Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpaddatriN | Structured version Visualization version GIF version |
Description: Condition implying membership in a projective subspace sum with a point. (Contributed by NM, 1-Feb-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
paddfval.l | ⊢ ≤ = (le‘𝐾) |
paddfval.j | ⊢ ∨ = (join‘𝐾) |
paddfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
paddfval.p | ⊢ + = (+𝑃‘𝐾) |
Ref | Expression |
---|---|
elpaddatriN | ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑅 ∨ 𝑄))) → 𝑆 ∈ (𝑋 + {𝑄})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1190 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑅 ∨ 𝑄))) → 𝐾 ∈ Lat) | |
2 | simpl2 1191 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑅 ∨ 𝑄))) → 𝑋 ⊆ 𝐴) | |
3 | simpl3 1192 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑅 ∨ 𝑄))) → 𝑄 ∈ 𝐴) | |
4 | 3 | snssd 4742 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑅 ∨ 𝑄))) → {𝑄} ⊆ 𝐴) |
5 | simpr1 1193 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑅 ∨ 𝑄))) → 𝑅 ∈ 𝑋) | |
6 | snidg 4595 | . . 3 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ {𝑄}) | |
7 | 3, 6 | syl 17 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑅 ∨ 𝑄))) → 𝑄 ∈ {𝑄}) |
8 | simpr2 1194 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑅 ∨ 𝑄))) → 𝑆 ∈ 𝐴) | |
9 | simpr3 1195 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑅 ∨ 𝑄))) → 𝑆 ≤ (𝑅 ∨ 𝑄)) | |
10 | paddfval.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
11 | paddfval.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
12 | paddfval.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
13 | paddfval.p | . . 3 ⊢ + = (+𝑃‘𝐾) | |
14 | 10, 11, 12, 13 | elpaddri 37816 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ {𝑄} ⊆ 𝐴) ∧ (𝑅 ∈ 𝑋 ∧ 𝑄 ∈ {𝑄}) ∧ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑅 ∨ 𝑄))) → 𝑆 ∈ (𝑋 + {𝑄})) |
15 | 1, 2, 4, 5, 7, 8, 9, 14 | syl322anc 1397 | 1 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑅 ∨ 𝑄))) → 𝑆 ∈ (𝑋 + {𝑄})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 {csn 4561 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 lecple 16969 joincjn 18029 Latclat 18149 Atomscatm 37277 +𝑃cpadd 37809 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-lub 18064 df-join 18066 df-lat 18150 df-ats 37281 df-padd 37810 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |