![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pexmidlem2N | Structured version Visualization version GIF version |
Description: Lemma for pexmidN 39366. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pexmidlem.l | β’ β€ = (leβπΎ) |
pexmidlem.j | β’ β¨ = (joinβπΎ) |
pexmidlem.a | β’ π΄ = (AtomsβπΎ) |
pexmidlem.p | β’ + = (+πβπΎ) |
pexmidlem.o | β’ β₯ = (β₯πβπΎ) |
pexmidlem.m | β’ π = (π + {π}) |
Ref | Expression |
---|---|
pexmidlem2N | β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π β§ π β ( β₯ βπ) β§ π β€ (π β¨ π))) β π β (π + ( β₯ βπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1189 | . . 3 β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π β§ π β ( β₯ βπ) β§ π β€ (π β¨ π))) β πΎ β HL) | |
2 | 1 | hllatd 38760 | . 2 β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π β§ π β ( β₯ βπ) β§ π β€ (π β¨ π))) β πΎ β Lat) |
3 | simpl2 1190 | . 2 β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π β§ π β ( β₯ βπ) β§ π β€ (π β¨ π))) β π β π΄) | |
4 | pexmidlem.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
5 | pexmidlem.o | . . . 4 β’ β₯ = (β₯πβπΎ) | |
6 | 4, 5 | polssatN 39305 | . . 3 β’ ((πΎ β HL β§ π β π΄) β ( β₯ βπ) β π΄) |
7 | 1, 3, 6 | syl2anc 583 | . 2 β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π β§ π β ( β₯ βπ) β§ π β€ (π β¨ π))) β ( β₯ βπ) β π΄) |
8 | simpr1 1192 | . 2 β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π β§ π β ( β₯ βπ) β§ π β€ (π β¨ π))) β π β π) | |
9 | simpr2 1193 | . 2 β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π β§ π β ( β₯ βπ) β§ π β€ (π β¨ π))) β π β ( β₯ βπ)) | |
10 | simpl3 1191 | . 2 β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π β§ π β ( β₯ βπ) β§ π β€ (π β¨ π))) β π β π΄) | |
11 | simpr3 1194 | . 2 β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π β§ π β ( β₯ βπ) β§ π β€ (π β¨ π))) β π β€ (π β¨ π)) | |
12 | pexmidlem.l | . . 3 β’ β€ = (leβπΎ) | |
13 | pexmidlem.j | . . 3 β’ β¨ = (joinβπΎ) | |
14 | pexmidlem.p | . . 3 β’ + = (+πβπΎ) | |
15 | 12, 13, 4, 14 | elpaddri 39199 | . 2 β’ (((πΎ β Lat β§ π β π΄ β§ ( β₯ βπ) β π΄) β§ (π β π β§ π β ( β₯ βπ)) β§ (π β π΄ β§ π β€ (π β¨ π))) β π β (π + ( β₯ βπ))) |
16 | 2, 3, 7, 8, 9, 10, 11, 15 | syl322anc 1396 | 1 β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π β§ π β ( β₯ βπ) β§ π β€ (π β¨ π))) β π β (π + ( β₯ βπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1085 = wceq 1534 β wcel 2099 β wss 3944 {csn 4624 class class class wbr 5142 βcfv 6542 (class class class)co 7414 lecple 17225 joincjn 18288 Latclat 18408 Atomscatm 38659 HLchlt 38746 +πcpadd 39192 β₯πcpolN 39299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7985 df-2nd 7986 df-proset 18272 df-poset 18290 df-lub 18323 df-glb 18324 df-join 18325 df-meet 18326 df-p1 18403 df-lat 18409 df-clat 18476 df-oposet 38572 df-ol 38574 df-oml 38575 df-ats 38663 df-atl 38694 df-cvlat 38718 df-hlat 38747 df-psubsp 38900 df-pmap 38901 df-padd 39193 df-polarityN 39300 |
This theorem is referenced by: pexmidlem3N 39369 |
Copyright terms: Public domain | W3C validator |