Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sup0 | Structured version Visualization version GIF version |
Description: The supremum of an empty set under a base set which has a unique smallest element is the smallest element of the base set. (Contributed by AV, 4-Sep-2020.) |
Ref | Expression |
---|---|
sup0 | ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑋) ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) → sup(∅, 𝐴, 𝑅) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sup0riota 9154 | . . 3 ⊢ (𝑅 Or 𝐴 → sup(∅, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥)) | |
2 | 1 | 3ad2ant1 1131 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑋) ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) → sup(∅, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥)) |
3 | simp2r 1198 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑋) ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) → ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑋) | |
4 | simpl 482 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑋) → 𝑋 ∈ 𝐴) | |
5 | 4 | anim1i 614 | . . . . 5 ⊢ (((𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑋) ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) → (𝑋 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥)) |
6 | 5 | 3adant1 1128 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑋) ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) → (𝑋 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥)) |
7 | breq2 5074 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝑋)) | |
8 | 7 | notbid 317 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝑋)) |
9 | 8 | ralbidv 3120 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑋)) |
10 | 9 | riota2 7238 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) → (∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑋 ↔ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) = 𝑋)) |
11 | 6, 10 | syl 17 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑋) ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) → (∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑋 ↔ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) = 𝑋)) |
12 | 3, 11 | mpbid 231 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑋) ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) = 𝑋) |
13 | 2, 12 | eqtrd 2778 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑋) ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) → sup(∅, 𝐴, 𝑅) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃!wreu 3065 ∅c0 4253 class class class wbr 5070 Or wor 5493 ℩crio 7211 supcsup 9129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-po 5494 df-so 5495 df-iota 6376 df-riota 7212 df-sup 9131 |
This theorem is referenced by: infempty 9196 |
Copyright terms: Public domain | W3C validator |