MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sup0 Structured version   Visualization version   GIF version

Theorem sup0 9467
Description: The supremum of an empty set under a base set which has a unique smallest element is the smallest element of the base set. (Contributed by AV, 4-Sep-2020.)
Assertion
Ref Expression
sup0 ((𝑅 Or 𝐴 ∧ (𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑋) ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) → sup(∅, 𝐴, 𝑅) = 𝑋)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦

Proof of Theorem sup0
StepHypRef Expression
1 sup0riota 9466 . . 3 (𝑅 Or 𝐴 → sup(∅, 𝐴, 𝑅) = (𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥))
213ad2ant1 1132 . 2 ((𝑅 Or 𝐴 ∧ (𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑋) ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) → sup(∅, 𝐴, 𝑅) = (𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥))
3 simp2r 1199 . . 3 ((𝑅 Or 𝐴 ∧ (𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑋) ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) → ∀𝑦𝐴 ¬ 𝑦𝑅𝑋)
4 simpl 482 . . . . . 6 ((𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑋) → 𝑋𝐴)
54anim1i 614 . . . . 5 (((𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑋) ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) → (𝑋𝐴 ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥))
653adant1 1129 . . . 4 ((𝑅 Or 𝐴 ∧ (𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑋) ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) → (𝑋𝐴 ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥))
7 breq2 5152 . . . . . . 7 (𝑥 = 𝑋 → (𝑦𝑅𝑥𝑦𝑅𝑋))
87notbid 318 . . . . . 6 (𝑥 = 𝑋 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝑋))
98ralbidv 3176 . . . . 5 (𝑥 = 𝑋 → (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝐴 ¬ 𝑦𝑅𝑋))
109riota2 7394 . . . 4 ((𝑋𝐴 ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) → (∀𝑦𝐴 ¬ 𝑦𝑅𝑋 ↔ (𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) = 𝑋))
116, 10syl 17 . . 3 ((𝑅 Or 𝐴 ∧ (𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑋) ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) → (∀𝑦𝐴 ¬ 𝑦𝑅𝑋 ↔ (𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) = 𝑋))
123, 11mpbid 231 . 2 ((𝑅 Or 𝐴 ∧ (𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑋) ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) → (𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) = 𝑋)
132, 12eqtrd 2771 1 ((𝑅 Or 𝐴 ∧ (𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑋) ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) → sup(∅, 𝐴, 𝑅) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wral 3060  ∃!wreu 3373  c0 4322   class class class wbr 5148   Or wor 5587  crio 7367  supcsup 9441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-po 5588  df-so 5589  df-iota 6495  df-riota 7368  df-sup 9443
This theorem is referenced by:  infempty  9508
  Copyright terms: Public domain W3C validator