| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgrfun | Structured version Visualization version GIF version | ||
| Description: The edge function of a subgraph of a graph whose edge function is actually a function is a function. (Contributed by AV, 20-Nov-2020.) |
| Ref | Expression |
|---|---|
| subgrfun | ⊢ ((Fun (iEdg‘𝐺) ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . 4 ⊢ (Vtx‘𝑆) = (Vtx‘𝑆) | |
| 2 | eqid 2735 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 3 | eqid 2735 | . . . 4 ⊢ (iEdg‘𝑆) = (iEdg‘𝑆) | |
| 4 | eqid 2735 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 5 | eqid 2735 | . . . 4 ⊢ (Edg‘𝑆) = (Edg‘𝑆) | |
| 6 | 1, 2, 3, 4, 5 | subgrprop2 29253 | . . 3 ⊢ (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))) |
| 7 | funss 6555 | . . . 4 ⊢ ((iEdg‘𝑆) ⊆ (iEdg‘𝐺) → (Fun (iEdg‘𝐺) → Fun (iEdg‘𝑆))) | |
| 8 | 7 | 3ad2ant2 1134 | . . 3 ⊢ (((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) → (Fun (iEdg‘𝐺) → Fun (iEdg‘𝑆))) |
| 9 | 6, 8 | syl 17 | . 2 ⊢ (𝑆 SubGraph 𝐺 → (Fun (iEdg‘𝐺) → Fun (iEdg‘𝑆))) |
| 10 | 9 | impcom 407 | 1 ⊢ ((Fun (iEdg‘𝐺) ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ⊆ wss 3926 𝒫 cpw 4575 class class class wbr 5119 Fun wfun 6525 ‘cfv 6531 Vtxcvtx 28975 iEdgciedg 28976 Edgcedg 29026 SubGraph csubgr 29246 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-res 5666 df-iota 6484 df-fun 6533 df-fv 6539 df-subgr 29247 |
| This theorem is referenced by: subgruhgrfun 29261 |
| Copyright terms: Public domain | W3C validator |