Proof of Theorem paddasslem12
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl1l 1225 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → 𝐾 ∈ HL) | 
| 2 |  | simpl21 1252 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → 𝑋 ⊆ 𝐴) | 
| 3 |  | simpl22 1253 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → 𝑌 ⊆ 𝐴) | 
| 4 |  | paddasslem.a | . . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) | 
| 5 |  | paddasslem.p | . . . . . 6
⊢  + =
(+𝑃‘𝐾) | 
| 6 | 4, 5 | paddssat 39816 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 + 𝑌) ⊆ 𝐴) | 
| 7 | 1, 2, 3, 6 | syl3anc 1373 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → (𝑋 + 𝑌) ⊆ 𝐴) | 
| 8 |  | simpl23 1254 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → 𝑍 ⊆ 𝐴) | 
| 9 | 1, 7, 8 | 3jca 1129 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → (𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) | 
| 10 | 4, 5 | sspadd2 39818 | . . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝐴) → 𝑌 ⊆ (𝑋 + 𝑌)) | 
| 11 | 1, 3, 2, 10 | syl3anc 1373 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → 𝑌 ⊆ (𝑋 + 𝑌)) | 
| 12 | 4, 5 | paddss1 39819 | . . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) → (𝑌 ⊆ (𝑋 + 𝑌) → (𝑌 + 𝑍) ⊆ ((𝑋 + 𝑌) + 𝑍))) | 
| 13 | 9, 11, 12 | sylc 65 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → (𝑌 + 𝑍) ⊆ ((𝑋 + 𝑌) + 𝑍)) | 
| 14 | 1 | hllatd 39365 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → 𝐾 ∈ Lat) | 
| 15 |  | simprll 779 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → 𝑦 ∈ 𝑌) | 
| 16 |  | simprlr 780 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → 𝑧 ∈ 𝑍) | 
| 17 |  | simpl3l 1229 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → 𝑝 ∈ 𝐴) | 
| 18 |  | eqid 2737 | . . . 4
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 19 |  | paddasslem.l | . . . 4
⊢  ≤ =
(le‘𝐾) | 
| 20 | 18, 4 | atbase 39290 | . . . . 5
⊢ (𝑝 ∈ 𝐴 → 𝑝 ∈ (Base‘𝐾)) | 
| 21 | 17, 20 | syl 17 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → 𝑝 ∈ (Base‘𝐾)) | 
| 22 | 3, 15 | sseldd 3984 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → 𝑦 ∈ 𝐴) | 
| 23 | 18, 4 | atbase 39290 | . . . . . 6
⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ (Base‘𝐾)) | 
| 24 | 22, 23 | syl 17 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → 𝑦 ∈ (Base‘𝐾)) | 
| 25 |  | simpl3r 1230 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → 𝑟 ∈ 𝐴) | 
| 26 | 18, 4 | atbase 39290 | . . . . . 6
⊢ (𝑟 ∈ 𝐴 → 𝑟 ∈ (Base‘𝐾)) | 
| 27 | 25, 26 | syl 17 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → 𝑟 ∈ (Base‘𝐾)) | 
| 28 |  | paddasslem.j | . . . . . 6
⊢  ∨ =
(join‘𝐾) | 
| 29 | 18, 28 | latjcl 18484 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → (𝑦 ∨ 𝑟) ∈ (Base‘𝐾)) | 
| 30 | 14, 24, 27, 29 | syl3anc 1373 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → (𝑦 ∨ 𝑟) ∈ (Base‘𝐾)) | 
| 31 | 8, 16 | sseldd 3984 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → 𝑧 ∈ 𝐴) | 
| 32 | 18, 4 | atbase 39290 | . . . . . 6
⊢ (𝑧 ∈ 𝐴 → 𝑧 ∈ (Base‘𝐾)) | 
| 33 | 31, 32 | syl 17 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → 𝑧 ∈ (Base‘𝐾)) | 
| 34 | 18, 28 | latjcl 18484 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑦 ∨ 𝑧) ∈ (Base‘𝐾)) | 
| 35 | 14, 24, 33, 34 | syl3anc 1373 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → (𝑦 ∨ 𝑧) ∈ (Base‘𝐾)) | 
| 36 |  | simpl1r 1226 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → 𝑥 = 𝑦) | 
| 37 |  | simprrl 781 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → 𝑝 ≤ (𝑥 ∨ 𝑟)) | 
| 38 |  | oveq1 7438 | . . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 ∨ 𝑟) = (𝑦 ∨ 𝑟)) | 
| 39 | 38 | breq2d 5155 | . . . . . 6
⊢ (𝑥 = 𝑦 → (𝑝 ≤ (𝑥 ∨ 𝑟) ↔ 𝑝 ≤ (𝑦 ∨ 𝑟))) | 
| 40 | 39 | biimpa 476 | . . . . 5
⊢ ((𝑥 = 𝑦 ∧ 𝑝 ≤ (𝑥 ∨ 𝑟)) → 𝑝 ≤ (𝑦 ∨ 𝑟)) | 
| 41 | 36, 37, 40 | syl2anc 584 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → 𝑝 ≤ (𝑦 ∨ 𝑟)) | 
| 42 | 18, 19, 28 | latlej1 18493 | . . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → 𝑦 ≤ (𝑦 ∨ 𝑧)) | 
| 43 | 14, 24, 33, 42 | syl3anc 1373 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → 𝑦 ≤ (𝑦 ∨ 𝑧)) | 
| 44 |  | simprrr 782 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → 𝑟 ≤ (𝑦 ∨ 𝑧)) | 
| 45 | 18, 19, 28 | latjle12 18495 | . . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾) ∧ (𝑦 ∨ 𝑧) ∈ (Base‘𝐾))) → ((𝑦 ≤ (𝑦 ∨ 𝑧) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ↔ (𝑦 ∨ 𝑟) ≤ (𝑦 ∨ 𝑧))) | 
| 46 | 14, 24, 27, 35, 45 | syl13anc 1374 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → ((𝑦 ≤ (𝑦 ∨ 𝑧) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ↔ (𝑦 ∨ 𝑟) ≤ (𝑦 ∨ 𝑧))) | 
| 47 | 43, 44, 46 | mpbi2and 712 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → (𝑦 ∨ 𝑟) ≤ (𝑦 ∨ 𝑧)) | 
| 48 | 18, 19, 14, 21, 30, 35, 41, 47 | lattrd 18491 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → 𝑝 ≤ (𝑦 ∨ 𝑧)) | 
| 49 | 19, 28, 4, 5 | elpaddri 39804 | . . 3
⊢ (((𝐾 ∈ Lat ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ∈ 𝐴 ∧ 𝑝 ≤ (𝑦 ∨ 𝑧))) → 𝑝 ∈ (𝑌 + 𝑍)) | 
| 50 | 14, 3, 8, 15, 16, 17, 48, 49 | syl322anc 1400 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → 𝑝 ∈ (𝑌 + 𝑍)) | 
| 51 | 13, 50 | sseldd 3984 | 1
⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)) |