![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subgrfun | Structured version Visualization version GIF version |
Description: The edge function of a subgraph of a graph whose edge function is actually a function is a function. (Contributed by AV, 20-Nov-2020.) |
Ref | Expression |
---|---|
subgrfun | ⊢ ((Fun (iEdg‘𝐺) ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ (Vtx‘𝑆) = (Vtx‘𝑆) | |
2 | eqid 2740 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
3 | eqid 2740 | . . . 4 ⊢ (iEdg‘𝑆) = (iEdg‘𝑆) | |
4 | eqid 2740 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
5 | eqid 2740 | . . . 4 ⊢ (Edg‘𝑆) = (Edg‘𝑆) | |
6 | 1, 2, 3, 4, 5 | subgrprop2 29309 | . . 3 ⊢ (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))) |
7 | funss 6597 | . . . 4 ⊢ ((iEdg‘𝑆) ⊆ (iEdg‘𝐺) → (Fun (iEdg‘𝐺) → Fun (iEdg‘𝑆))) | |
8 | 7 | 3ad2ant2 1134 | . . 3 ⊢ (((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) → (Fun (iEdg‘𝐺) → Fun (iEdg‘𝑆))) |
9 | 6, 8 | syl 17 | . 2 ⊢ (𝑆 SubGraph 𝐺 → (Fun (iEdg‘𝐺) → Fun (iEdg‘𝑆))) |
10 | 9 | impcom 407 | 1 ⊢ ((Fun (iEdg‘𝐺) ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ⊆ wss 3976 𝒫 cpw 4622 class class class wbr 5166 Fun wfun 6567 ‘cfv 6573 Vtxcvtx 29031 iEdgciedg 29032 Edgcedg 29082 SubGraph csubgr 29302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-iota 6525 df-fun 6575 df-fv 6581 df-subgr 29303 |
This theorem is referenced by: subgruhgrfun 29317 |
Copyright terms: Public domain | W3C validator |