![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpaddatriN | Structured version Visualization version GIF version |
Description: Condition implying membership in a projective subspace sum with a point. (Contributed by NM, 1-Feb-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
paddfval.l | β’ β€ = (leβπΎ) |
paddfval.j | β’ β¨ = (joinβπΎ) |
paddfval.a | β’ π΄ = (AtomsβπΎ) |
paddfval.p | β’ + = (+πβπΎ) |
Ref | Expression |
---|---|
elpaddatriN | β’ (((πΎ β Lat β§ π β π΄ β§ π β π΄) β§ (π β π β§ π β π΄ β§ π β€ (π β¨ π))) β π β (π + {π})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1190 | . 2 β’ (((πΎ β Lat β§ π β π΄ β§ π β π΄) β§ (π β π β§ π β π΄ β§ π β€ (π β¨ π))) β πΎ β Lat) | |
2 | simpl2 1191 | . 2 β’ (((πΎ β Lat β§ π β π΄ β§ π β π΄) β§ (π β π β§ π β π΄ β§ π β€ (π β¨ π))) β π β π΄) | |
3 | simpl3 1192 | . . 3 β’ (((πΎ β Lat β§ π β π΄ β§ π β π΄) β§ (π β π β§ π β π΄ β§ π β€ (π β¨ π))) β π β π΄) | |
4 | 3 | snssd 4812 | . 2 β’ (((πΎ β Lat β§ π β π΄ β§ π β π΄) β§ (π β π β§ π β π΄ β§ π β€ (π β¨ π))) β {π} β π΄) |
5 | simpr1 1193 | . 2 β’ (((πΎ β Lat β§ π β π΄ β§ π β π΄) β§ (π β π β§ π β π΄ β§ π β€ (π β¨ π))) β π β π) | |
6 | snidg 4662 | . . 3 β’ (π β π΄ β π β {π}) | |
7 | 3, 6 | syl 17 | . 2 β’ (((πΎ β Lat β§ π β π΄ β§ π β π΄) β§ (π β π β§ π β π΄ β§ π β€ (π β¨ π))) β π β {π}) |
8 | simpr2 1194 | . 2 β’ (((πΎ β Lat β§ π β π΄ β§ π β π΄) β§ (π β π β§ π β π΄ β§ π β€ (π β¨ π))) β π β π΄) | |
9 | simpr3 1195 | . 2 β’ (((πΎ β Lat β§ π β π΄ β§ π β π΄) β§ (π β π β§ π β π΄ β§ π β€ (π β¨ π))) β π β€ (π β¨ π)) | |
10 | paddfval.l | . . 3 β’ β€ = (leβπΎ) | |
11 | paddfval.j | . . 3 β’ β¨ = (joinβπΎ) | |
12 | paddfval.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
13 | paddfval.p | . . 3 β’ + = (+πβπΎ) | |
14 | 10, 11, 12, 13 | elpaddri 38977 | . 2 β’ (((πΎ β Lat β§ π β π΄ β§ {π} β π΄) β§ (π β π β§ π β {π}) β§ (π β π΄ β§ π β€ (π β¨ π))) β π β (π + {π})) |
15 | 1, 2, 4, 5, 7, 8, 9, 14 | syl322anc 1397 | 1 β’ (((πΎ β Lat β§ π β π΄ β§ π β π΄) β§ (π β π β§ π β π΄ β§ π β€ (π β¨ π))) β π β (π + {π})) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 β wss 3948 {csn 4628 class class class wbr 5148 βcfv 6543 (class class class)co 7412 lecple 17209 joincjn 18269 Latclat 18389 Atomscatm 38437 +πcpadd 38970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-lub 18304 df-join 18306 df-lat 18390 df-ats 38441 df-padd 38971 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |