 ((𝜑𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)}) → 𝑋𝑦)
20 issalgend.a . . . . . 6 ((𝜑 ∧ (𝑦 ∈ SAlg ∧ 𝑦 = 𝑋𝑋𝑦)) → 𝑆𝑦)
217, 9, 17, 19, 20syl13anc 1367 . . . . 5 ((𝜑𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)}) → 𝑆𝑦)
2221ralrimiva 3180 . . . 4 (𝜑 → ∀𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)}𝑆𝑦)
23 ssint 4883 . . . 4 (𝑆 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ↔ ∀𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)}𝑆𝑦)
2422, 23sylibr 236 . . 3 (𝜑𝑆 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
25 salgenval 42596 . . . 4 (𝑋𝑉 → (SalGen‘𝑋) = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
261, 25syl 17 . . 3 (𝜑 → (SalGen‘𝑋) = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
2724, 26sseqtrrd 4006 . 2 (𝜑𝑆 ⊆ (SalGen‘𝑋))
286, 27eqssd 3982 1 (𝜑 → (SalGen‘𝑋) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1531  wcel 2108  wral 3136  {crab 3140  wss 3934   cuni 4830   cint 4867  cfv 6348  SAlgcsalg 42583  SalGencsalgen 42587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-int 4868  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-iota 6307  df-fun 6350  df-fv 6356  df-salg 42584  df-salgen 42588
This theorem is referenced by:  dfsalgen2  42614
  Copyright terms: Public domain W3C validator