Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subgrfun | Structured version Visualization version GIF version |
Description: The edge function of a subgraph of a graph whose edge function is actually a function is a function. (Contributed by AV, 20-Nov-2020.) |
Ref | Expression |
---|---|
subgrfun | ⊢ ((Fun (iEdg‘𝐺) ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . 4 ⊢ (Vtx‘𝑆) = (Vtx‘𝑆) | |
2 | eqid 2736 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
3 | eqid 2736 | . . . 4 ⊢ (iEdg‘𝑆) = (iEdg‘𝑆) | |
4 | eqid 2736 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
5 | eqid 2736 | . . . 4 ⊢ (Edg‘𝑆) = (Edg‘𝑆) | |
6 | 1, 2, 3, 4, 5 | subgrprop2 27930 | . . 3 ⊢ (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))) |
7 | funss 6503 | . . . 4 ⊢ ((iEdg‘𝑆) ⊆ (iEdg‘𝐺) → (Fun (iEdg‘𝐺) → Fun (iEdg‘𝑆))) | |
8 | 7 | 3ad2ant2 1133 | . . 3 ⊢ (((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) → (Fun (iEdg‘𝐺) → Fun (iEdg‘𝑆))) |
9 | 6, 8 | syl 17 | . 2 ⊢ (𝑆 SubGraph 𝐺 → (Fun (iEdg‘𝐺) → Fun (iEdg‘𝑆))) |
10 | 9 | impcom 408 | 1 ⊢ ((Fun (iEdg‘𝐺) ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ⊆ wss 3898 𝒫 cpw 4547 class class class wbr 5092 Fun wfun 6473 ‘cfv 6479 Vtxcvtx 27655 iEdgciedg 27656 Edgcedg 27706 SubGraph csubgr 27923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-res 5632 df-iota 6431 df-fun 6481 df-fv 6487 df-subgr 27924 |
This theorem is referenced by: subgruhgrfun 27938 |
Copyright terms: Public domain | W3C validator |