| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pexmidlem2N | Structured version Visualization version GIF version | ||
| Description: Lemma for pexmidN 40088. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pexmidlem.l | ⊢ ≤ = (le‘𝐾) |
| pexmidlem.j | ⊢ ∨ = (join‘𝐾) |
| pexmidlem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| pexmidlem.p | ⊢ + = (+𝑃‘𝐾) |
| pexmidlem.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| pexmidlem.m | ⊢ 𝑀 = (𝑋 + {𝑝}) |
| Ref | Expression |
|---|---|
| pexmidlem2N | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋) ∧ 𝑝 ≤ (𝑟 ∨ 𝑞))) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋) ∧ 𝑝 ≤ (𝑟 ∨ 𝑞))) → 𝐾 ∈ HL) | |
| 2 | 1 | hllatd 39483 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋) ∧ 𝑝 ≤ (𝑟 ∨ 𝑞))) → 𝐾 ∈ Lat) |
| 3 | simpl2 1193 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋) ∧ 𝑝 ≤ (𝑟 ∨ 𝑞))) → 𝑋 ⊆ 𝐴) | |
| 4 | pexmidlem.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | pexmidlem.o | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 6 | 4, 5 | polssatN 40027 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
| 7 | 1, 3, 6 | syl2anc 584 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋) ∧ 𝑝 ≤ (𝑟 ∨ 𝑞))) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
| 8 | simpr1 1195 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋) ∧ 𝑝 ≤ (𝑟 ∨ 𝑞))) → 𝑟 ∈ 𝑋) | |
| 9 | simpr2 1196 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋) ∧ 𝑝 ≤ (𝑟 ∨ 𝑞))) → 𝑞 ∈ ( ⊥ ‘𝑋)) | |
| 10 | simpl3 1194 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋) ∧ 𝑝 ≤ (𝑟 ∨ 𝑞))) → 𝑝 ∈ 𝐴) | |
| 11 | simpr3 1197 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋) ∧ 𝑝 ≤ (𝑟 ∨ 𝑞))) → 𝑝 ≤ (𝑟 ∨ 𝑞)) | |
| 12 | pexmidlem.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 13 | pexmidlem.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 14 | pexmidlem.p | . . 3 ⊢ + = (+𝑃‘𝐾) | |
| 15 | 12, 13, 4, 14 | elpaddri 39921 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘𝑋) ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋)) ∧ (𝑝 ∈ 𝐴 ∧ 𝑝 ≤ (𝑟 ∨ 𝑞))) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋))) |
| 16 | 2, 3, 7, 8, 9, 10, 11, 15 | syl322anc 1400 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋) ∧ 𝑝 ≤ (𝑟 ∨ 𝑞))) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 {csn 4575 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 lecple 17170 joincjn 18219 Latclat 18339 Atomscatm 39382 HLchlt 39469 +𝑃cpadd 39914 ⊥𝑃cpolN 40021 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-proset 18202 df-poset 18221 df-lub 18252 df-glb 18253 df-join 18254 df-meet 18255 df-p1 18332 df-lat 18340 df-clat 18407 df-oposet 39295 df-ol 39297 df-oml 39298 df-ats 39386 df-atl 39417 df-cvlat 39441 df-hlat 39470 df-psubsp 39622 df-pmap 39623 df-padd 39915 df-polarityN 40022 |
| This theorem is referenced by: pexmidlem3N 40091 |
| Copyright terms: Public domain | W3C validator |