Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > evlssca | Structured version Visualization version GIF version |
Description: Polynomial evaluation maps scalars to constant functions. (Contributed by Stefan O'Rear, 13-Mar-2015.) (Proof shortened by AV, 18-Sep-2021.) |
Ref | Expression |
---|---|
evlssca.q | ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
evlssca.w | ⊢ 𝑊 = (𝐼 mPoly 𝑈) |
evlssca.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
evlssca.b | ⊢ 𝐵 = (Base‘𝑆) |
evlssca.a | ⊢ 𝐴 = (algSc‘𝑊) |
evlssca.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
evlssca.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
evlssca.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
evlssca.x | ⊢ (𝜑 → 𝑋 ∈ 𝑅) |
Ref | Expression |
---|---|
evlssca | ⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = ((𝐵 ↑m 𝐼) × {𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlssca.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
2 | evlssca.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
3 | evlssca.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
4 | evlssca.q | . . . . . 6 ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) | |
5 | evlssca.w | . . . . . 6 ⊢ 𝑊 = (𝐼 mPoly 𝑈) | |
6 | eqid 2738 | . . . . . 6 ⊢ (𝐼 mVar 𝑈) = (𝐼 mVar 𝑈) | |
7 | evlssca.u | . . . . . 6 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
8 | eqid 2738 | . . . . . 6 ⊢ (𝑆 ↑s (𝐵 ↑m 𝐼)) = (𝑆 ↑s (𝐵 ↑m 𝐼)) | |
9 | evlssca.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
10 | evlssca.a | . . . . . 6 ⊢ 𝐴 = (algSc‘𝑊) | |
11 | eqid 2738 | . . . . . 6 ⊢ (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) = (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) | |
12 | eqid 2738 | . . . . . 6 ⊢ (𝑥 ∈ 𝐼 ↦ (𝑦 ∈ (𝐵 ↑m 𝐼) ↦ (𝑦‘𝑥))) = (𝑥 ∈ 𝐼 ↦ (𝑦 ∈ (𝐵 ↑m 𝐼) ↦ (𝑦‘𝑥))) | |
13 | 4, 5, 6, 7, 8, 9, 10, 11, 12 | evlsval2 21207 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑄 ∈ (𝑊 RingHom (𝑆 ↑s (𝐵 ↑m 𝐼))) ∧ ((𝑄 ∘ 𝐴) = (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) ∧ (𝑄 ∘ (𝐼 mVar 𝑈)) = (𝑥 ∈ 𝐼 ↦ (𝑦 ∈ (𝐵 ↑m 𝐼) ↦ (𝑦‘𝑥)))))) |
14 | 1, 2, 3, 13 | syl3anc 1369 | . . . 4 ⊢ (𝜑 → (𝑄 ∈ (𝑊 RingHom (𝑆 ↑s (𝐵 ↑m 𝐼))) ∧ ((𝑄 ∘ 𝐴) = (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) ∧ (𝑄 ∘ (𝐼 mVar 𝑈)) = (𝑥 ∈ 𝐼 ↦ (𝑦 ∈ (𝐵 ↑m 𝐼) ↦ (𝑦‘𝑥)))))) |
15 | 14 | simprld 768 | . . 3 ⊢ (𝜑 → (𝑄 ∘ 𝐴) = (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥}))) |
16 | 15 | fveq1d 6758 | . 2 ⊢ (𝜑 → ((𝑄 ∘ 𝐴)‘𝑋) = ((𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥}))‘𝑋)) |
17 | eqid 2738 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
18 | eqid 2738 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
19 | 7 | subrgring 19942 | . . . . . 6 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring) |
20 | 3, 19 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ Ring) |
21 | 5, 17, 18, 10, 1, 20 | mplasclf 21183 | . . . 4 ⊢ (𝜑 → 𝐴:(Base‘𝑈)⟶(Base‘𝑊)) |
22 | 9 | subrgss 19940 | . . . . . 6 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐵) |
23 | 7, 9 | ressbas2 16875 | . . . . . 6 ⊢ (𝑅 ⊆ 𝐵 → 𝑅 = (Base‘𝑈)) |
24 | 3, 22, 23 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝑅 = (Base‘𝑈)) |
25 | 24 | feq2d 6570 | . . . 4 ⊢ (𝜑 → (𝐴:𝑅⟶(Base‘𝑊) ↔ 𝐴:(Base‘𝑈)⟶(Base‘𝑊))) |
26 | 21, 25 | mpbird 256 | . . 3 ⊢ (𝜑 → 𝐴:𝑅⟶(Base‘𝑊)) |
27 | evlssca.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑅) | |
28 | fvco3 6849 | . . 3 ⊢ ((𝐴:𝑅⟶(Base‘𝑊) ∧ 𝑋 ∈ 𝑅) → ((𝑄 ∘ 𝐴)‘𝑋) = (𝑄‘(𝐴‘𝑋))) | |
29 | 26, 27, 28 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝑄 ∘ 𝐴)‘𝑋) = (𝑄‘(𝐴‘𝑋))) |
30 | sneq 4568 | . . . . 5 ⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) | |
31 | 30 | xpeq2d 5610 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐵 ↑m 𝐼) × {𝑥}) = ((𝐵 ↑m 𝐼) × {𝑋})) |
32 | ovex 7288 | . . . . 5 ⊢ (𝐵 ↑m 𝐼) ∈ V | |
33 | snex 5349 | . . . . 5 ⊢ {𝑋} ∈ V | |
34 | 32, 33 | xpex 7581 | . . . 4 ⊢ ((𝐵 ↑m 𝐼) × {𝑋}) ∈ V |
35 | 31, 11, 34 | fvmpt 6857 | . . 3 ⊢ (𝑋 ∈ 𝑅 → ((𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥}))‘𝑋) = ((𝐵 ↑m 𝐼) × {𝑋})) |
36 | 27, 35 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥}))‘𝑋) = ((𝐵 ↑m 𝐼) × {𝑋})) |
37 | 16, 29, 36 | 3eqtr3d 2786 | 1 ⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = ((𝐵 ↑m 𝐼) × {𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 {csn 4558 ↦ cmpt 5153 × cxp 5578 ∘ ccom 5584 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 Basecbs 16840 ↾s cress 16867 ↑s cpws 17074 Ringcrg 19698 CRingccrg 19699 RingHom crh 19871 SubRingcsubrg 19935 algSccascl 20969 mVar cmvr 21018 mPoly cmpl 21019 evalSub ces 21190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-ofr 7512 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-0g 17069 df-gsum 17070 df-prds 17075 df-pws 17077 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-srg 19657 df-ring 19700 df-cring 19701 df-rnghom 19874 df-subrg 19937 df-lmod 20040 df-lss 20109 df-lsp 20149 df-assa 20970 df-asp 20971 df-ascl 20972 df-psr 21022 df-mvr 21023 df-mpl 21024 df-evls 21192 |
This theorem is referenced by: evlsscasrng 21217 evlsca 21218 mpfconst 21221 mpfind 21227 evls1sca 21399 evl1sca 21410 pf1ind 21431 evlsscaval 40196 |
Copyright terms: Public domain | W3C validator |