Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issalgend Structured version   Visualization version   GIF version

Theorem issalgend 43877
Description: One side of dfsalgen2 43880. If a sigma-algebra on 𝑋 includes 𝑋 and it is included in all the sigma-algebras with such two properties, then it is the sigma-algebra generated by 𝑋. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
issalgend.x (𝜑𝑋𝑉)
issalgend.s (𝜑𝑆 ∈ SAlg)
issalgend.u (𝜑 𝑆 = 𝑋)
issalgend.i (𝜑𝑋𝑆)
issalgend.a ((𝜑 ∧ (𝑦 ∈ SAlg ∧ 𝑦 = 𝑋𝑋𝑦)) → 𝑆𝑦)
Assertion
Ref Expression
issalgend (𝜑 → (SalGen‘𝑋) = 𝑆)
Distinct variable groups:   𝑦,𝑆   𝑦,𝑋   𝜑,𝑦
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem issalgend
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 issalgend.x . . 3 (𝜑𝑋𝑉)
2 eqid 2738 . . 3 (SalGen‘𝑋) = (SalGen‘𝑋)
3 issalgend.s . . 3 (𝜑𝑆 ∈ SAlg)
4 issalgend.i . . 3 (𝜑𝑋𝑆)
5 issalgend.u . . 3 (𝜑 𝑆 = 𝑋)
61, 2, 3, 4, 5salgenss 43875 . 2 (𝜑 → (SalGen‘𝑋) ⊆ 𝑆)
7 simpl 483 . . . . . 6 ((𝜑𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)}) → 𝜑)
8 elrabi 3618 . . . . . . 7 (𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → 𝑦 ∈ SAlg)
98adantl 482 . . . . . 6 ((𝜑𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)}) → 𝑦 ∈ SAlg)
10 unieq 4850 . . . . . . . . . . . 12 (𝑠 = 𝑦 𝑠 = 𝑦)
1110eqeq1d 2740 . . . . . . . . . . 11 (𝑠 = 𝑦 → ( 𝑠 = 𝑋 𝑦 = 𝑋))
12 sseq2 3947 . . . . . . . . . . 11 (𝑠 = 𝑦 → (𝑋𝑠𝑋𝑦))
1311, 12anbi12d 631 . . . . . . . . . 10 (𝑠 = 𝑦 → (( 𝑠 = 𝑋𝑋𝑠) ↔ ( 𝑦 = 𝑋𝑋𝑦)))
1413elrab 3624 . . . . . . . . 9 (𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ↔ (𝑦 ∈ SAlg ∧ ( 𝑦 = 𝑋𝑋𝑦)))
1514biimpi 215 . . . . . . . 8 (𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → (𝑦 ∈ SAlg ∧ ( 𝑦 = 𝑋𝑋𝑦)))
1615simprld 769 . . . . . . 7 (𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → 𝑦 = 𝑋)
1716adantl 482 . . . . . 6 ((𝜑𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)}) → 𝑦 = 𝑋)
1815simprrd 771 . . . . . . 7 (𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → 𝑋𝑦)
1918adantl 482 . . . . . 6 ((𝜑𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)}) → 𝑋𝑦)
20 issalgend.a . . . . . 6 ((𝜑 ∧ (𝑦 ∈ SAlg ∧ 𝑦 = 𝑋𝑋𝑦)) → 𝑆𝑦)
217, 9, 17, 19, 20syl13anc 1371 . . . . 5 ((𝜑𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)}) → 𝑆𝑦)
2221ralrimiva 3103 . . . 4 (𝜑 → ∀𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)}𝑆𝑦)
23 ssint 4895 . . . 4 (𝑆 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ↔ ∀𝑦 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)}𝑆𝑦)
2422, 23sylibr 233 . . 3 (𝜑𝑆 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
25 salgenval 43862 . . . 4 (𝑋𝑉 → (SalGen‘𝑋) = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
261, 25syl 17 . . 3 (𝜑 → (SalGen‘𝑋) = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
2724, 26sseqtrrd 3962 . 2 (𝜑𝑆 ⊆ (SalGen‘𝑋))
286, 27eqssd 3938 1 (𝜑 → (SalGen‘𝑋) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  {crab 3068  wss 3887   cuni 4839   cint 4879  cfv 6433  SAlgcsalg 43849  SalGencsalgen 43853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-salg 43850  df-salgen 43854
This theorem is referenced by:  dfsalgen2  43880
  Copyright terms: Public domain W3C validator