|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > uhgrsubgrself | Structured version Visualization version GIF version | ||
| Description: A hypergraph is a subgraph of itself. (Contributed by AV, 17-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.) | 
| Ref | Expression | 
|---|---|
| uhgrsubgrself | ⊢ (𝐺 ∈ UHGraph → 𝐺 SubGraph 𝐺) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssid 4006 | . . 3 ⊢ (Vtx‘𝐺) ⊆ (Vtx‘𝐺) | |
| 2 | ssid 4006 | . . 3 ⊢ (iEdg‘𝐺) ⊆ (iEdg‘𝐺) | |
| 3 | 1, 2 | pm3.2i 470 | . 2 ⊢ ((Vtx‘𝐺) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝐺) ⊆ (iEdg‘𝐺)) | 
| 4 | eqid 2737 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 5 | 4 | uhgrfun 29083 | . . 3 ⊢ (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺)) | 
| 6 | id 22 | . . 3 ⊢ (𝐺 ∈ UHGraph → 𝐺 ∈ UHGraph) | |
| 7 | eqid 2737 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 8 | 7, 7, 4, 4 | uhgrissubgr 29292 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ Fun (iEdg‘𝐺) ∧ 𝐺 ∈ UHGraph) → (𝐺 SubGraph 𝐺 ↔ ((Vtx‘𝐺) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝐺) ⊆ (iEdg‘𝐺)))) | 
| 9 | 5, 6, 8 | mpd3an23 1465 | . 2 ⊢ (𝐺 ∈ UHGraph → (𝐺 SubGraph 𝐺 ↔ ((Vtx‘𝐺) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝐺) ⊆ (iEdg‘𝐺)))) | 
| 10 | 3, 9 | mpbiri 258 | 1 ⊢ (𝐺 ∈ UHGraph → 𝐺 SubGraph 𝐺) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3951 class class class wbr 5143 Fun wfun 6555 ‘cfv 6561 Vtxcvtx 29013 iEdgciedg 29014 UHGraphcuhgr 29073 SubGraph csubgr 29284 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-edg 29065 df-uhgr 29075 df-subgr 29285 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |