Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidlem2N Structured version   Visualization version   GIF version

Theorem pexmidlem2N 37912
Description: Lemma for pexmidN 37910. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmidlem.l = (le‘𝐾)
pexmidlem.j = (join‘𝐾)
pexmidlem.a 𝐴 = (Atoms‘𝐾)
pexmidlem.p + = (+𝑃𝐾)
pexmidlem.o = (⊥𝑃𝐾)
pexmidlem.m 𝑀 = (𝑋 + {𝑝})
Assertion
Ref Expression
pexmidlem2N (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋) ∧ 𝑝 (𝑟 𝑞))) → 𝑝 ∈ (𝑋 + ( 𝑋)))

Proof of Theorem pexmidlem2N
StepHypRef Expression
1 simpl1 1189 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋) ∧ 𝑝 (𝑟 𝑞))) → 𝐾 ∈ HL)
21hllatd 37305 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋) ∧ 𝑝 (𝑟 𝑞))) → 𝐾 ∈ Lat)
3 simpl2 1190 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋) ∧ 𝑝 (𝑟 𝑞))) → 𝑋𝐴)
4 pexmidlem.a . . . 4 𝐴 = (Atoms‘𝐾)
5 pexmidlem.o . . . 4 = (⊥𝑃𝐾)
64, 5polssatN 37849 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ⊆ 𝐴)
71, 3, 6syl2anc 583 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋) ∧ 𝑝 (𝑟 𝑞))) → ( 𝑋) ⊆ 𝐴)
8 simpr1 1192 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋) ∧ 𝑝 (𝑟 𝑞))) → 𝑟𝑋)
9 simpr2 1193 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋) ∧ 𝑝 (𝑟 𝑞))) → 𝑞 ∈ ( 𝑋))
10 simpl3 1191 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋) ∧ 𝑝 (𝑟 𝑞))) → 𝑝𝐴)
11 simpr3 1194 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋) ∧ 𝑝 (𝑟 𝑞))) → 𝑝 (𝑟 𝑞))
12 pexmidlem.l . . 3 = (le‘𝐾)
13 pexmidlem.j . . 3 = (join‘𝐾)
14 pexmidlem.p . . 3 + = (+𝑃𝐾)
1512, 13, 4, 14elpaddri 37743 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐴 ∧ ( 𝑋) ⊆ 𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋)) ∧ (𝑝𝐴𝑝 (𝑟 𝑞))) → 𝑝 ∈ (𝑋 + ( 𝑋)))
162, 3, 7, 8, 9, 10, 11, 15syl322anc 1396 1 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋) ∧ 𝑝 (𝑟 𝑞))) → 𝑝 ∈ (𝑋 + ( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wss 3883  {csn 4558   class class class wbr 5070  cfv 6418  (class class class)co 7255  lecple 16895  joincjn 17944  Latclat 18064  Atomscatm 37204  HLchlt 37291  +𝑃cpadd 37736  𝑃cpolN 37843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-riotaBAD 36894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-undef 8060  df-proset 17928  df-poset 17946  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-psubsp 37444  df-pmap 37445  df-padd 37737  df-polarityN 37844
This theorem is referenced by:  pexmidlem3N  37913
  Copyright terms: Public domain W3C validator