MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sup0 Structured version   Visualization version   GIF version

Theorem sup0 9535
Description: The supremum of an empty set under a base set which has a unique smallest element is the smallest element of the base set. (Contributed by AV, 4-Sep-2020.)
Assertion
Ref Expression
sup0 ((𝑅 Or 𝐴 ∧ (𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑋) ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) → sup(∅, 𝐴, 𝑅) = 𝑋)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦

Proof of Theorem sup0
StepHypRef Expression
1 sup0riota 9534 . . 3 (𝑅 Or 𝐴 → sup(∅, 𝐴, 𝑅) = (𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥))
213ad2ant1 1133 . 2 ((𝑅 Or 𝐴 ∧ (𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑋) ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) → sup(∅, 𝐴, 𝑅) = (𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥))
3 simp2r 1200 . . 3 ((𝑅 Or 𝐴 ∧ (𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑋) ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) → ∀𝑦𝐴 ¬ 𝑦𝑅𝑋)
4 simpl 482 . . . . . 6 ((𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑋) → 𝑋𝐴)
54anim1i 614 . . . . 5 (((𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑋) ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) → (𝑋𝐴 ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥))
653adant1 1130 . . . 4 ((𝑅 Or 𝐴 ∧ (𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑋) ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) → (𝑋𝐴 ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥))
7 breq2 5170 . . . . . . 7 (𝑥 = 𝑋 → (𝑦𝑅𝑥𝑦𝑅𝑋))
87notbid 318 . . . . . 6 (𝑥 = 𝑋 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝑋))
98ralbidv 3184 . . . . 5 (𝑥 = 𝑋 → (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝐴 ¬ 𝑦𝑅𝑋))
109riota2 7430 . . . 4 ((𝑋𝐴 ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) → (∀𝑦𝐴 ¬ 𝑦𝑅𝑋 ↔ (𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) = 𝑋))
116, 10syl 17 . . 3 ((𝑅 Or 𝐴 ∧ (𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑋) ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) → (∀𝑦𝐴 ¬ 𝑦𝑅𝑋 ↔ (𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) = 𝑋))
123, 11mpbid 232 . 2 ((𝑅 Or 𝐴 ∧ (𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑋) ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) → (𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) = 𝑋)
132, 12eqtrd 2780 1 ((𝑅 Or 𝐴 ∧ (𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑋) ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) → sup(∅, 𝐴, 𝑅) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  ∃!wreu 3386  c0 4352   class class class wbr 5166   Or wor 5606  crio 7403  supcsup 9509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-po 5607  df-so 5608  df-iota 6525  df-riota 7404  df-sup 9511
This theorem is referenced by:  infempty  9576
  Copyright terms: Public domain W3C validator