| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgrsubgrself | Structured version Visualization version GIF version | ||
| Description: A hypergraph is a subgraph of itself. (Contributed by AV, 17-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.) |
| Ref | Expression |
|---|---|
| uhgrsubgrself | ⊢ (𝐺 ∈ UHGraph → 𝐺 SubGraph 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3960 | . . 3 ⊢ (Vtx‘𝐺) ⊆ (Vtx‘𝐺) | |
| 2 | ssid 3960 | . . 3 ⊢ (iEdg‘𝐺) ⊆ (iEdg‘𝐺) | |
| 3 | 1, 2 | pm3.2i 470 | . 2 ⊢ ((Vtx‘𝐺) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝐺) ⊆ (iEdg‘𝐺)) |
| 4 | eqid 2729 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 5 | 4 | uhgrfun 29029 | . . 3 ⊢ (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺)) |
| 6 | id 22 | . . 3 ⊢ (𝐺 ∈ UHGraph → 𝐺 ∈ UHGraph) | |
| 7 | eqid 2729 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 8 | 7, 7, 4, 4 | uhgrissubgr 29238 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ Fun (iEdg‘𝐺) ∧ 𝐺 ∈ UHGraph) → (𝐺 SubGraph 𝐺 ↔ ((Vtx‘𝐺) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝐺) ⊆ (iEdg‘𝐺)))) |
| 9 | 5, 6, 8 | mpd3an23 1465 | . 2 ⊢ (𝐺 ∈ UHGraph → (𝐺 SubGraph 𝐺 ↔ ((Vtx‘𝐺) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝐺) ⊆ (iEdg‘𝐺)))) |
| 10 | 3, 9 | mpbiri 258 | 1 ⊢ (𝐺 ∈ UHGraph → 𝐺 SubGraph 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3905 class class class wbr 5095 Fun wfun 6480 ‘cfv 6486 Vtxcvtx 28959 iEdgciedg 28960 UHGraphcuhgr 29019 SubGraph csubgr 29230 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-edg 29011 df-uhgr 29021 df-subgr 29231 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |