MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlssca Structured version   Visualization version   GIF version

Theorem evlssca 22136
Description: Polynomial evaluation maps scalars to constant functions. (Contributed by Stefan O'Rear, 13-Mar-2015.) (Proof shortened by AV, 18-Sep-2021.)
Hypotheses
Ref Expression
evlssca.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
evlssca.w 𝑊 = (𝐼 mPoly 𝑈)
evlssca.u 𝑈 = (𝑆s 𝑅)
evlssca.b 𝐵 = (Base‘𝑆)
evlssca.a 𝐴 = (algSc‘𝑊)
evlssca.i (𝜑𝐼𝑉)
evlssca.s (𝜑𝑆 ∈ CRing)
evlssca.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evlssca.x (𝜑𝑋𝑅)
Assertion
Ref Expression
evlssca (𝜑 → (𝑄‘(𝐴𝑋)) = ((𝐵m 𝐼) × {𝑋}))

Proof of Theorem evlssca
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlssca.i . . . . 5 (𝜑𝐼𝑉)
2 evlssca.s . . . . 5 (𝜑𝑆 ∈ CRing)
3 evlssca.r . . . . 5 (𝜑𝑅 ∈ (SubRing‘𝑆))
4 evlssca.q . . . . . 6 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
5 evlssca.w . . . . . 6 𝑊 = (𝐼 mPoly 𝑈)
6 eqid 2740 . . . . . 6 (𝐼 mVar 𝑈) = (𝐼 mVar 𝑈)
7 evlssca.u . . . . . 6 𝑈 = (𝑆s 𝑅)
8 eqid 2740 . . . . . 6 (𝑆s (𝐵m 𝐼)) = (𝑆s (𝐵m 𝐼))
9 evlssca.b . . . . . 6 𝐵 = (Base‘𝑆)
10 evlssca.a . . . . . 6 𝐴 = (algSc‘𝑊)
11 eqid 2740 . . . . . 6 (𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥})) = (𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥}))
12 eqid 2740 . . . . . 6 (𝑥𝐼 ↦ (𝑦 ∈ (𝐵m 𝐼) ↦ (𝑦𝑥))) = (𝑥𝐼 ↦ (𝑦 ∈ (𝐵m 𝐼) ↦ (𝑦𝑥)))
134, 5, 6, 7, 8, 9, 10, 11, 12evlsval2 22134 . . . . 5 ((𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑄 ∈ (𝑊 RingHom (𝑆s (𝐵m 𝐼))) ∧ ((𝑄𝐴) = (𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥})) ∧ (𝑄 ∘ (𝐼 mVar 𝑈)) = (𝑥𝐼 ↦ (𝑦 ∈ (𝐵m 𝐼) ↦ (𝑦𝑥))))))
141, 2, 3, 13syl3anc 1371 . . . 4 (𝜑 → (𝑄 ∈ (𝑊 RingHom (𝑆s (𝐵m 𝐼))) ∧ ((𝑄𝐴) = (𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥})) ∧ (𝑄 ∘ (𝐼 mVar 𝑈)) = (𝑥𝐼 ↦ (𝑦 ∈ (𝐵m 𝐼) ↦ (𝑦𝑥))))))
1514simprld 771 . . 3 (𝜑 → (𝑄𝐴) = (𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥})))
1615fveq1d 6922 . 2 (𝜑 → ((𝑄𝐴)‘𝑋) = ((𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥}))‘𝑋))
17 eqid 2740 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
18 eqid 2740 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
197subrgring 20602 . . . . . 6 (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring)
203, 19syl 17 . . . . 5 (𝜑𝑈 ∈ Ring)
215, 17, 18, 10, 1, 20mplasclf 22112 . . . 4 (𝜑𝐴:(Base‘𝑈)⟶(Base‘𝑊))
229subrgss 20600 . . . . . 6 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐵)
237, 9ressbas2 17296 . . . . . 6 (𝑅𝐵𝑅 = (Base‘𝑈))
243, 22, 233syl 18 . . . . 5 (𝜑𝑅 = (Base‘𝑈))
2524feq2d 6733 . . . 4 (𝜑 → (𝐴:𝑅⟶(Base‘𝑊) ↔ 𝐴:(Base‘𝑈)⟶(Base‘𝑊)))
2621, 25mpbird 257 . . 3 (𝜑𝐴:𝑅⟶(Base‘𝑊))
27 evlssca.x . . 3 (𝜑𝑋𝑅)
28 fvco3 7021 . . 3 ((𝐴:𝑅⟶(Base‘𝑊) ∧ 𝑋𝑅) → ((𝑄𝐴)‘𝑋) = (𝑄‘(𝐴𝑋)))
2926, 27, 28syl2anc 583 . 2 (𝜑 → ((𝑄𝐴)‘𝑋) = (𝑄‘(𝐴𝑋)))
30 sneq 4658 . . . . 5 (𝑥 = 𝑋 → {𝑥} = {𝑋})
3130xpeq2d 5730 . . . 4 (𝑥 = 𝑋 → ((𝐵m 𝐼) × {𝑥}) = ((𝐵m 𝐼) × {𝑋}))
32 ovex 7481 . . . . 5 (𝐵m 𝐼) ∈ V
33 snex 5451 . . . . 5 {𝑋} ∈ V
3432, 33xpex 7788 . . . 4 ((𝐵m 𝐼) × {𝑋}) ∈ V
3531, 11, 34fvmpt 7029 . . 3 (𝑋𝑅 → ((𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥}))‘𝑋) = ((𝐵m 𝐼) × {𝑋}))
3627, 35syl 17 . 2 (𝜑 → ((𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥}))‘𝑋) = ((𝐵m 𝐼) × {𝑋}))
3716, 29, 363eqtr3d 2788 1 (𝜑 → (𝑄‘(𝐴𝑋)) = ((𝐵m 𝐼) × {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wss 3976  {csn 4648  cmpt 5249   × cxp 5698  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  Basecbs 17258  s cress 17287  s cpws 17506  Ringcrg 20260  CRingccrg 20261   RingHom crh 20495  SubRingcsubrg 20595  algSccascl 21895   mVar cmvr 21948   mPoly cmpl 21949   evalSub ces 22119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-cring 20263  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-lmod 20882  df-lss 20953  df-lsp 20993  df-assa 21896  df-asp 21897  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954  df-evls 22121
This theorem is referenced by:  evlsscasrng  22144  evlsca  22145  mpfconst  22148  mpfind  22154  evls1sca  22348  evl1sca  22359  pf1ind  22380  evlsscaval  42519
  Copyright terms: Public domain W3C validator