| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgrsubgrself | Structured version Visualization version GIF version | ||
| Description: A hypergraph is a subgraph of itself. (Contributed by AV, 17-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.) |
| Ref | Expression |
|---|---|
| uhgrsubgrself | ⊢ (𝐺 ∈ UHGraph → 𝐺 SubGraph 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3957 | . . 3 ⊢ (Vtx‘𝐺) ⊆ (Vtx‘𝐺) | |
| 2 | ssid 3957 | . . 3 ⊢ (iEdg‘𝐺) ⊆ (iEdg‘𝐺) | |
| 3 | 1, 2 | pm3.2i 470 | . 2 ⊢ ((Vtx‘𝐺) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝐺) ⊆ (iEdg‘𝐺)) |
| 4 | eqid 2731 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 5 | 4 | uhgrfun 29042 | . . 3 ⊢ (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺)) |
| 6 | id 22 | . . 3 ⊢ (𝐺 ∈ UHGraph → 𝐺 ∈ UHGraph) | |
| 7 | eqid 2731 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 8 | 7, 7, 4, 4 | uhgrissubgr 29251 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ Fun (iEdg‘𝐺) ∧ 𝐺 ∈ UHGraph) → (𝐺 SubGraph 𝐺 ↔ ((Vtx‘𝐺) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝐺) ⊆ (iEdg‘𝐺)))) |
| 9 | 5, 6, 8 | mpd3an23 1465 | . 2 ⊢ (𝐺 ∈ UHGraph → (𝐺 SubGraph 𝐺 ↔ ((Vtx‘𝐺) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝐺) ⊆ (iEdg‘𝐺)))) |
| 10 | 3, 9 | mpbiri 258 | 1 ⊢ (𝐺 ∈ UHGraph → 𝐺 SubGraph 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ⊆ wss 3902 class class class wbr 5091 Fun wfun 6475 ‘cfv 6481 Vtxcvtx 28972 iEdgciedg 28973 UHGraphcuhgr 29032 SubGraph csubgr 29243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-edg 29024 df-uhgr 29034 df-subgr 29244 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |