MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlssca Structured version   Visualization version   GIF version

Theorem evlssca 20915
Description: Polynomial evaluation maps scalars to constant functions. (Contributed by Stefan O'Rear, 13-Mar-2015.) (Proof shortened by AV, 18-Sep-2021.)
Hypotheses
Ref Expression
evlssca.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
evlssca.w 𝑊 = (𝐼 mPoly 𝑈)
evlssca.u 𝑈 = (𝑆s 𝑅)
evlssca.b 𝐵 = (Base‘𝑆)
evlssca.a 𝐴 = (algSc‘𝑊)
evlssca.i (𝜑𝐼𝑉)
evlssca.s (𝜑𝑆 ∈ CRing)
evlssca.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evlssca.x (𝜑𝑋𝑅)
Assertion
Ref Expression
evlssca (𝜑 → (𝑄‘(𝐴𝑋)) = ((𝐵m 𝐼) × {𝑋}))

Proof of Theorem evlssca
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlssca.i . . . . 5 (𝜑𝐼𝑉)
2 evlssca.s . . . . 5 (𝜑𝑆 ∈ CRing)
3 evlssca.r . . . . 5 (𝜑𝑅 ∈ (SubRing‘𝑆))
4 evlssca.q . . . . . 6 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
5 evlssca.w . . . . . 6 𝑊 = (𝐼 mPoly 𝑈)
6 eqid 2739 . . . . . 6 (𝐼 mVar 𝑈) = (𝐼 mVar 𝑈)
7 evlssca.u . . . . . 6 𝑈 = (𝑆s 𝑅)
8 eqid 2739 . . . . . 6 (𝑆s (𝐵m 𝐼)) = (𝑆s (𝐵m 𝐼))
9 evlssca.b . . . . . 6 𝐵 = (Base‘𝑆)
10 evlssca.a . . . . . 6 𝐴 = (algSc‘𝑊)
11 eqid 2739 . . . . . 6 (𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥})) = (𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥}))
12 eqid 2739 . . . . . 6 (𝑥𝐼 ↦ (𝑦 ∈ (𝐵m 𝐼) ↦ (𝑦𝑥))) = (𝑥𝐼 ↦ (𝑦 ∈ (𝐵m 𝐼) ↦ (𝑦𝑥)))
134, 5, 6, 7, 8, 9, 10, 11, 12evlsval2 20913 . . . . 5 ((𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑄 ∈ (𝑊 RingHom (𝑆s (𝐵m 𝐼))) ∧ ((𝑄𝐴) = (𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥})) ∧ (𝑄 ∘ (𝐼 mVar 𝑈)) = (𝑥𝐼 ↦ (𝑦 ∈ (𝐵m 𝐼) ↦ (𝑦𝑥))))))
141, 2, 3, 13syl3anc 1372 . . . 4 (𝜑 → (𝑄 ∈ (𝑊 RingHom (𝑆s (𝐵m 𝐼))) ∧ ((𝑄𝐴) = (𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥})) ∧ (𝑄 ∘ (𝐼 mVar 𝑈)) = (𝑥𝐼 ↦ (𝑦 ∈ (𝐵m 𝐼) ↦ (𝑦𝑥))))))
1514simprld 772 . . 3 (𝜑 → (𝑄𝐴) = (𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥})))
1615fveq1d 6688 . 2 (𝜑 → ((𝑄𝐴)‘𝑋) = ((𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥}))‘𝑋))
17 eqid 2739 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
18 eqid 2739 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
197subrgring 19669 . . . . . 6 (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring)
203, 19syl 17 . . . . 5 (𝜑𝑈 ∈ Ring)
215, 17, 18, 10, 1, 20mplasclf 20889 . . . 4 (𝜑𝐴:(Base‘𝑈)⟶(Base‘𝑊))
229subrgss 19667 . . . . . 6 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐵)
237, 9ressbas2 16670 . . . . . 6 (𝑅𝐵𝑅 = (Base‘𝑈))
243, 22, 233syl 18 . . . . 5 (𝜑𝑅 = (Base‘𝑈))
2524feq2d 6500 . . . 4 (𝜑 → (𝐴:𝑅⟶(Base‘𝑊) ↔ 𝐴:(Base‘𝑈)⟶(Base‘𝑊)))
2621, 25mpbird 260 . . 3 (𝜑𝐴:𝑅⟶(Base‘𝑊))
27 evlssca.x . . 3 (𝜑𝑋𝑅)
28 fvco3 6779 . . 3 ((𝐴:𝑅⟶(Base‘𝑊) ∧ 𝑋𝑅) → ((𝑄𝐴)‘𝑋) = (𝑄‘(𝐴𝑋)))
2926, 27, 28syl2anc 587 . 2 (𝜑 → ((𝑄𝐴)‘𝑋) = (𝑄‘(𝐴𝑋)))
30 sneq 4536 . . . . 5 (𝑥 = 𝑋 → {𝑥} = {𝑋})
3130xpeq2d 5565 . . . 4 (𝑥 = 𝑋 → ((𝐵m 𝐼) × {𝑥}) = ((𝐵m 𝐼) × {𝑋}))
32 ovex 7215 . . . . 5 (𝐵m 𝐼) ∈ V
33 snex 5308 . . . . 5 {𝑋} ∈ V
3432, 33xpex 7506 . . . 4 ((𝐵m 𝐼) × {𝑋}) ∈ V
3531, 11, 34fvmpt 6787 . . 3 (𝑋𝑅 → ((𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥}))‘𝑋) = ((𝐵m 𝐼) × {𝑋}))
3627, 35syl 17 . 2 (𝜑 → ((𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥}))‘𝑋) = ((𝐵m 𝐼) × {𝑋}))
3716, 29, 363eqtr3d 2782 1 (𝜑 → (𝑄‘(𝐴𝑋)) = ((𝐵m 𝐼) × {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  wss 3853  {csn 4526  cmpt 5120   × cxp 5533  ccom 5539  wf 6345  cfv 6349  (class class class)co 7182  m cmap 8449  Basecbs 16598  s cress 16599  s cpws 16835  Ringcrg 19428  CRingccrg 19429   RingHom crh 19598  SubRingcsubrg 19662  algSccascl 20680   mVar cmvr 20730   mPoly cmpl 20731   evalSub ces 20896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-cnex 10683  ax-resscn 10684  ax-1cn 10685  ax-icn 10686  ax-addcl 10687  ax-addrcl 10688  ax-mulcl 10689  ax-mulrcl 10690  ax-mulcom 10691  ax-addass 10692  ax-mulass 10693  ax-distr 10694  ax-i2m1 10695  ax-1ne0 10696  ax-1rid 10697  ax-rnegex 10698  ax-rrecex 10699  ax-cnre 10700  ax-pre-lttri 10701  ax-pre-lttrn 10702  ax-pre-ltadd 10703  ax-pre-mulgt0 10704
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-int 4847  df-iun 4893  df-iin 4894  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-se 5494  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6185  df-on 6186  df-lim 6187  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-of 7437  df-ofr 7438  df-om 7612  df-1st 7726  df-2nd 7727  df-supp 7869  df-wrecs 7988  df-recs 8049  df-rdg 8087  df-1o 8143  df-er 8332  df-map 8451  df-pm 8452  df-ixp 8520  df-en 8568  df-dom 8569  df-sdom 8570  df-fin 8571  df-fsupp 8919  df-sup 8991  df-oi 9059  df-card 9453  df-pnf 10767  df-mnf 10768  df-xr 10769  df-ltxr 10770  df-le 10771  df-sub 10962  df-neg 10963  df-nn 11729  df-2 11791  df-3 11792  df-4 11793  df-5 11794  df-6 11795  df-7 11796  df-8 11797  df-9 11798  df-n0 11989  df-z 12075  df-dec 12192  df-uz 12337  df-fz 12994  df-fzo 13137  df-seq 13473  df-hash 13795  df-struct 16600  df-ndx 16601  df-slot 16602  df-base 16604  df-sets 16605  df-ress 16606  df-plusg 16693  df-mulr 16694  df-sca 16696  df-vsca 16697  df-ip 16698  df-tset 16699  df-ple 16700  df-ds 16702  df-hom 16704  df-cco 16705  df-0g 16830  df-gsum 16831  df-prds 16836  df-pws 16838  df-mre 16972  df-mrc 16973  df-acs 16975  df-mgm 17980  df-sgrp 18029  df-mnd 18040  df-mhm 18084  df-submnd 18085  df-grp 18234  df-minusg 18235  df-sbg 18236  df-mulg 18355  df-subg 18406  df-ghm 18486  df-cntz 18577  df-cmn 19038  df-abl 19039  df-mgp 19371  df-ur 19383  df-srg 19387  df-ring 19430  df-cring 19431  df-rnghom 19601  df-subrg 19664  df-lmod 19767  df-lss 19835  df-lsp 19875  df-assa 20681  df-asp 20682  df-ascl 20683  df-psr 20734  df-mvr 20735  df-mpl 20736  df-evls 20898
This theorem is referenced by:  evlsscasrng  20923  evlsca  20924  mpfconst  20927  mpfind  20933  evls1sca  21105  evl1sca  21116  pf1ind  21137  evlsscaval  39892
  Copyright terms: Public domain W3C validator