|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > subgrfun | Structured version Visualization version GIF version | ||
| Description: The edge function of a subgraph of a graph whose edge function is actually a function is a function. (Contributed by AV, 20-Nov-2020.) | 
| Ref | Expression | 
|---|---|
| subgrfun | ⊢ ((Fun (iEdg‘𝐺) ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2737 | . . . 4 ⊢ (Vtx‘𝑆) = (Vtx‘𝑆) | |
| 2 | eqid 2737 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 3 | eqid 2737 | . . . 4 ⊢ (iEdg‘𝑆) = (iEdg‘𝑆) | |
| 4 | eqid 2737 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 5 | eqid 2737 | . . . 4 ⊢ (Edg‘𝑆) = (Edg‘𝑆) | |
| 6 | 1, 2, 3, 4, 5 | subgrprop2 29291 | . . 3 ⊢ (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))) | 
| 7 | funss 6585 | . . . 4 ⊢ ((iEdg‘𝑆) ⊆ (iEdg‘𝐺) → (Fun (iEdg‘𝐺) → Fun (iEdg‘𝑆))) | |
| 8 | 7 | 3ad2ant2 1135 | . . 3 ⊢ (((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) → (Fun (iEdg‘𝐺) → Fun (iEdg‘𝑆))) | 
| 9 | 6, 8 | syl 17 | . 2 ⊢ (𝑆 SubGraph 𝐺 → (Fun (iEdg‘𝐺) → Fun (iEdg‘𝑆))) | 
| 10 | 9 | impcom 407 | 1 ⊢ ((Fun (iEdg‘𝐺) ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ⊆ wss 3951 𝒫 cpw 4600 class class class wbr 5143 Fun wfun 6555 ‘cfv 6561 Vtxcvtx 29013 iEdgciedg 29014 Edgcedg 29064 SubGraph csubgr 29284 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-res 5697 df-iota 6514 df-fun 6563 df-fv 6569 df-subgr 29285 | 
| This theorem is referenced by: subgruhgrfun 29299 | 
| Copyright terms: Public domain | W3C validator |