MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2lem6 Structured version   Visualization version   GIF version

Theorem fpwwe2lem6 10060
Description: Lemma for fpwwe2 10068. (Contributed by Mario Carneiro, 18-May-2015.)
Hypotheses
Ref Expression
fpwwe2.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
fpwwe2.2 (𝜑𝐴 ∈ V)
fpwwe2.3 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
fpwwe2lem9.x (𝜑𝑋𝑊𝑅)
fpwwe2lem9.y (𝜑𝑌𝑊𝑆)
fpwwe2lem9.m 𝑀 = OrdIso(𝑅, 𝑋)
fpwwe2lem9.n 𝑁 = OrdIso(𝑆, 𝑌)
fpwwe2lem7.1 (𝜑𝐵 ∈ dom 𝑀)
fpwwe2lem7.2 (𝜑𝐵 ∈ dom 𝑁)
fpwwe2lem7.3 (𝜑 → (𝑀𝐵) = (𝑁𝐵))
Assertion
Ref Expression
fpwwe2lem6 ((𝜑𝐶𝑅(𝑀𝐵)) → (𝐶𝑋𝐶𝑌 ∧ (𝑀𝐶) = (𝑁𝐶)))
Distinct variable groups:   𝑦,𝑢,𝐵   𝑢,𝑟,𝑥,𝑦,𝐹   𝑋,𝑟,𝑢,𝑥,𝑦   𝑀,𝑟,𝑢,𝑥,𝑦   𝑁,𝑟,𝑢,𝑥,𝑦   𝜑,𝑟,𝑢,𝑥,𝑦   𝐴,𝑟,𝑥   𝑅,𝑟,𝑢,𝑥,𝑦   𝑌,𝑟,𝑢,𝑥,𝑦   𝑆,𝑟,𝑢,𝑥,𝑦   𝑊,𝑟,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑢)   𝐵(𝑥,𝑟)   𝐶(𝑥,𝑦,𝑢,𝑟)

Proof of Theorem fpwwe2lem6
StepHypRef Expression
1 fpwwe2lem9.x . . . . . . 7 (𝜑𝑋𝑊𝑅)
2 fpwwe2.1 . . . . . . . 8 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
3 fpwwe2.2 . . . . . . . 8 (𝜑𝐴 ∈ V)
42, 3fpwwe2lem2 10057 . . . . . . 7 (𝜑 → (𝑋𝑊𝑅 ↔ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))))
51, 4mpbid 234 . . . . . 6 (𝜑 → ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)))
65simplrd 768 . . . . 5 (𝜑𝑅 ⊆ (𝑋 × 𝑋))
76ssbrd 5112 . . . 4 (𝜑 → (𝐶𝑅(𝑀𝐵) → 𝐶(𝑋 × 𝑋)(𝑀𝐵)))
8 brxp 5604 . . . . 5 (𝐶(𝑋 × 𝑋)(𝑀𝐵) ↔ (𝐶𝑋 ∧ (𝑀𝐵) ∈ 𝑋))
98simplbi 500 . . . 4 (𝐶(𝑋 × 𝑋)(𝑀𝐵) → 𝐶𝑋)
107, 9syl6 35 . . 3 (𝜑 → (𝐶𝑅(𝑀𝐵) → 𝐶𝑋))
1110imp 409 . 2 ((𝜑𝐶𝑅(𝑀𝐵)) → 𝐶𝑋)
12 imassrn 5943 . . . 4 (𝑁𝐵) ⊆ ran 𝑁
13 fpwwe2lem9.y . . . . . . . . 9 (𝜑𝑌𝑊𝑆)
142relopabi 5697 . . . . . . . . . 10 Rel 𝑊
1514brrelex1i 5611 . . . . . . . . 9 (𝑌𝑊𝑆𝑌 ∈ V)
1613, 15syl 17 . . . . . . . 8 (𝜑𝑌 ∈ V)
172, 3fpwwe2lem2 10057 . . . . . . . . . 10 (𝜑 → (𝑌𝑊𝑆 ↔ ((𝑌𝐴𝑆 ⊆ (𝑌 × 𝑌)) ∧ (𝑆 We 𝑌 ∧ ∀𝑦𝑌 [(𝑆 “ {𝑦}) / 𝑢](𝑢𝐹(𝑆 ∩ (𝑢 × 𝑢))) = 𝑦))))
1813, 17mpbid 234 . . . . . . . . 9 (𝜑 → ((𝑌𝐴𝑆 ⊆ (𝑌 × 𝑌)) ∧ (𝑆 We 𝑌 ∧ ∀𝑦𝑌 [(𝑆 “ {𝑦}) / 𝑢](𝑢𝐹(𝑆 ∩ (𝑢 × 𝑢))) = 𝑦)))
1918simprld 770 . . . . . . . 8 (𝜑𝑆 We 𝑌)
20 fpwwe2lem9.n . . . . . . . . 9 𝑁 = OrdIso(𝑆, 𝑌)
2120oiiso 9004 . . . . . . . 8 ((𝑌 ∈ V ∧ 𝑆 We 𝑌) → 𝑁 Isom E , 𝑆 (dom 𝑁, 𝑌))
2216, 19, 21syl2anc 586 . . . . . . 7 (𝜑𝑁 Isom E , 𝑆 (dom 𝑁, 𝑌))
2322adantr 483 . . . . . 6 ((𝜑𝐶𝑅(𝑀𝐵)) → 𝑁 Isom E , 𝑆 (dom 𝑁, 𝑌))
24 isof1o 7079 . . . . . 6 (𝑁 Isom E , 𝑆 (dom 𝑁, 𝑌) → 𝑁:dom 𝑁1-1-onto𝑌)
2523, 24syl 17 . . . . 5 ((𝜑𝐶𝑅(𝑀𝐵)) → 𝑁:dom 𝑁1-1-onto𝑌)
26 f1ofo 6625 . . . . 5 (𝑁:dom 𝑁1-1-onto𝑌𝑁:dom 𝑁onto𝑌)
27 forn 6596 . . . . 5 (𝑁:dom 𝑁onto𝑌 → ran 𝑁 = 𝑌)
2825, 26, 273syl 18 . . . 4 ((𝜑𝐶𝑅(𝑀𝐵)) → ran 𝑁 = 𝑌)
2912, 28sseqtrid 4022 . . 3 ((𝜑𝐶𝑅(𝑀𝐵)) → (𝑁𝐵) ⊆ 𝑌)
3014brrelex1i 5611 . . . . . . . . . . . . . 14 (𝑋𝑊𝑅𝑋 ∈ V)
311, 30syl 17 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ V)
325simprld 770 . . . . . . . . . . . . 13 (𝜑𝑅 We 𝑋)
33 fpwwe2lem9.m . . . . . . . . . . . . . 14 𝑀 = OrdIso(𝑅, 𝑋)
3433oiiso 9004 . . . . . . . . . . . . 13 ((𝑋 ∈ V ∧ 𝑅 We 𝑋) → 𝑀 Isom E , 𝑅 (dom 𝑀, 𝑋))
3531, 32, 34syl2anc 586 . . . . . . . . . . . 12 (𝜑𝑀 Isom E , 𝑅 (dom 𝑀, 𝑋))
3635adantr 483 . . . . . . . . . . 11 ((𝜑𝐶𝑅(𝑀𝐵)) → 𝑀 Isom E , 𝑅 (dom 𝑀, 𝑋))
37 isof1o 7079 . . . . . . . . . . 11 (𝑀 Isom E , 𝑅 (dom 𝑀, 𝑋) → 𝑀:dom 𝑀1-1-onto𝑋)
3836, 37syl 17 . . . . . . . . . 10 ((𝜑𝐶𝑅(𝑀𝐵)) → 𝑀:dom 𝑀1-1-onto𝑋)
39 f1ocnvfv2 7037 . . . . . . . . . 10 ((𝑀:dom 𝑀1-1-onto𝑋𝐶𝑋) → (𝑀‘(𝑀𝐶)) = 𝐶)
4038, 11, 39syl2anc 586 . . . . . . . . 9 ((𝜑𝐶𝑅(𝑀𝐵)) → (𝑀‘(𝑀𝐶)) = 𝐶)
41 simpr 487 . . . . . . . . 9 ((𝜑𝐶𝑅(𝑀𝐵)) → 𝐶𝑅(𝑀𝐵))
4240, 41eqbrtrd 5091 . . . . . . . 8 ((𝜑𝐶𝑅(𝑀𝐵)) → (𝑀‘(𝑀𝐶))𝑅(𝑀𝐵))
43 f1ocnv 6630 . . . . . . . . . . 11 (𝑀:dom 𝑀1-1-onto𝑋𝑀:𝑋1-1-onto→dom 𝑀)
44 f1of 6618 . . . . . . . . . . 11 (𝑀:𝑋1-1-onto→dom 𝑀𝑀:𝑋⟶dom 𝑀)
4538, 43, 443syl 18 . . . . . . . . . 10 ((𝜑𝐶𝑅(𝑀𝐵)) → 𝑀:𝑋⟶dom 𝑀)
4645, 11ffvelrnd 6855 . . . . . . . . 9 ((𝜑𝐶𝑅(𝑀𝐵)) → (𝑀𝐶) ∈ dom 𝑀)
47 fpwwe2lem7.1 . . . . . . . . . 10 (𝜑𝐵 ∈ dom 𝑀)
4847adantr 483 . . . . . . . . 9 ((𝜑𝐶𝑅(𝑀𝐵)) → 𝐵 ∈ dom 𝑀)
49 isorel 7082 . . . . . . . . 9 ((𝑀 Isom E , 𝑅 (dom 𝑀, 𝑋) ∧ ((𝑀𝐶) ∈ dom 𝑀𝐵 ∈ dom 𝑀)) → ((𝑀𝐶) E 𝐵 ↔ (𝑀‘(𝑀𝐶))𝑅(𝑀𝐵)))
5036, 46, 48, 49syl12anc 834 . . . . . . . 8 ((𝜑𝐶𝑅(𝑀𝐵)) → ((𝑀𝐶) E 𝐵 ↔ (𝑀‘(𝑀𝐶))𝑅(𝑀𝐵)))
5142, 50mpbird 259 . . . . . . 7 ((𝜑𝐶𝑅(𝑀𝐵)) → (𝑀𝐶) E 𝐵)
52 epelg 5469 . . . . . . . 8 (𝐵 ∈ dom 𝑀 → ((𝑀𝐶) E 𝐵 ↔ (𝑀𝐶) ∈ 𝐵))
5348, 52syl 17 . . . . . . 7 ((𝜑𝐶𝑅(𝑀𝐵)) → ((𝑀𝐶) E 𝐵 ↔ (𝑀𝐶) ∈ 𝐵))
5451, 53mpbid 234 . . . . . 6 ((𝜑𝐶𝑅(𝑀𝐵)) → (𝑀𝐶) ∈ 𝐵)
55 ffn 6517 . . . . . . 7 (𝑀:𝑋⟶dom 𝑀𝑀 Fn 𝑋)
56 elpreima 6831 . . . . . . 7 (𝑀 Fn 𝑋 → (𝐶 ∈ (𝑀𝐵) ↔ (𝐶𝑋 ∧ (𝑀𝐶) ∈ 𝐵)))
5745, 55, 563syl 18 . . . . . 6 ((𝜑𝐶𝑅(𝑀𝐵)) → (𝐶 ∈ (𝑀𝐵) ↔ (𝐶𝑋 ∧ (𝑀𝐶) ∈ 𝐵)))
5811, 54, 57mpbir2and 711 . . . . 5 ((𝜑𝐶𝑅(𝑀𝐵)) → 𝐶 ∈ (𝑀𝐵))
59 imacnvcnv 6066 . . . . 5 (𝑀𝐵) = (𝑀𝐵)
6058, 59eleqtrdi 2926 . . . 4 ((𝜑𝐶𝑅(𝑀𝐵)) → 𝐶 ∈ (𝑀𝐵))
61 fpwwe2lem7.3 . . . . . . 7 (𝜑 → (𝑀𝐵) = (𝑁𝐵))
6261adantr 483 . . . . . 6 ((𝜑𝐶𝑅(𝑀𝐵)) → (𝑀𝐵) = (𝑁𝐵))
6362rneqd 5811 . . . . 5 ((𝜑𝐶𝑅(𝑀𝐵)) → ran (𝑀𝐵) = ran (𝑁𝐵))
64 df-ima 5571 . . . . 5 (𝑀𝐵) = ran (𝑀𝐵)
65 df-ima 5571 . . . . 5 (𝑁𝐵) = ran (𝑁𝐵)
6663, 64, 653eqtr4g 2884 . . . 4 ((𝜑𝐶𝑅(𝑀𝐵)) → (𝑀𝐵) = (𝑁𝐵))
6760, 66eleqtrd 2918 . . 3 ((𝜑𝐶𝑅(𝑀𝐵)) → 𝐶 ∈ (𝑁𝐵))
6829, 67sseldd 3971 . 2 ((𝜑𝐶𝑅(𝑀𝐵)) → 𝐶𝑌)
6962cnveqd 5749 . . . . 5 ((𝜑𝐶𝑅(𝑀𝐵)) → (𝑀𝐵) = (𝑁𝐵))
70 dff1o3 6624 . . . . . . 7 (𝑀:dom 𝑀1-1-onto𝑋 ↔ (𝑀:dom 𝑀onto𝑋 ∧ Fun 𝑀))
7170simprbi 499 . . . . . 6 (𝑀:dom 𝑀1-1-onto𝑋 → Fun 𝑀)
72 funcnvres 6435 . . . . . 6 (Fun 𝑀(𝑀𝐵) = (𝑀 ↾ (𝑀𝐵)))
7338, 71, 723syl 18 . . . . 5 ((𝜑𝐶𝑅(𝑀𝐵)) → (𝑀𝐵) = (𝑀 ↾ (𝑀𝐵)))
74 dff1o3 6624 . . . . . . 7 (𝑁:dom 𝑁1-1-onto𝑌 ↔ (𝑁:dom 𝑁onto𝑌 ∧ Fun 𝑁))
7574simprbi 499 . . . . . 6 (𝑁:dom 𝑁1-1-onto𝑌 → Fun 𝑁)
76 funcnvres 6435 . . . . . 6 (Fun 𝑁(𝑁𝐵) = (𝑁 ↾ (𝑁𝐵)))
7725, 75, 763syl 18 . . . . 5 ((𝜑𝐶𝑅(𝑀𝐵)) → (𝑁𝐵) = (𝑁 ↾ (𝑁𝐵)))
7869, 73, 773eqtr3d 2867 . . . 4 ((𝜑𝐶𝑅(𝑀𝐵)) → (𝑀 ↾ (𝑀𝐵)) = (𝑁 ↾ (𝑁𝐵)))
7978fveq1d 6675 . . 3 ((𝜑𝐶𝑅(𝑀𝐵)) → ((𝑀 ↾ (𝑀𝐵))‘𝐶) = ((𝑁 ↾ (𝑁𝐵))‘𝐶))
8060fvresd 6693 . . 3 ((𝜑𝐶𝑅(𝑀𝐵)) → ((𝑀 ↾ (𝑀𝐵))‘𝐶) = (𝑀𝐶))
8167fvresd 6693 . . 3 ((𝜑𝐶𝑅(𝑀𝐵)) → ((𝑁 ↾ (𝑁𝐵))‘𝐶) = (𝑁𝐶))
8279, 80, 813eqtr3d 2867 . 2 ((𝜑𝐶𝑅(𝑀𝐵)) → (𝑀𝐶) = (𝑁𝐶))
8311, 68, 823jca 1124 1 ((𝜑𝐶𝑅(𝑀𝐵)) → (𝐶𝑋𝐶𝑌 ∧ (𝑀𝐶) = (𝑁𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  Vcvv 3497  [wsbc 3775  cin 3938  wss 3939  {csn 4570   class class class wbr 5069  {copab 5131   E cep 5467   We wwe 5516   × cxp 5556  ccnv 5557  dom cdm 5558  ran crn 5559  cres 5560  cima 5561  Fun wfun 6352   Fn wfn 6353  wf 6354  ontowfo 6356  1-1-ontowf1o 6357  cfv 6358   Isom wiso 6359  (class class class)co 7159  OrdIsocoi 8976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-wrecs 7950  df-recs 8011  df-oi 8977
This theorem is referenced by:  fpwwe2lem7  10061
  Copyright terms: Public domain W3C validator