Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subgrfun | Structured version Visualization version GIF version |
Description: The edge function of a subgraph of a graph whose edge function is actually a function is a function. (Contributed by AV, 20-Nov-2020.) |
Ref | Expression |
---|---|
subgrfun | ⊢ ((Fun (iEdg‘𝐺) ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (Vtx‘𝑆) = (Vtx‘𝑆) | |
2 | eqid 2738 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
3 | eqid 2738 | . . . 4 ⊢ (iEdg‘𝑆) = (iEdg‘𝑆) | |
4 | eqid 2738 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
5 | eqid 2738 | . . . 4 ⊢ (Edg‘𝑆) = (Edg‘𝑆) | |
6 | 1, 2, 3, 4, 5 | subgrprop2 27544 | . . 3 ⊢ (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))) |
7 | funss 6437 | . . . 4 ⊢ ((iEdg‘𝑆) ⊆ (iEdg‘𝐺) → (Fun (iEdg‘𝐺) → Fun (iEdg‘𝑆))) | |
8 | 7 | 3ad2ant2 1132 | . . 3 ⊢ (((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) → (Fun (iEdg‘𝐺) → Fun (iEdg‘𝑆))) |
9 | 6, 8 | syl 17 | . 2 ⊢ (𝑆 SubGraph 𝐺 → (Fun (iEdg‘𝐺) → Fun (iEdg‘𝑆))) |
10 | 9 | impcom 407 | 1 ⊢ ((Fun (iEdg‘𝐺) ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ⊆ wss 3883 𝒫 cpw 4530 class class class wbr 5070 Fun wfun 6412 ‘cfv 6418 Vtxcvtx 27269 iEdgciedg 27270 Edgcedg 27320 SubGraph csubgr 27537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-res 5592 df-iota 6376 df-fun 6420 df-fv 6426 df-subgr 27538 |
This theorem is referenced by: subgruhgrfun 27552 |
Copyright terms: Public domain | W3C validator |