![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgrsubgrself | Structured version Visualization version GIF version |
Description: A hypergraph is a subgraph of itself. (Contributed by AV, 17-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.) |
Ref | Expression |
---|---|
uhgrsubgrself | ⊢ (𝐺 ∈ UHGraph → 𝐺 SubGraph 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3996 | . . 3 ⊢ (Vtx‘𝐺) ⊆ (Vtx‘𝐺) | |
2 | ssid 3996 | . . 3 ⊢ (iEdg‘𝐺) ⊆ (iEdg‘𝐺) | |
3 | 1, 2 | pm3.2i 469 | . 2 ⊢ ((Vtx‘𝐺) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝐺) ⊆ (iEdg‘𝐺)) |
4 | eqid 2725 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
5 | 4 | uhgrfun 28918 | . . 3 ⊢ (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺)) |
6 | id 22 | . . 3 ⊢ (𝐺 ∈ UHGraph → 𝐺 ∈ UHGraph) | |
7 | eqid 2725 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
8 | 7, 7, 4, 4 | uhgrissubgr 29127 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ Fun (iEdg‘𝐺) ∧ 𝐺 ∈ UHGraph) → (𝐺 SubGraph 𝐺 ↔ ((Vtx‘𝐺) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝐺) ⊆ (iEdg‘𝐺)))) |
9 | 5, 6, 8 | mpd3an23 1459 | . 2 ⊢ (𝐺 ∈ UHGraph → (𝐺 SubGraph 𝐺 ↔ ((Vtx‘𝐺) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝐺) ⊆ (iEdg‘𝐺)))) |
10 | 3, 9 | mpbiri 257 | 1 ⊢ (𝐺 ∈ UHGraph → 𝐺 SubGraph 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 ⊆ wss 3941 class class class wbr 5144 Fun wfun 6537 ‘cfv 6543 Vtxcvtx 28848 iEdgciedg 28849 UHGraphcuhgr 28908 SubGraph csubgr 29119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-edg 28900 df-uhgr 28910 df-subgr 29120 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |