Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmodlem1 Structured version   Visualization version   GIF version

Theorem pmodlem1 39803
Description: Lemma for pmod1i 39805. (Contributed by NM, 9-Mar-2012.)
Hypotheses
Ref Expression
pmodlem.l = (le‘𝐾)
pmodlem.j = (join‘𝐾)
pmodlem.a 𝐴 = (Atoms‘𝐾)
pmodlem.s 𝑆 = (PSubSp‘𝐾)
pmodlem.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmodlem1 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) → 𝑝 ∈ (𝑋 + (𝑌𝑍)))
Distinct variable groups:   𝑞,𝑝,𝑟,𝐴   ,𝑞,𝑟   𝐾,𝑝,𝑞,𝑟   ,𝑞,𝑟   + ,𝑝,𝑞,𝑟   𝑆,𝑝,𝑞,𝑟   𝑋,𝑝,𝑞,𝑟   𝑌,𝑝,𝑞,𝑟   𝑍,𝑝,𝑞,𝑟
Allowed substitution hints:   (𝑝)   (𝑝)

Proof of Theorem pmodlem1
StepHypRef Expression
1 simpl11 1248 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝 = 𝑞) → 𝐾 ∈ HL)
2 simpl12 1249 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝 = 𝑞) → 𝑋𝐴)
3 simpl13 1250 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝 = 𝑞) → 𝑌𝐴)
4 ssinss1 4267 . . . . 5 (𝑌𝐴 → (𝑌𝑍) ⊆ 𝐴)
53, 4syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝 = 𝑞) → (𝑌𝑍) ⊆ 𝐴)
6 pmodlem.a . . . . 5 𝐴 = (Atoms‘𝐾)
7 pmodlem.p . . . . 5 + = (+𝑃𝐾)
86, 7sspadd1 39772 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴 ∧ (𝑌𝑍) ⊆ 𝐴) → 𝑋 ⊆ (𝑋 + (𝑌𝑍)))
91, 2, 5, 8syl3anc 1371 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝 = 𝑞) → 𝑋 ⊆ (𝑋 + (𝑌𝑍)))
10 simpr 484 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝 = 𝑞) → 𝑝 = 𝑞)
11 simpl31 1254 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝 = 𝑞) → 𝑞𝑋)
1210, 11eqeltrd 2844 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝 = 𝑞) → 𝑝𝑋)
139, 12sseldd 4009 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝 = 𝑞) → 𝑝 ∈ (𝑋 + (𝑌𝑍)))
14 simpl11 1248 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝐾 ∈ HL)
1514hllatd 39320 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝐾 ∈ Lat)
16 simpl12 1249 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑋𝐴)
17 simpl13 1250 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑌𝐴)
1817, 4syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → (𝑌𝑍) ⊆ 𝐴)
19 simpl31 1254 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑞𝑋)
20 simpl32 1255 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑟𝑌)
21 simpl21 1251 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑍𝑆)
22 simpl22 1252 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑋𝑍)
23 simpl23 1253 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑝𝑍)
24 pmodlem.s . . . . . . . . . 10 𝑆 = (PSubSp‘𝐾)
256, 24psubssat 39711 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑍𝑆) → 𝑍𝐴)
2614, 21, 25syl2anc 583 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑍𝐴)
2726, 23sseldd 4009 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑝𝐴)
2817, 20sseldd 4009 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑟𝐴)
2916, 19sseldd 4009 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑞𝐴)
3027, 28, 293jca 1128 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → (𝑝𝐴𝑟𝐴𝑞𝐴))
31 simpr 484 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑝𝑞)
32 simpl33 1256 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑝 (𝑞 𝑟))
33 pmodlem.l . . . . . . . 8 = (le‘𝐾)
34 pmodlem.j . . . . . . . 8 = (join‘𝐾)
3533, 34, 6hlatexch1 39352 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑝𝐴𝑟𝐴𝑞𝐴) ∧ 𝑝𝑞) → (𝑝 (𝑞 𝑟) → 𝑟 (𝑞 𝑝)))
3635imp 406 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑟𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ 𝑝 (𝑞 𝑟)) → 𝑟 (𝑞 𝑝))
3714, 30, 31, 32, 36syl31anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑟 (𝑞 𝑝))
38 simp31 1209 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → 𝑞𝑋)
3938snssd 4834 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → {𝑞} ⊆ 𝑋)
40 simp22 1207 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → 𝑋𝑍)
4139, 40sstrd 4019 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → {𝑞} ⊆ 𝑍)
42 simp23 1208 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → 𝑝𝑍)
4342snssd 4834 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → {𝑝} ⊆ 𝑍)
44 simp11 1203 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → 𝐾 ∈ HL)
45 simp12 1204 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → 𝑋𝐴)
4645, 38sseldd 4009 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → 𝑞𝐴)
4746snssd 4834 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → {𝑞} ⊆ 𝐴)
48 simp21 1206 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → 𝑍𝑆)
4944, 48, 25syl2anc 583 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → 𝑍𝐴)
5049, 42sseldd 4009 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → 𝑝𝐴)
5150snssd 4834 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → {𝑝} ⊆ 𝐴)
526, 24, 7paddss 39802 . . . . . . . 8 ((𝐾 ∈ HL ∧ ({𝑞} ⊆ 𝐴 ∧ {𝑝} ⊆ 𝐴𝑍𝑆)) → (({𝑞} ⊆ 𝑍 ∧ {𝑝} ⊆ 𝑍) ↔ ({𝑞} + {𝑝}) ⊆ 𝑍))
5344, 47, 51, 48, 52syl13anc 1372 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → (({𝑞} ⊆ 𝑍 ∧ {𝑝} ⊆ 𝑍) ↔ ({𝑞} + {𝑝}) ⊆ 𝑍))
5441, 43, 53mpbi2and 711 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → ({𝑞} + {𝑝}) ⊆ 𝑍)
55 simp33 1211 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → 𝑟 (𝑞 𝑝))
5644hllatd 39320 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → 𝐾 ∈ Lat)
57 simp13 1205 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → 𝑌𝐴)
58 simp32 1210 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → 𝑟𝑌)
5957, 58sseldd 4009 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → 𝑟𝐴)
6033, 34, 6, 7elpadd2at2 39764 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑞𝐴𝑝𝐴𝑟𝐴)) → (𝑟 ∈ ({𝑞} + {𝑝}) ↔ 𝑟 (𝑞 𝑝)))
6156, 46, 50, 59, 60syl13anc 1372 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → (𝑟 ∈ ({𝑞} + {𝑝}) ↔ 𝑟 (𝑞 𝑝)))
6255, 61mpbird 257 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → 𝑟 ∈ ({𝑞} + {𝑝}))
6354, 62sseldd 4009 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → 𝑟𝑍)
6414, 16, 17, 21, 22, 23, 19, 20, 37, 63syl333anc 1402 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑟𝑍)
6520, 64elind 4223 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑟 ∈ (𝑌𝑍))
6633, 34, 6, 7elpaddri 39759 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴 ∧ (𝑌𝑍) ⊆ 𝐴) ∧ (𝑞𝑋𝑟 ∈ (𝑌𝑍)) ∧ (𝑝𝐴𝑝 (𝑞 𝑟))) → 𝑝 ∈ (𝑋 + (𝑌𝑍)))
6715, 16, 18, 19, 65, 27, 32, 66syl322anc 1398 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑝 ∈ (𝑋 + (𝑌𝑍)))
6813, 67pm2.61dane 3035 1 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) → 𝑝 ∈ (𝑋 + (𝑌𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  cin 3975  wss 3976  {csn 4648   class class class wbr 5166  cfv 6573  (class class class)co 7448  lecple 17318  joincjn 18381  Latclat 18501  Atomscatm 39219  HLchlt 39306  PSubSpcpsubsp 39453  +𝑃cpadd 39752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-lat 18502  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-psubsp 39460  df-padd 39753
This theorem is referenced by:  pmodlem2  39804
  Copyright terms: Public domain W3C validator