MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrsubgrself Structured version   Visualization version   GIF version

Theorem uhgrsubgrself 29132
Description: A hypergraph is a subgraph of itself. (Contributed by AV, 17-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.)
Assertion
Ref Expression
uhgrsubgrself (𝐺 ∈ UHGraph → 𝐺 SubGraph 𝐺)

Proof of Theorem uhgrsubgrself
StepHypRef Expression
1 ssid 3996 . . 3 (Vtx‘𝐺) ⊆ (Vtx‘𝐺)
2 ssid 3996 . . 3 (iEdg‘𝐺) ⊆ (iEdg‘𝐺)
31, 2pm3.2i 469 . 2 ((Vtx‘𝐺) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝐺) ⊆ (iEdg‘𝐺))
4 eqid 2725 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
54uhgrfun 28918 . . 3 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
6 id 22 . . 3 (𝐺 ∈ UHGraph → 𝐺 ∈ UHGraph)
7 eqid 2725 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
87, 7, 4, 4uhgrissubgr 29127 . . 3 ((𝐺 ∈ UHGraph ∧ Fun (iEdg‘𝐺) ∧ 𝐺 ∈ UHGraph) → (𝐺 SubGraph 𝐺 ↔ ((Vtx‘𝐺) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝐺) ⊆ (iEdg‘𝐺))))
95, 6, 8mpd3an23 1459 . 2 (𝐺 ∈ UHGraph → (𝐺 SubGraph 𝐺 ↔ ((Vtx‘𝐺) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝐺) ⊆ (iEdg‘𝐺))))
103, 9mpbiri 257 1 (𝐺 ∈ UHGraph → 𝐺 SubGraph 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2098  wss 3941   class class class wbr 5144  Fun wfun 6537  cfv 6543  Vtxcvtx 28848  iEdgciedg 28849  UHGraphcuhgr 28908   SubGraph csubgr 29119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-edg 28900  df-uhgr 28910  df-subgr 29120
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator