Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemh2 Structured version   Visualization version   GIF version

Theorem cdlemh2 40773
Description: Part of proof of Lemma H of [Crawley] p. 118. (Contributed by NM, 16-Jun-2013.)
Hypotheses
Ref Expression
cdlemh.b 𝐵 = (Base‘𝐾)
cdlemh.l = (le‘𝐾)
cdlemh.j = (join‘𝐾)
cdlemh.m = (meet‘𝐾)
cdlemh.a 𝐴 = (Atoms‘𝐾)
cdlemh.h 𝐻 = (LHyp‘𝐾)
cdlemh.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemh.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemh.s 𝑆 = ((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹))))
cdlemh.z 0 = (0.‘𝐾)
Assertion
Ref Expression
cdlemh2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑆 𝑊) = 0 )

Proof of Theorem cdlemh2
StepHypRef Expression
1 cdlemh.s . . 3 𝑆 = ((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹))))
21oveq1i 7458 . 2 (𝑆 𝑊) = (((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹)))) 𝑊)
3 simp11l 1284 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐾 ∈ HL)
4 hlol 39317 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OL)
53, 4syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐾 ∈ OL)
63hllatd 39320 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐾 ∈ Lat)
7 simp2ll 1240 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑃𝐴)
8 cdlemh.b . . . . . . 7 𝐵 = (Base‘𝐾)
9 cdlemh.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
108, 9atbase 39245 . . . . . 6 (𝑃𝐴𝑃𝐵)
117, 10syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑃𝐵)
12 simp11r 1285 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑊𝐻)
133, 12jca 511 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
14 simp13 1205 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐺𝑇)
15 cdlemh.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
16 cdlemh.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
17 cdlemh.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
188, 15, 16, 17trlcl 40121 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ 𝐵)
1913, 14, 18syl2anc 583 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐺) ∈ 𝐵)
20 cdlemh.j . . . . . 6 = (join‘𝐾)
218, 20latjcl 18509 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ (𝑅𝐺) ∈ 𝐵) → (𝑃 (𝑅𝐺)) ∈ 𝐵)
226, 11, 19, 21syl3anc 1371 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑃 (𝑅𝐺)) ∈ 𝐵)
23 simp2rl 1242 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑄𝐴)
248, 9atbase 39245 . . . . . 6 (𝑄𝐴𝑄𝐵)
2523, 24syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑄𝐵)
26 simp12 1204 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹𝑇)
2715, 16ltrncnv 40103 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
2813, 26, 27syl2anc 583 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹𝑇)
2915, 16ltrnco 40676 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐹𝑇) → (𝐺𝐹) ∈ 𝑇)
3013, 14, 28, 29syl3anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐺𝐹) ∈ 𝑇)
318, 15, 16, 17trlcl 40121 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝐹) ∈ 𝑇) → (𝑅‘(𝐺𝐹)) ∈ 𝐵)
3213, 30, 31syl2anc 583 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅‘(𝐺𝐹)) ∈ 𝐵)
338, 20latjcl 18509 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑄𝐵 ∧ (𝑅‘(𝐺𝐹)) ∈ 𝐵) → (𝑄 (𝑅‘(𝐺𝐹))) ∈ 𝐵)
346, 25, 32, 33syl3anc 1371 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑄 (𝑅‘(𝐺𝐹))) ∈ 𝐵)
358, 15lhpbase 39955 . . . . 5 (𝑊𝐻𝑊𝐵)
3612, 35syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑊𝐵)
37 cdlemh.m . . . . 5 = (meet‘𝐾)
388, 37latmassOLD 39185 . . . 4 ((𝐾 ∈ OL ∧ ((𝑃 (𝑅𝐺)) ∈ 𝐵 ∧ (𝑄 (𝑅‘(𝐺𝐹))) ∈ 𝐵𝑊𝐵)) → (((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹)))) 𝑊) = ((𝑃 (𝑅𝐺)) ((𝑄 (𝑅‘(𝐺𝐹))) 𝑊)))
395, 22, 34, 36, 38syl13anc 1372 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹)))) 𝑊) = ((𝑃 (𝑅𝐺)) ((𝑄 (𝑅‘(𝐺𝐹))) 𝑊)))
40 simp2r 1200 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
41 cdlemh.l . . . . . . . 8 = (le‘𝐾)
42 cdlemh.z . . . . . . . 8 0 = (0.‘𝐾)
4341, 37, 42, 9, 15lhpmat 39987 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑄 𝑊) = 0 )
4413, 40, 43syl2anc 583 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑄 𝑊) = 0 )
4544oveq1d 7463 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑄 𝑊) (𝑅‘(𝐺𝐹))) = ( 0 (𝑅‘(𝐺𝐹))))
4641, 15, 16, 17trlle 40141 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝐹) ∈ 𝑇) → (𝑅‘(𝐺𝐹)) 𝑊)
4713, 30, 46syl2anc 583 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅‘(𝐺𝐹)) 𝑊)
488, 41, 20, 37, 9atmod4i2 39824 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑄𝐴 ∧ (𝑅‘(𝐺𝐹)) ∈ 𝐵𝑊𝐵) ∧ (𝑅‘(𝐺𝐹)) 𝑊) → ((𝑄 𝑊) (𝑅‘(𝐺𝐹))) = ((𝑄 (𝑅‘(𝐺𝐹))) 𝑊))
493, 23, 32, 36, 47, 48syl131anc 1383 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑄 𝑊) (𝑅‘(𝐺𝐹))) = ((𝑄 (𝑅‘(𝐺𝐹))) 𝑊))
508, 20, 42olj02 39182 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑅‘(𝐺𝐹)) ∈ 𝐵) → ( 0 (𝑅‘(𝐺𝐹))) = (𝑅‘(𝐺𝐹)))
515, 32, 50syl2anc 583 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ( 0 (𝑅‘(𝐺𝐹))) = (𝑅‘(𝐺𝐹)))
5245, 49, 513eqtr3rd 2789 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅‘(𝐺𝐹)) = ((𝑄 (𝑅‘(𝐺𝐹))) 𝑊))
5352oveq2d 7464 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑃 (𝑅𝐺)) (𝑅‘(𝐺𝐹))) = ((𝑃 (𝑅𝐺)) ((𝑄 (𝑅‘(𝐺𝐹))) 𝑊)))
54 simp2l 1199 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5514, 28jca 511 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐺𝑇𝐹𝑇))
56 simp33 1211 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ≠ (𝑅𝐺))
5756necomd 3002 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐺) ≠ (𝑅𝐹))
5815, 16, 17trlcnv 40122 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = (𝑅𝐹))
5913, 26, 58syl2anc 583 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) = (𝑅𝐹))
6057, 59neeqtrrd 3021 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐺) ≠ (𝑅𝐹))
61 simp31 1209 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹 ≠ ( I ↾ 𝐵))
628, 15, 16ltrncnvnid 40084 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 ≠ ( I ↾ 𝐵))
6313, 26, 61, 62syl3anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹 ≠ ( I ↾ 𝐵))
648, 15, 16, 17trlcone 40685 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝐹𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ 𝐹 ≠ ( I ↾ 𝐵))) → (𝑅𝐺) ≠ (𝑅‘(𝐺𝐹)))
6513, 55, 60, 63, 64syl112anc 1374 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐺) ≠ (𝑅‘(𝐺𝐹)))
66 simp32 1210 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐺 ≠ ( I ↾ 𝐵))
678, 9, 15, 16, 17trlnidat 40130 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) → (𝑅𝐺) ∈ 𝐴)
6813, 14, 66, 67syl3anc 1371 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐺) ∈ 𝐴)
6941, 15, 16, 17trlle 40141 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) 𝑊)
7013, 14, 69syl2anc 583 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐺) 𝑊)
719, 15, 16, 17trlcoat 40680 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝐹𝑇) ∧ (𝑅𝐺) ≠ (𝑅𝐹)) → (𝑅‘(𝐺𝐹)) ∈ 𝐴)
7213, 55, 60, 71syl3anc 1371 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅‘(𝐺𝐹)) ∈ 𝐴)
7341, 20, 37, 42, 9, 15lhp2at0 39989 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐺) ≠ (𝑅‘(𝐺𝐹))) ∧ ((𝑅𝐺) ∈ 𝐴 ∧ (𝑅𝐺) 𝑊) ∧ ((𝑅‘(𝐺𝐹)) ∈ 𝐴 ∧ (𝑅‘(𝐺𝐹)) 𝑊)) → ((𝑃 (𝑅𝐺)) (𝑅‘(𝐺𝐹))) = 0 )
7413, 54, 65, 68, 70, 72, 47, 73syl322anc 1398 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑃 (𝑅𝐺)) (𝑅‘(𝐺𝐹))) = 0 )
7539, 53, 743eqtr2rd 2787 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 0 = (((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹)))) 𝑊))
762, 75eqtr4id 2799 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑆 𝑊) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166   I cid 5592  ccnv 5699  cres 5702  ccom 5704  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  joincjn 18381  meetcmee 18382  0.cp0 18493  Latclat 18501  OLcol 39130  Atomscatm 39219  HLchlt 39306  LHypclh 39941  LTrncltrn 40058  trLctrl 40115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-riotaBAD 38909
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-undef 8314  df-map 8886  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456  df-lvols 39457  df-lines 39458  df-psubsp 39460  df-pmap 39461  df-padd 39753  df-lhyp 39945  df-laut 39946  df-ldil 40061  df-ltrn 40062  df-trl 40116
This theorem is referenced by:  cdlemh  40774
  Copyright terms: Public domain W3C validator