Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem5N Structured version   Visualization version   GIF version

Theorem osumcllem5N 39942
Description: Lemma for osumclN 39949. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l = (le‘𝐾)
osumcllem.j = (join‘𝐾)
osumcllem.a 𝐴 = (Atoms‘𝐾)
osumcllem.p + = (+𝑃𝐾)
osumcllem.o = (⊥𝑃𝐾)
osumcllem.c 𝐶 = (PSubCl‘𝐾)
osumcllem.m 𝑀 = (𝑋 + {𝑝})
osumcllem.u 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
Assertion
Ref Expression
osumcllem5N (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ (𝑟𝑋𝑞𝑌𝑝 (𝑟 𝑞))) → 𝑝 ∈ (𝑋 + 𝑌))

Proof of Theorem osumcllem5N
StepHypRef Expression
1 simp11 1204 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ (𝑟𝑋𝑞𝑌𝑝 (𝑟 𝑞))) → 𝐾 ∈ HL)
21hllatd 39345 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ (𝑟𝑋𝑞𝑌𝑝 (𝑟 𝑞))) → 𝐾 ∈ Lat)
3 simp12 1205 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ (𝑟𝑋𝑞𝑌𝑝 (𝑟 𝑞))) → 𝑋𝐴)
4 simp13 1206 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ (𝑟𝑋𝑞𝑌𝑝 (𝑟 𝑞))) → 𝑌𝐴)
5 simp31 1210 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ (𝑟𝑋𝑞𝑌𝑝 (𝑟 𝑞))) → 𝑟𝑋)
6 simp32 1211 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ (𝑟𝑋𝑞𝑌𝑝 (𝑟 𝑞))) → 𝑞𝑌)
7 simp2 1137 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ (𝑟𝑋𝑞𝑌𝑝 (𝑟 𝑞))) → 𝑝𝐴)
8 simp33 1212 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ (𝑟𝑋𝑞𝑌𝑝 (𝑟 𝑞))) → 𝑝 (𝑟 𝑞))
9 osumcllem.l . . 3 = (le‘𝐾)
10 osumcllem.j . . 3 = (join‘𝐾)
11 osumcllem.a . . 3 𝐴 = (Atoms‘𝐾)
12 osumcllem.p . . 3 + = (+𝑃𝐾)
139, 10, 11, 12elpaddri 39784 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑟𝑋𝑞𝑌) ∧ (𝑝𝐴𝑝 (𝑟 𝑞))) → 𝑝 ∈ (𝑋 + 𝑌))
142, 3, 4, 5, 6, 7, 8, 13syl322anc 1400 1 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ (𝑟𝑋𝑞𝑌𝑝 (𝑟 𝑞))) → 𝑝 ∈ (𝑋 + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wss 3905  {csn 4579   class class class wbr 5095  cfv 6486  (class class class)co 7353  lecple 17186  joincjn 18235  Latclat 18355  Atomscatm 39244  HLchlt 39331  +𝑃cpadd 39777  𝑃cpolN 39884  PSubClcpscN 39916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-lub 18268  df-join 18270  df-lat 18356  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332  df-padd 39778
This theorem is referenced by:  osumcllem6N  39943
  Copyright terms: Public domain W3C validator