| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evlssca | Structured version Visualization version GIF version | ||
| Description: Polynomial evaluation maps scalars to constant functions. (Contributed by Stefan O'Rear, 13-Mar-2015.) (Proof shortened by AV, 18-Sep-2021.) |
| Ref | Expression |
|---|---|
| evlssca.q | ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
| evlssca.w | ⊢ 𝑊 = (𝐼 mPoly 𝑈) |
| evlssca.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| evlssca.b | ⊢ 𝐵 = (Base‘𝑆) |
| evlssca.a | ⊢ 𝐴 = (algSc‘𝑊) |
| evlssca.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| evlssca.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| evlssca.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| evlssca.x | ⊢ (𝜑 → 𝑋 ∈ 𝑅) |
| Ref | Expression |
|---|---|
| evlssca | ⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = ((𝐵 ↑m 𝐼) × {𝑋})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlssca.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 2 | evlssca.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 3 | evlssca.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 4 | evlssca.q | . . . . . 6 ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) | |
| 5 | evlssca.w | . . . . . 6 ⊢ 𝑊 = (𝐼 mPoly 𝑈) | |
| 6 | eqid 2735 | . . . . . 6 ⊢ (𝐼 mVar 𝑈) = (𝐼 mVar 𝑈) | |
| 7 | evlssca.u | . . . . . 6 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 8 | eqid 2735 | . . . . . 6 ⊢ (𝑆 ↑s (𝐵 ↑m 𝐼)) = (𝑆 ↑s (𝐵 ↑m 𝐼)) | |
| 9 | evlssca.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
| 10 | evlssca.a | . . . . . 6 ⊢ 𝐴 = (algSc‘𝑊) | |
| 11 | eqid 2735 | . . . . . 6 ⊢ (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) = (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) | |
| 12 | eqid 2735 | . . . . . 6 ⊢ (𝑥 ∈ 𝐼 ↦ (𝑦 ∈ (𝐵 ↑m 𝐼) ↦ (𝑦‘𝑥))) = (𝑥 ∈ 𝐼 ↦ (𝑦 ∈ (𝐵 ↑m 𝐼) ↦ (𝑦‘𝑥))) | |
| 13 | 4, 5, 6, 7, 8, 9, 10, 11, 12 | evlsval2 22045 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑄 ∈ (𝑊 RingHom (𝑆 ↑s (𝐵 ↑m 𝐼))) ∧ ((𝑄 ∘ 𝐴) = (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) ∧ (𝑄 ∘ (𝐼 mVar 𝑈)) = (𝑥 ∈ 𝐼 ↦ (𝑦 ∈ (𝐵 ↑m 𝐼) ↦ (𝑦‘𝑥)))))) |
| 14 | 1, 2, 3, 13 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝑄 ∈ (𝑊 RingHom (𝑆 ↑s (𝐵 ↑m 𝐼))) ∧ ((𝑄 ∘ 𝐴) = (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) ∧ (𝑄 ∘ (𝐼 mVar 𝑈)) = (𝑥 ∈ 𝐼 ↦ (𝑦 ∈ (𝐵 ↑m 𝐼) ↦ (𝑦‘𝑥)))))) |
| 15 | 14 | simprld 771 | . . 3 ⊢ (𝜑 → (𝑄 ∘ 𝐴) = (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥}))) |
| 16 | 15 | fveq1d 6878 | . 2 ⊢ (𝜑 → ((𝑄 ∘ 𝐴)‘𝑋) = ((𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥}))‘𝑋)) |
| 17 | eqid 2735 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 18 | eqid 2735 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 19 | 7 | subrgring 20534 | . . . . . 6 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring) |
| 20 | 3, 19 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ Ring) |
| 21 | 5, 17, 18, 10, 1, 20 | mplasclf 22023 | . . . 4 ⊢ (𝜑 → 𝐴:(Base‘𝑈)⟶(Base‘𝑊)) |
| 22 | 9 | subrgss 20532 | . . . . . 6 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐵) |
| 23 | 7, 9 | ressbas2 17259 | . . . . . 6 ⊢ (𝑅 ⊆ 𝐵 → 𝑅 = (Base‘𝑈)) |
| 24 | 3, 22, 23 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝑅 = (Base‘𝑈)) |
| 25 | 24 | feq2d 6692 | . . . 4 ⊢ (𝜑 → (𝐴:𝑅⟶(Base‘𝑊) ↔ 𝐴:(Base‘𝑈)⟶(Base‘𝑊))) |
| 26 | 21, 25 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐴:𝑅⟶(Base‘𝑊)) |
| 27 | evlssca.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑅) | |
| 28 | fvco3 6978 | . . 3 ⊢ ((𝐴:𝑅⟶(Base‘𝑊) ∧ 𝑋 ∈ 𝑅) → ((𝑄 ∘ 𝐴)‘𝑋) = (𝑄‘(𝐴‘𝑋))) | |
| 29 | 26, 27, 28 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑄 ∘ 𝐴)‘𝑋) = (𝑄‘(𝐴‘𝑋))) |
| 30 | sneq 4611 | . . . . 5 ⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) | |
| 31 | 30 | xpeq2d 5684 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐵 ↑m 𝐼) × {𝑥}) = ((𝐵 ↑m 𝐼) × {𝑋})) |
| 32 | ovex 7438 | . . . . 5 ⊢ (𝐵 ↑m 𝐼) ∈ V | |
| 33 | snex 5406 | . . . . 5 ⊢ {𝑋} ∈ V | |
| 34 | 32, 33 | xpex 7747 | . . . 4 ⊢ ((𝐵 ↑m 𝐼) × {𝑋}) ∈ V |
| 35 | 31, 11, 34 | fvmpt 6986 | . . 3 ⊢ (𝑋 ∈ 𝑅 → ((𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥}))‘𝑋) = ((𝐵 ↑m 𝐼) × {𝑋})) |
| 36 | 27, 35 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥}))‘𝑋) = ((𝐵 ↑m 𝐼) × {𝑋})) |
| 37 | 16, 29, 36 | 3eqtr3d 2778 | 1 ⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = ((𝐵 ↑m 𝐼) × {𝑋})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 {csn 4601 ↦ cmpt 5201 × cxp 5652 ∘ ccom 5658 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ↑m cmap 8840 Basecbs 17228 ↾s cress 17251 ↑s cpws 17460 Ringcrg 20193 CRingccrg 20194 RingHom crh 20429 SubRingcsubrg 20529 algSccascl 21812 mVar cmvr 21865 mPoly cmpl 21866 evalSub ces 22030 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-ofr 7672 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-sup 9454 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-fzo 13672 df-seq 14020 df-hash 14349 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-hom 17295 df-cco 17296 df-0g 17455 df-gsum 17456 df-prds 17461 df-pws 17463 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-mulg 19051 df-subg 19106 df-ghm 19196 df-cntz 19300 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-srg 20147 df-ring 20195 df-cring 20196 df-rhm 20432 df-subrng 20506 df-subrg 20530 df-lmod 20819 df-lss 20889 df-lsp 20929 df-assa 21813 df-asp 21814 df-ascl 21815 df-psr 21869 df-mvr 21870 df-mpl 21871 df-evls 22032 |
| This theorem is referenced by: evlsscasrng 22055 evlsca 22056 mpfconst 22059 mpfind 22065 evls1sca 22261 evl1sca 22272 pf1ind 22293 evlsscaval 42587 |
| Copyright terms: Public domain | W3C validator |