MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofcut2d Structured version   Visualization version   GIF version

Theorem cofcut2d 27831
Description: If 𝐴 and 𝐶 are mutually cofinal and 𝐵 and 𝐷 are mutually coinitial, then the cut of 𝐴 and 𝐵 is equal to the cut of 𝐶 and 𝐷. Theorem 2.7 of [Gonshor] p. 10. (Contributed by Scott Fenton, 23-Jan-2025.)
Hypotheses
Ref Expression
cofcut2d.1 (𝜑𝐴 <<s 𝐵)
cofcut2d.2 (𝜑𝐶 ∈ 𝒫 No )
cofcut2d.3 (𝜑𝐷 ∈ 𝒫 No )
cofcut2d.4 (𝜑 → ∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦)
cofcut2d.5 (𝜑 → ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧)
cofcut2d.6 (𝜑 → ∀𝑡𝐶𝑢𝐴 𝑡 ≤s 𝑢)
cofcut2d.7 (𝜑 → ∀𝑟𝐷𝑠𝐵 𝑠 ≤s 𝑟)
Assertion
Ref Expression
cofcut2d (𝜑 → (𝐴 |s 𝐵) = (𝐶 |s 𝐷))
Distinct variable groups:   𝑡,𝐴,𝑢   𝑥,𝐴   𝐵,𝑟,𝑠   𝑧,𝐵   𝑡,𝐶   𝑥,𝐶,𝑦   𝐷,𝑟   𝑤,𝐷,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑢,𝑡,𝑠,𝑟)   𝐴(𝑦,𝑧,𝑤,𝑠,𝑟)   𝐵(𝑥,𝑦,𝑤,𝑢,𝑡)   𝐶(𝑧,𝑤,𝑢,𝑠,𝑟)   𝐷(𝑥,𝑦,𝑢,𝑡,𝑠)

Proof of Theorem cofcut2d
StepHypRef Expression
1 cofcut2d.1 . 2 (𝜑𝐴 <<s 𝐵)
2 cofcut2d.2 . 2 (𝜑𝐶 ∈ 𝒫 No )
3 cofcut2d.3 . 2 (𝜑𝐷 ∈ 𝒫 No )
4 cofcut2d.4 . 2 (𝜑 → ∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦)
5 cofcut2d.5 . 2 (𝜑 → ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧)
6 cofcut2d.6 . 2 (𝜑 → ∀𝑡𝐶𝑢𝐴 𝑡 ≤s 𝑢)
7 cofcut2d.7 . 2 (𝜑 → ∀𝑟𝐷𝑠𝐵 𝑠 ≤s 𝑟)
8 cofcut2 27830 . 2 (((𝐴 <<s 𝐵𝐶 ∈ 𝒫 No 𝐷 ∈ 𝒫 No ) ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (∀𝑡𝐶𝑢𝐴 𝑡 ≤s 𝑢 ∧ ∀𝑟𝐷𝑠𝐵 𝑠 ≤s 𝑟)) → (𝐴 |s 𝐵) = (𝐶 |s 𝐷))
91, 2, 3, 4, 5, 6, 7, 8syl322anc 1400 1 (𝜑 → (𝐴 |s 𝐵) = (𝐶 |s 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  wrex 3053  𝒫 cpw 4563   class class class wbr 5107  (class class class)co 7387   No csur 27551   ≤s csle 27656   <<s csslt 27692   |s cscut 27694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1o 8434  df-2o 8435  df-no 27554  df-slt 27555  df-bday 27556  df-sle 27657  df-sslt 27693  df-scut 27695
This theorem is referenced by:  cutlt  27840
  Copyright terms: Public domain W3C validator