MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrsubgrself Structured version   Visualization version   GIF version

Theorem uhgrsubgrself 29080
Description: A hypergraph is a subgraph of itself. (Contributed by AV, 17-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.)
Assertion
Ref Expression
uhgrsubgrself (𝐺 ∈ UHGraph → 𝐺 SubGraph 𝐺)

Proof of Theorem uhgrsubgrself
StepHypRef Expression
1 ssid 4000 . . 3 (Vtx‘𝐺) ⊆ (Vtx‘𝐺)
2 ssid 4000 . . 3 (iEdg‘𝐺) ⊆ (iEdg‘𝐺)
31, 2pm3.2i 470 . 2 ((Vtx‘𝐺) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝐺) ⊆ (iEdg‘𝐺))
4 eqid 2727 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
54uhgrfun 28866 . . 3 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
6 id 22 . . 3 (𝐺 ∈ UHGraph → 𝐺 ∈ UHGraph)
7 eqid 2727 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
87, 7, 4, 4uhgrissubgr 29075 . . 3 ((𝐺 ∈ UHGraph ∧ Fun (iEdg‘𝐺) ∧ 𝐺 ∈ UHGraph) → (𝐺 SubGraph 𝐺 ↔ ((Vtx‘𝐺) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝐺) ⊆ (iEdg‘𝐺))))
95, 6, 8mpd3an23 1460 . 2 (𝐺 ∈ UHGraph → (𝐺 SubGraph 𝐺 ↔ ((Vtx‘𝐺) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝐺) ⊆ (iEdg‘𝐺))))
103, 9mpbiri 258 1 (𝐺 ∈ UHGraph → 𝐺 SubGraph 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2099  wss 3944   class class class wbr 5142  Fun wfun 6536  cfv 6542  Vtxcvtx 28796  iEdgciedg 28797  UHGraphcuhgr 28856   SubGraph csubgr 29067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-edg 28848  df-uhgr 28858  df-subgr 29068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator