| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cofcut2d | Structured version Visualization version GIF version | ||
| Description: If 𝐴 and 𝐶 are mutually cofinal and 𝐵 and 𝐷 are mutually coinitial, then the cut of 𝐴 and 𝐵 is equal to the cut of 𝐶 and 𝐷. Theorem 2.7 of [Gonshor] p. 10. (Contributed by Scott Fenton, 23-Jan-2025.) |
| Ref | Expression |
|---|---|
| cofcut2d.1 | ⊢ (𝜑 → 𝐴 <<s 𝐵) |
| cofcut2d.2 | ⊢ (𝜑 → 𝐶 ∈ 𝒫 No ) |
| cofcut2d.3 | ⊢ (𝜑 → 𝐷 ∈ 𝒫 No ) |
| cofcut2d.4 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑥 ≤s 𝑦) |
| cofcut2d.5 | ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐷 𝑤 ≤s 𝑧) |
| cofcut2d.6 | ⊢ (𝜑 → ∀𝑡 ∈ 𝐶 ∃𝑢 ∈ 𝐴 𝑡 ≤s 𝑢) |
| cofcut2d.7 | ⊢ (𝜑 → ∀𝑟 ∈ 𝐷 ∃𝑠 ∈ 𝐵 𝑠 ≤s 𝑟) |
| Ref | Expression |
|---|---|
| cofcut2d | ⊢ (𝜑 → (𝐴 |s 𝐵) = (𝐶 |s 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofcut2d.1 | . 2 ⊢ (𝜑 → 𝐴 <<s 𝐵) | |
| 2 | cofcut2d.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝒫 No ) | |
| 3 | cofcut2d.3 | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝒫 No ) | |
| 4 | cofcut2d.4 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑥 ≤s 𝑦) | |
| 5 | cofcut2d.5 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐷 𝑤 ≤s 𝑧) | |
| 6 | cofcut2d.6 | . 2 ⊢ (𝜑 → ∀𝑡 ∈ 𝐶 ∃𝑢 ∈ 𝐴 𝑡 ≤s 𝑢) | |
| 7 | cofcut2d.7 | . 2 ⊢ (𝜑 → ∀𝑟 ∈ 𝐷 ∃𝑠 ∈ 𝐵 𝑠 ≤s 𝑟) | |
| 8 | cofcut2 27866 | . 2 ⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 ∈ 𝒫 No ∧ 𝐷 ∈ 𝒫 No ) ∧ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐷 𝑤 ≤s 𝑧) ∧ (∀𝑡 ∈ 𝐶 ∃𝑢 ∈ 𝐴 𝑡 ≤s 𝑢 ∧ ∀𝑟 ∈ 𝐷 ∃𝑠 ∈ 𝐵 𝑠 ≤s 𝑟)) → (𝐴 |s 𝐵) = (𝐶 |s 𝐷)) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | syl322anc 1400 | 1 ⊢ (𝜑 → (𝐴 |s 𝐵) = (𝐶 |s 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 𝒫 cpw 4547 class class class wbr 5089 (class class class)co 7346 No csur 27578 ≤s csle 27683 <<s csslt 27720 |s cscut 27722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1o 8385 df-2o 8386 df-no 27581 df-slt 27582 df-bday 27583 df-sle 27684 df-sslt 27721 df-scut 27723 |
| This theorem is referenced by: cutlt 27876 |
| Copyright terms: Public domain | W3C validator |