Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > evlssca | Structured version Visualization version GIF version |
Description: Polynomial evaluation maps scalars to constant functions. (Contributed by Stefan O'Rear, 13-Mar-2015.) (Proof shortened by AV, 18-Sep-2021.) |
Ref | Expression |
---|---|
evlssca.q | ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
evlssca.w | ⊢ 𝑊 = (𝐼 mPoly 𝑈) |
evlssca.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
evlssca.b | ⊢ 𝐵 = (Base‘𝑆) |
evlssca.a | ⊢ 𝐴 = (algSc‘𝑊) |
evlssca.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
evlssca.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
evlssca.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
evlssca.x | ⊢ (𝜑 → 𝑋 ∈ 𝑅) |
Ref | Expression |
---|---|
evlssca | ⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = ((𝐵 ↑m 𝐼) × {𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlssca.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
2 | evlssca.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
3 | evlssca.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
4 | evlssca.q | . . . . . 6 ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) | |
5 | evlssca.w | . . . . . 6 ⊢ 𝑊 = (𝐼 mPoly 𝑈) | |
6 | eqid 2738 | . . . . . 6 ⊢ (𝐼 mVar 𝑈) = (𝐼 mVar 𝑈) | |
7 | evlssca.u | . . . . . 6 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
8 | eqid 2738 | . . . . . 6 ⊢ (𝑆 ↑s (𝐵 ↑m 𝐼)) = (𝑆 ↑s (𝐵 ↑m 𝐼)) | |
9 | evlssca.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
10 | evlssca.a | . . . . . 6 ⊢ 𝐴 = (algSc‘𝑊) | |
11 | eqid 2738 | . . . . . 6 ⊢ (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) = (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) | |
12 | eqid 2738 | . . . . . 6 ⊢ (𝑥 ∈ 𝐼 ↦ (𝑦 ∈ (𝐵 ↑m 𝐼) ↦ (𝑦‘𝑥))) = (𝑥 ∈ 𝐼 ↦ (𝑦 ∈ (𝐵 ↑m 𝐼) ↦ (𝑦‘𝑥))) | |
13 | 4, 5, 6, 7, 8, 9, 10, 11, 12 | evlsval2 21297 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑄 ∈ (𝑊 RingHom (𝑆 ↑s (𝐵 ↑m 𝐼))) ∧ ((𝑄 ∘ 𝐴) = (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) ∧ (𝑄 ∘ (𝐼 mVar 𝑈)) = (𝑥 ∈ 𝐼 ↦ (𝑦 ∈ (𝐵 ↑m 𝐼) ↦ (𝑦‘𝑥)))))) |
14 | 1, 2, 3, 13 | syl3anc 1370 | . . . 4 ⊢ (𝜑 → (𝑄 ∈ (𝑊 RingHom (𝑆 ↑s (𝐵 ↑m 𝐼))) ∧ ((𝑄 ∘ 𝐴) = (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) ∧ (𝑄 ∘ (𝐼 mVar 𝑈)) = (𝑥 ∈ 𝐼 ↦ (𝑦 ∈ (𝐵 ↑m 𝐼) ↦ (𝑦‘𝑥)))))) |
15 | 14 | simprld 769 | . . 3 ⊢ (𝜑 → (𝑄 ∘ 𝐴) = (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥}))) |
16 | 15 | fveq1d 6776 | . 2 ⊢ (𝜑 → ((𝑄 ∘ 𝐴)‘𝑋) = ((𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥}))‘𝑋)) |
17 | eqid 2738 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
18 | eqid 2738 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
19 | 7 | subrgring 20027 | . . . . . 6 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring) |
20 | 3, 19 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ Ring) |
21 | 5, 17, 18, 10, 1, 20 | mplasclf 21273 | . . . 4 ⊢ (𝜑 → 𝐴:(Base‘𝑈)⟶(Base‘𝑊)) |
22 | 9 | subrgss 20025 | . . . . . 6 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐵) |
23 | 7, 9 | ressbas2 16949 | . . . . . 6 ⊢ (𝑅 ⊆ 𝐵 → 𝑅 = (Base‘𝑈)) |
24 | 3, 22, 23 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝑅 = (Base‘𝑈)) |
25 | 24 | feq2d 6586 | . . . 4 ⊢ (𝜑 → (𝐴:𝑅⟶(Base‘𝑊) ↔ 𝐴:(Base‘𝑈)⟶(Base‘𝑊))) |
26 | 21, 25 | mpbird 256 | . . 3 ⊢ (𝜑 → 𝐴:𝑅⟶(Base‘𝑊)) |
27 | evlssca.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑅) | |
28 | fvco3 6867 | . . 3 ⊢ ((𝐴:𝑅⟶(Base‘𝑊) ∧ 𝑋 ∈ 𝑅) → ((𝑄 ∘ 𝐴)‘𝑋) = (𝑄‘(𝐴‘𝑋))) | |
29 | 26, 27, 28 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑄 ∘ 𝐴)‘𝑋) = (𝑄‘(𝐴‘𝑋))) |
30 | sneq 4571 | . . . . 5 ⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) | |
31 | 30 | xpeq2d 5619 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐵 ↑m 𝐼) × {𝑥}) = ((𝐵 ↑m 𝐼) × {𝑋})) |
32 | ovex 7308 | . . . . 5 ⊢ (𝐵 ↑m 𝐼) ∈ V | |
33 | snex 5354 | . . . . 5 ⊢ {𝑋} ∈ V | |
34 | 32, 33 | xpex 7603 | . . . 4 ⊢ ((𝐵 ↑m 𝐼) × {𝑋}) ∈ V |
35 | 31, 11, 34 | fvmpt 6875 | . . 3 ⊢ (𝑋 ∈ 𝑅 → ((𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥}))‘𝑋) = ((𝐵 ↑m 𝐼) × {𝑋})) |
36 | 27, 35 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥}))‘𝑋) = ((𝐵 ↑m 𝐼) × {𝑋})) |
37 | 16, 29, 36 | 3eqtr3d 2786 | 1 ⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = ((𝐵 ↑m 𝐼) × {𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 {csn 4561 ↦ cmpt 5157 × cxp 5587 ∘ ccom 5593 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 Basecbs 16912 ↾s cress 16941 ↑s cpws 17157 Ringcrg 19783 CRingccrg 19784 RingHom crh 19956 SubRingcsubrg 20020 algSccascl 21059 mVar cmvr 21108 mPoly cmpl 21109 evalSub ces 21280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-ofr 7534 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-sup 9201 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-hom 16986 df-cco 16987 df-0g 17152 df-gsum 17153 df-prds 17158 df-pws 17160 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-subg 18752 df-ghm 18832 df-cntz 18923 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-srg 19742 df-ring 19785 df-cring 19786 df-rnghom 19959 df-subrg 20022 df-lmod 20125 df-lss 20194 df-lsp 20234 df-assa 21060 df-asp 21061 df-ascl 21062 df-psr 21112 df-mvr 21113 df-mpl 21114 df-evls 21282 |
This theorem is referenced by: evlsscasrng 21307 evlsca 21308 mpfconst 21311 mpfind 21317 evls1sca 21489 evl1sca 21500 pf1ind 21521 evlsscaval 40273 |
Copyright terms: Public domain | W3C validator |