Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemh2 Structured version   Visualization version   GIF version

Theorem cdlemh2 36795
Description: Part of proof of Lemma H of [Crawley] p. 118. (Contributed by NM, 16-Jun-2013.)
Hypotheses
Ref Expression
cdlemh.b 𝐵 = (Base‘𝐾)
cdlemh.l = (le‘𝐾)
cdlemh.j = (join‘𝐾)
cdlemh.m = (meet‘𝐾)
cdlemh.a 𝐴 = (Atoms‘𝐾)
cdlemh.h 𝐻 = (LHyp‘𝐾)
cdlemh.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemh.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemh.s 𝑆 = ((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹))))
cdlemh.z 0 = (0.‘𝐾)
Assertion
Ref Expression
cdlemh2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑆 𝑊) = 0 )

Proof of Theorem cdlemh2
StepHypRef Expression
1 simp11l 1383 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐾 ∈ HL)
2 hlol 35340 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OL)
31, 2syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐾 ∈ OL)
41hllatd 35343 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐾 ∈ Lat)
5 simp2ll 1321 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑃𝐴)
6 cdlemh.b . . . . . . 7 𝐵 = (Base‘𝐾)
7 cdlemh.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
86, 7atbase 35268 . . . . . 6 (𝑃𝐴𝑃𝐵)
95, 8syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑃𝐵)
10 simp11r 1384 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑊𝐻)
111, 10jca 507 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
12 simp13 1262 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐺𝑇)
13 cdlemh.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
14 cdlemh.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
15 cdlemh.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
166, 13, 14, 15trlcl 36143 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ 𝐵)
1711, 12, 16syl2anc 579 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐺) ∈ 𝐵)
18 cdlemh.j . . . . . 6 = (join‘𝐾)
196, 18latjcl 17333 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ (𝑅𝐺) ∈ 𝐵) → (𝑃 (𝑅𝐺)) ∈ 𝐵)
204, 9, 17, 19syl3anc 1490 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑃 (𝑅𝐺)) ∈ 𝐵)
21 simp2rl 1323 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑄𝐴)
226, 7atbase 35268 . . . . . 6 (𝑄𝐴𝑄𝐵)
2321, 22syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑄𝐵)
24 simp12 1261 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹𝑇)
2513, 14ltrncnv 36125 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
2611, 24, 25syl2anc 579 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹𝑇)
2713, 14ltrnco 36698 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐹𝑇) → (𝐺𝐹) ∈ 𝑇)
2811, 12, 26, 27syl3anc 1490 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐺𝐹) ∈ 𝑇)
296, 13, 14, 15trlcl 36143 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝐹) ∈ 𝑇) → (𝑅‘(𝐺𝐹)) ∈ 𝐵)
3011, 28, 29syl2anc 579 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅‘(𝐺𝐹)) ∈ 𝐵)
316, 18latjcl 17333 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑄𝐵 ∧ (𝑅‘(𝐺𝐹)) ∈ 𝐵) → (𝑄 (𝑅‘(𝐺𝐹))) ∈ 𝐵)
324, 23, 30, 31syl3anc 1490 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑄 (𝑅‘(𝐺𝐹))) ∈ 𝐵)
336, 13lhpbase 35977 . . . . 5 (𝑊𝐻𝑊𝐵)
3410, 33syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑊𝐵)
35 cdlemh.m . . . . 5 = (meet‘𝐾)
366, 35latmassOLD 35208 . . . 4 ((𝐾 ∈ OL ∧ ((𝑃 (𝑅𝐺)) ∈ 𝐵 ∧ (𝑄 (𝑅‘(𝐺𝐹))) ∈ 𝐵𝑊𝐵)) → (((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹)))) 𝑊) = ((𝑃 (𝑅𝐺)) ((𝑄 (𝑅‘(𝐺𝐹))) 𝑊)))
373, 20, 32, 34, 36syl13anc 1491 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹)))) 𝑊) = ((𝑃 (𝑅𝐺)) ((𝑄 (𝑅‘(𝐺𝐹))) 𝑊)))
38 simp2r 1257 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
39 cdlemh.l . . . . . . . 8 = (le‘𝐾)
40 cdlemh.z . . . . . . . 8 0 = (0.‘𝐾)
4139, 35, 40, 7, 13lhpmat 36009 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑄 𝑊) = 0 )
4211, 38, 41syl2anc 579 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑄 𝑊) = 0 )
4342oveq1d 6861 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑄 𝑊) (𝑅‘(𝐺𝐹))) = ( 0 (𝑅‘(𝐺𝐹))))
4439, 13, 14, 15trlle 36163 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝐹) ∈ 𝑇) → (𝑅‘(𝐺𝐹)) 𝑊)
4511, 28, 44syl2anc 579 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅‘(𝐺𝐹)) 𝑊)
466, 39, 18, 35, 7atmod4i2 35846 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑄𝐴 ∧ (𝑅‘(𝐺𝐹)) ∈ 𝐵𝑊𝐵) ∧ (𝑅‘(𝐺𝐹)) 𝑊) → ((𝑄 𝑊) (𝑅‘(𝐺𝐹))) = ((𝑄 (𝑅‘(𝐺𝐹))) 𝑊))
471, 21, 30, 34, 45, 46syl131anc 1502 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑄 𝑊) (𝑅‘(𝐺𝐹))) = ((𝑄 (𝑅‘(𝐺𝐹))) 𝑊))
486, 18, 40olj02 35205 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑅‘(𝐺𝐹)) ∈ 𝐵) → ( 0 (𝑅‘(𝐺𝐹))) = (𝑅‘(𝐺𝐹)))
493, 30, 48syl2anc 579 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ( 0 (𝑅‘(𝐺𝐹))) = (𝑅‘(𝐺𝐹)))
5043, 47, 493eqtr3rd 2808 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅‘(𝐺𝐹)) = ((𝑄 (𝑅‘(𝐺𝐹))) 𝑊))
5150oveq2d 6862 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑃 (𝑅𝐺)) (𝑅‘(𝐺𝐹))) = ((𝑃 (𝑅𝐺)) ((𝑄 (𝑅‘(𝐺𝐹))) 𝑊)))
52 simp2l 1256 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5312, 26jca 507 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐺𝑇𝐹𝑇))
54 simp33 1268 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ≠ (𝑅𝐺))
5554necomd 2992 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐺) ≠ (𝑅𝐹))
5613, 14, 15trlcnv 36144 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = (𝑅𝐹))
5711, 24, 56syl2anc 579 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) = (𝑅𝐹))
5855, 57neeqtrrd 3011 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐺) ≠ (𝑅𝐹))
59 simp31 1266 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹 ≠ ( I ↾ 𝐵))
606, 13, 14ltrncnvnid 36106 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 ≠ ( I ↾ 𝐵))
6111, 24, 59, 60syl3anc 1490 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹 ≠ ( I ↾ 𝐵))
626, 13, 14, 15trlcone 36707 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝐹𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ 𝐹 ≠ ( I ↾ 𝐵))) → (𝑅𝐺) ≠ (𝑅‘(𝐺𝐹)))
6311, 53, 58, 61, 62syl112anc 1493 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐺) ≠ (𝑅‘(𝐺𝐹)))
64 simp32 1267 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐺 ≠ ( I ↾ 𝐵))
656, 7, 13, 14, 15trlnidat 36152 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) → (𝑅𝐺) ∈ 𝐴)
6611, 12, 64, 65syl3anc 1490 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐺) ∈ 𝐴)
6739, 13, 14, 15trlle 36163 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) 𝑊)
6811, 12, 67syl2anc 579 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐺) 𝑊)
697, 13, 14, 15trlcoat 36702 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝐹𝑇) ∧ (𝑅𝐺) ≠ (𝑅𝐹)) → (𝑅‘(𝐺𝐹)) ∈ 𝐴)
7011, 53, 58, 69syl3anc 1490 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅‘(𝐺𝐹)) ∈ 𝐴)
7139, 18, 35, 40, 7, 13lhp2at0 36011 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐺) ≠ (𝑅‘(𝐺𝐹))) ∧ ((𝑅𝐺) ∈ 𝐴 ∧ (𝑅𝐺) 𝑊) ∧ ((𝑅‘(𝐺𝐹)) ∈ 𝐴 ∧ (𝑅‘(𝐺𝐹)) 𝑊)) → ((𝑃 (𝑅𝐺)) (𝑅‘(𝐺𝐹))) = 0 )
7211, 52, 63, 66, 68, 70, 45, 71syl322anc 1517 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑃 (𝑅𝐺)) (𝑅‘(𝐺𝐹))) = 0 )
7337, 51, 723eqtr2rd 2806 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 0 = (((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹)))) 𝑊))
74 cdlemh.s . . 3 𝑆 = ((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹))))
7574oveq1i 6856 . 2 (𝑆 𝑊) = (((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹)))) 𝑊)
7673, 75syl6reqr 2818 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑆 𝑊) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937   class class class wbr 4811   I cid 5186  ccnv 5278  cres 5281  ccom 5283  cfv 6070  (class class class)co 6846  Basecbs 16146  lecple 16237  joincjn 17226  meetcmee 17227  0.cp0 17319  Latclat 17327  OLcol 35153  Atomscatm 35242  HLchlt 35329  LHypclh 35963  LTrncltrn 36080  trLctrl 36137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-riotaBAD 34932
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-1st 7370  df-2nd 7371  df-undef 7606  df-map 8066  df-proset 17210  df-poset 17228  df-plt 17240  df-lub 17256  df-glb 17257  df-join 17258  df-meet 17259  df-p0 17321  df-p1 17322  df-lat 17328  df-clat 17390  df-oposet 35155  df-ol 35157  df-oml 35158  df-covers 35245  df-ats 35246  df-atl 35277  df-cvlat 35301  df-hlat 35330  df-llines 35477  df-lplanes 35478  df-lvols 35479  df-lines 35480  df-psubsp 35482  df-pmap 35483  df-padd 35775  df-lhyp 35967  df-laut 35968  df-ldil 36083  df-ltrn 36084  df-trl 36138
This theorem is referenced by:  cdlemh  36796
  Copyright terms: Public domain W3C validator