MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgrfun Structured version   Visualization version   GIF version

Theorem subgrfun 27551
Description: The edge function of a subgraph of a graph whose edge function is actually a function is a function. (Contributed by AV, 20-Nov-2020.)
Assertion
Ref Expression
subgrfun ((Fun (iEdg‘𝐺) ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆))

Proof of Theorem subgrfun
StepHypRef Expression
1 eqid 2738 . . . 4 (Vtx‘𝑆) = (Vtx‘𝑆)
2 eqid 2738 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2738 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
4 eqid 2738 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
5 eqid 2738 . . . 4 (Edg‘𝑆) = (Edg‘𝑆)
61, 2, 3, 4, 5subgrprop2 27544 . . 3 (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
7 funss 6437 . . . 4 ((iEdg‘𝑆) ⊆ (iEdg‘𝐺) → (Fun (iEdg‘𝐺) → Fun (iEdg‘𝑆)))
873ad2ant2 1132 . . 3 (((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) → (Fun (iEdg‘𝐺) → Fun (iEdg‘𝑆)))
96, 8syl 17 . 2 (𝑆 SubGraph 𝐺 → (Fun (iEdg‘𝐺) → Fun (iEdg‘𝑆)))
109impcom 407 1 ((Fun (iEdg‘𝐺) ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wss 3883  𝒫 cpw 4530   class class class wbr 5070  Fun wfun 6412  cfv 6418  Vtxcvtx 27269  iEdgciedg 27270  Edgcedg 27320   SubGraph csubgr 27537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-res 5592  df-iota 6376  df-fun 6420  df-fv 6426  df-subgr 27538
This theorem is referenced by:  subgruhgrfun  27552
  Copyright terms: Public domain W3C validator