Proof of Theorem fpwwe2lem6
Step | Hyp | Ref
| Expression |
1 | | fpwwe2lem8.y |
. . . . . . . 8
⊢ (𝜑 → 𝑌𝑊𝑆) |
2 | | fpwwe2.1 |
. . . . . . . . . 10
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} |
3 | 2 | relopabiv 5719 |
. . . . . . . . 9
⊢ Rel 𝑊 |
4 | 3 | brrelex1i 5634 |
. . . . . . . 8
⊢ (𝑌𝑊𝑆 → 𝑌 ∈ V) |
5 | 1, 4 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ V) |
6 | | fpwwe2.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
7 | 2, 6 | fpwwe2lem2 10319 |
. . . . . . . . 9
⊢ (𝜑 → (𝑌𝑊𝑆 ↔ ((𝑌 ⊆ 𝐴 ∧ 𝑆 ⊆ (𝑌 × 𝑌)) ∧ (𝑆 We 𝑌 ∧ ∀𝑦 ∈ 𝑌 [(◡𝑆 “ {𝑦}) / 𝑢](𝑢𝐹(𝑆 ∩ (𝑢 × 𝑢))) = 𝑦)))) |
8 | 1, 7 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → ((𝑌 ⊆ 𝐴 ∧ 𝑆 ⊆ (𝑌 × 𝑌)) ∧ (𝑆 We 𝑌 ∧ ∀𝑦 ∈ 𝑌 [(◡𝑆 “ {𝑦}) / 𝑢](𝑢𝐹(𝑆 ∩ (𝑢 × 𝑢))) = 𝑦))) |
9 | 8 | simprld 768 |
. . . . . . 7
⊢ (𝜑 → 𝑆 We 𝑌) |
10 | | fpwwe2lem8.n |
. . . . . . . 8
⊢ 𝑁 = OrdIso(𝑆, 𝑌) |
11 | 10 | oiiso 9226 |
. . . . . . 7
⊢ ((𝑌 ∈ V ∧ 𝑆 We 𝑌) → 𝑁 Isom E , 𝑆 (dom 𝑁, 𝑌)) |
12 | 5, 9, 11 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → 𝑁 Isom E , 𝑆 (dom 𝑁, 𝑌)) |
13 | 12 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → 𝑁 Isom E , 𝑆 (dom 𝑁, 𝑌)) |
14 | | isof1o 7174 |
. . . . 5
⊢ (𝑁 Isom E , 𝑆 (dom 𝑁, 𝑌) → 𝑁:dom 𝑁–1-1-onto→𝑌) |
15 | 13, 14 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → 𝑁:dom 𝑁–1-1-onto→𝑌) |
16 | | fpwwe2.3 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) |
17 | | fpwwe2lem8.x |
. . . . . 6
⊢ (𝜑 → 𝑋𝑊𝑅) |
18 | | fpwwe2lem8.m |
. . . . . 6
⊢ 𝑀 = OrdIso(𝑅, 𝑋) |
19 | | fpwwe2lem5.1 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ dom 𝑀) |
20 | | fpwwe2lem5.2 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ dom 𝑁) |
21 | | fpwwe2lem5.3 |
. . . . . 6
⊢ (𝜑 → (𝑀 ↾ 𝐵) = (𝑁 ↾ 𝐵)) |
22 | 2, 6, 16, 17, 1, 18, 10, 19, 20, 21 | fpwwe2lem5 10322 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → (𝐶 ∈ 𝑋 ∧ 𝐶 ∈ 𝑌 ∧ (◡𝑀‘𝐶) = (◡𝑁‘𝐶))) |
23 | 22 | simp2d 1141 |
. . . 4
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → 𝐶 ∈ 𝑌) |
24 | | f1ocnvfv2 7130 |
. . . 4
⊢ ((𝑁:dom 𝑁–1-1-onto→𝑌 ∧ 𝐶 ∈ 𝑌) → (𝑁‘(◡𝑁‘𝐶)) = 𝐶) |
25 | 15, 23, 24 | syl2anc 583 |
. . 3
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → (𝑁‘(◡𝑁‘𝐶)) = 𝐶) |
26 | 22 | simp3d 1142 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → (◡𝑀‘𝐶) = (◡𝑁‘𝐶)) |
27 | 3 | brrelex1i 5634 |
. . . . . . . . . . . 12
⊢ (𝑋𝑊𝑅 → 𝑋 ∈ V) |
28 | 17, 27 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ V) |
29 | 2, 6 | fpwwe2lem2 10319 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑋𝑊𝑅 ↔ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)))) |
30 | 17, 29 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) |
31 | 30 | simprld 768 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 We 𝑋) |
32 | 18 | oiiso 9226 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ V ∧ 𝑅 We 𝑋) → 𝑀 Isom E , 𝑅 (dom 𝑀, 𝑋)) |
33 | 28, 31, 32 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 Isom E , 𝑅 (dom 𝑀, 𝑋)) |
34 | 33 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → 𝑀 Isom E , 𝑅 (dom 𝑀, 𝑋)) |
35 | | isof1o 7174 |
. . . . . . . . 9
⊢ (𝑀 Isom E , 𝑅 (dom 𝑀, 𝑋) → 𝑀:dom 𝑀–1-1-onto→𝑋) |
36 | 34, 35 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → 𝑀:dom 𝑀–1-1-onto→𝑋) |
37 | 22 | simp1d 1140 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → 𝐶 ∈ 𝑋) |
38 | | f1ocnvfv2 7130 |
. . . . . . . 8
⊢ ((𝑀:dom 𝑀–1-1-onto→𝑋 ∧ 𝐶 ∈ 𝑋) → (𝑀‘(◡𝑀‘𝐶)) = 𝐶) |
39 | 36, 37, 38 | syl2anc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → (𝑀‘(◡𝑀‘𝐶)) = 𝐶) |
40 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → 𝐶𝑅(𝑀‘𝐵)) |
41 | 39, 40 | eqbrtrd 5092 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → (𝑀‘(◡𝑀‘𝐶))𝑅(𝑀‘𝐵)) |
42 | | f1ocnv 6712 |
. . . . . . . . 9
⊢ (𝑀:dom 𝑀–1-1-onto→𝑋 → ◡𝑀:𝑋–1-1-onto→dom
𝑀) |
43 | | f1of 6700 |
. . . . . . . . 9
⊢ (◡𝑀:𝑋–1-1-onto→dom
𝑀 → ◡𝑀:𝑋⟶dom 𝑀) |
44 | 36, 42, 43 | 3syl 18 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → ◡𝑀:𝑋⟶dom 𝑀) |
45 | 44, 37 | ffvelrnd 6944 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → (◡𝑀‘𝐶) ∈ dom 𝑀) |
46 | 19 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → 𝐵 ∈ dom 𝑀) |
47 | | isorel 7177 |
. . . . . . 7
⊢ ((𝑀 Isom E , 𝑅 (dom 𝑀, 𝑋) ∧ ((◡𝑀‘𝐶) ∈ dom 𝑀 ∧ 𝐵 ∈ dom 𝑀)) → ((◡𝑀‘𝐶) E 𝐵 ↔ (𝑀‘(◡𝑀‘𝐶))𝑅(𝑀‘𝐵))) |
48 | 34, 45, 46, 47 | syl12anc 833 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → ((◡𝑀‘𝐶) E 𝐵 ↔ (𝑀‘(◡𝑀‘𝐶))𝑅(𝑀‘𝐵))) |
49 | 41, 48 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → (◡𝑀‘𝐶) E 𝐵) |
50 | 26, 49 | eqbrtrrd 5094 |
. . . 4
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → (◡𝑁‘𝐶) E 𝐵) |
51 | | f1ocnv 6712 |
. . . . . . 7
⊢ (𝑁:dom 𝑁–1-1-onto→𝑌 → ◡𝑁:𝑌–1-1-onto→dom
𝑁) |
52 | | f1of 6700 |
. . . . . . 7
⊢ (◡𝑁:𝑌–1-1-onto→dom
𝑁 → ◡𝑁:𝑌⟶dom 𝑁) |
53 | 15, 51, 52 | 3syl 18 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → ◡𝑁:𝑌⟶dom 𝑁) |
54 | 53, 23 | ffvelrnd 6944 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → (◡𝑁‘𝐶) ∈ dom 𝑁) |
55 | 20 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → 𝐵 ∈ dom 𝑁) |
56 | | isorel 7177 |
. . . . 5
⊢ ((𝑁 Isom E , 𝑆 (dom 𝑁, 𝑌) ∧ ((◡𝑁‘𝐶) ∈ dom 𝑁 ∧ 𝐵 ∈ dom 𝑁)) → ((◡𝑁‘𝐶) E 𝐵 ↔ (𝑁‘(◡𝑁‘𝐶))𝑆(𝑁‘𝐵))) |
57 | 13, 54, 55, 56 | syl12anc 833 |
. . . 4
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → ((◡𝑁‘𝐶) E 𝐵 ↔ (𝑁‘(◡𝑁‘𝐶))𝑆(𝑁‘𝐵))) |
58 | 50, 57 | mpbid 231 |
. . 3
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → (𝑁‘(◡𝑁‘𝐶))𝑆(𝑁‘𝐵)) |
59 | 25, 58 | eqbrtrrd 5094 |
. 2
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → 𝐶𝑆(𝑁‘𝐵)) |
60 | 26 | adantrr 713 |
. . . . 5
⊢ ((𝜑 ∧ (𝐶𝑅(𝑀‘𝐵) ∧ 𝐷𝑅(𝑀‘𝐵))) → (◡𝑀‘𝐶) = (◡𝑁‘𝐶)) |
61 | 2, 6, 16, 17, 1, 18, 10, 19, 20, 21 | fpwwe2lem5 10322 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐷𝑅(𝑀‘𝐵)) → (𝐷 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ∧ (◡𝑀‘𝐷) = (◡𝑁‘𝐷))) |
62 | 61 | simp3d 1142 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐷𝑅(𝑀‘𝐵)) → (◡𝑀‘𝐷) = (◡𝑁‘𝐷)) |
63 | 62 | adantrl 712 |
. . . . 5
⊢ ((𝜑 ∧ (𝐶𝑅(𝑀‘𝐵) ∧ 𝐷𝑅(𝑀‘𝐵))) → (◡𝑀‘𝐷) = (◡𝑁‘𝐷)) |
64 | 60, 63 | breq12d 5083 |
. . . 4
⊢ ((𝜑 ∧ (𝐶𝑅(𝑀‘𝐵) ∧ 𝐷𝑅(𝑀‘𝐵))) → ((◡𝑀‘𝐶) E (◡𝑀‘𝐷) ↔ (◡𝑁‘𝐶) E (◡𝑁‘𝐷))) |
65 | 33 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐶𝑅(𝑀‘𝐵) ∧ 𝐷𝑅(𝑀‘𝐵))) → 𝑀 Isom E , 𝑅 (dom 𝑀, 𝑋)) |
66 | | isocnv 7181 |
. . . . . 6
⊢ (𝑀 Isom E , 𝑅 (dom 𝑀, 𝑋) → ◡𝑀 Isom 𝑅, E (𝑋, dom 𝑀)) |
67 | 65, 66 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝐶𝑅(𝑀‘𝐵) ∧ 𝐷𝑅(𝑀‘𝐵))) → ◡𝑀 Isom 𝑅, E (𝑋, dom 𝑀)) |
68 | 37 | adantrr 713 |
. . . . 5
⊢ ((𝜑 ∧ (𝐶𝑅(𝑀‘𝐵) ∧ 𝐷𝑅(𝑀‘𝐵))) → 𝐶 ∈ 𝑋) |
69 | 30 | simplrd 766 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ⊆ (𝑋 × 𝑋)) |
70 | 69 | ssbrd 5113 |
. . . . . . . 8
⊢ (𝜑 → (𝐷𝑅(𝑀‘𝐵) → 𝐷(𝑋 × 𝑋)(𝑀‘𝐵))) |
71 | 70 | imp 406 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐷𝑅(𝑀‘𝐵)) → 𝐷(𝑋 × 𝑋)(𝑀‘𝐵)) |
72 | | brxp 5627 |
. . . . . . . 8
⊢ (𝐷(𝑋 × 𝑋)(𝑀‘𝐵) ↔ (𝐷 ∈ 𝑋 ∧ (𝑀‘𝐵) ∈ 𝑋)) |
73 | 72 | simplbi 497 |
. . . . . . 7
⊢ (𝐷(𝑋 × 𝑋)(𝑀‘𝐵) → 𝐷 ∈ 𝑋) |
74 | 71, 73 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐷𝑅(𝑀‘𝐵)) → 𝐷 ∈ 𝑋) |
75 | 74 | adantrl 712 |
. . . . 5
⊢ ((𝜑 ∧ (𝐶𝑅(𝑀‘𝐵) ∧ 𝐷𝑅(𝑀‘𝐵))) → 𝐷 ∈ 𝑋) |
76 | | isorel 7177 |
. . . . 5
⊢ ((◡𝑀 Isom 𝑅, E (𝑋, dom 𝑀) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (𝐶𝑅𝐷 ↔ (◡𝑀‘𝐶) E (◡𝑀‘𝐷))) |
77 | 67, 68, 75, 76 | syl12anc 833 |
. . . 4
⊢ ((𝜑 ∧ (𝐶𝑅(𝑀‘𝐵) ∧ 𝐷𝑅(𝑀‘𝐵))) → (𝐶𝑅𝐷 ↔ (◡𝑀‘𝐶) E (◡𝑀‘𝐷))) |
78 | 12 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐶𝑅(𝑀‘𝐵) ∧ 𝐷𝑅(𝑀‘𝐵))) → 𝑁 Isom E , 𝑆 (dom 𝑁, 𝑌)) |
79 | | isocnv 7181 |
. . . . . 6
⊢ (𝑁 Isom E , 𝑆 (dom 𝑁, 𝑌) → ◡𝑁 Isom 𝑆, E (𝑌, dom 𝑁)) |
80 | 78, 79 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝐶𝑅(𝑀‘𝐵) ∧ 𝐷𝑅(𝑀‘𝐵))) → ◡𝑁 Isom 𝑆, E (𝑌, dom 𝑁)) |
81 | 23 | adantrr 713 |
. . . . 5
⊢ ((𝜑 ∧ (𝐶𝑅(𝑀‘𝐵) ∧ 𝐷𝑅(𝑀‘𝐵))) → 𝐶 ∈ 𝑌) |
82 | 61 | simp2d 1141 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐷𝑅(𝑀‘𝐵)) → 𝐷 ∈ 𝑌) |
83 | 82 | adantrl 712 |
. . . . 5
⊢ ((𝜑 ∧ (𝐶𝑅(𝑀‘𝐵) ∧ 𝐷𝑅(𝑀‘𝐵))) → 𝐷 ∈ 𝑌) |
84 | | isorel 7177 |
. . . . 5
⊢ ((◡𝑁 Isom 𝑆, E (𝑌, dom 𝑁) ∧ (𝐶 ∈ 𝑌 ∧ 𝐷 ∈ 𝑌)) → (𝐶𝑆𝐷 ↔ (◡𝑁‘𝐶) E (◡𝑁‘𝐷))) |
85 | 80, 81, 83, 84 | syl12anc 833 |
. . . 4
⊢ ((𝜑 ∧ (𝐶𝑅(𝑀‘𝐵) ∧ 𝐷𝑅(𝑀‘𝐵))) → (𝐶𝑆𝐷 ↔ (◡𝑁‘𝐶) E (◡𝑁‘𝐷))) |
86 | 64, 77, 85 | 3bitr4d 310 |
. . 3
⊢ ((𝜑 ∧ (𝐶𝑅(𝑀‘𝐵) ∧ 𝐷𝑅(𝑀‘𝐵))) → (𝐶𝑅𝐷 ↔ 𝐶𝑆𝐷)) |
87 | 86 | expr 456 |
. 2
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → (𝐷𝑅(𝑀‘𝐵) → (𝐶𝑅𝐷 ↔ 𝐶𝑆𝐷))) |
88 | 59, 87 | jca 511 |
1
⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → (𝐶𝑆(𝑁‘𝐵) ∧ (𝐷𝑅(𝑀‘𝐵) → (𝐶𝑅𝐷 ↔ 𝐶𝑆𝐷)))) |