Proof of Theorem pmodlem1
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl11 1249 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) ∧ 𝑝 = 𝑞) → 𝐾 ∈ HL) | 
| 2 |  | simpl12 1250 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) ∧ 𝑝 = 𝑞) → 𝑋 ⊆ 𝐴) | 
| 3 |  | simpl13 1251 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) ∧ 𝑝 = 𝑞) → 𝑌 ⊆ 𝐴) | 
| 4 |  | ssinss1 4246 | . . . . 5
⊢ (𝑌 ⊆ 𝐴 → (𝑌 ∩ 𝑍) ⊆ 𝐴) | 
| 5 | 3, 4 | syl 17 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) ∧ 𝑝 = 𝑞) → (𝑌 ∩ 𝑍) ⊆ 𝐴) | 
| 6 |  | pmodlem.a | . . . . 5
⊢ 𝐴 = (Atoms‘𝐾) | 
| 7 |  | pmodlem.p | . . . . 5
⊢  + =
(+𝑃‘𝐾) | 
| 8 | 6, 7 | sspadd1 39817 | . . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ (𝑌 ∩ 𝑍) ⊆ 𝐴) → 𝑋 ⊆ (𝑋 + (𝑌 ∩ 𝑍))) | 
| 9 | 1, 2, 5, 8 | syl3anc 1373 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) ∧ 𝑝 = 𝑞) → 𝑋 ⊆ (𝑋 + (𝑌 ∩ 𝑍))) | 
| 10 |  | simpr 484 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) ∧ 𝑝 = 𝑞) → 𝑝 = 𝑞) | 
| 11 |  | simpl31 1255 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) ∧ 𝑝 = 𝑞) → 𝑞 ∈ 𝑋) | 
| 12 | 10, 11 | eqeltrd 2841 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) ∧ 𝑝 = 𝑞) → 𝑝 ∈ 𝑋) | 
| 13 | 9, 12 | sseldd 3984 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) ∧ 𝑝 = 𝑞) → 𝑝 ∈ (𝑋 + (𝑌 ∩ 𝑍))) | 
| 14 |  | simpl11 1249 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) ∧ 𝑝 ≠ 𝑞) → 𝐾 ∈ HL) | 
| 15 | 14 | hllatd 39365 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) ∧ 𝑝 ≠ 𝑞) → 𝐾 ∈ Lat) | 
| 16 |  | simpl12 1250 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) ∧ 𝑝 ≠ 𝑞) → 𝑋 ⊆ 𝐴) | 
| 17 |  | simpl13 1251 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) ∧ 𝑝 ≠ 𝑞) → 𝑌 ⊆ 𝐴) | 
| 18 | 17, 4 | syl 17 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) ∧ 𝑝 ≠ 𝑞) → (𝑌 ∩ 𝑍) ⊆ 𝐴) | 
| 19 |  | simpl31 1255 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) ∧ 𝑝 ≠ 𝑞) → 𝑞 ∈ 𝑋) | 
| 20 |  | simpl32 1256 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) ∧ 𝑝 ≠ 𝑞) → 𝑟 ∈ 𝑌) | 
| 21 |  | simpl21 1252 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) ∧ 𝑝 ≠ 𝑞) → 𝑍 ∈ 𝑆) | 
| 22 |  | simpl22 1253 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) ∧ 𝑝 ≠ 𝑞) → 𝑋 ⊆ 𝑍) | 
| 23 |  | simpl23 1254 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) ∧ 𝑝 ≠ 𝑞) → 𝑝 ∈ 𝑍) | 
| 24 |  | pmodlem.s | . . . . . . . . . 10
⊢ 𝑆 = (PSubSp‘𝐾) | 
| 25 | 6, 24 | psubssat 39756 | . . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑍 ∈ 𝑆) → 𝑍 ⊆ 𝐴) | 
| 26 | 14, 21, 25 | syl2anc 584 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) ∧ 𝑝 ≠ 𝑞) → 𝑍 ⊆ 𝐴) | 
| 27 | 26, 23 | sseldd 3984 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) ∧ 𝑝 ≠ 𝑞) → 𝑝 ∈ 𝐴) | 
| 28 | 17, 20 | sseldd 3984 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) ∧ 𝑝 ≠ 𝑞) → 𝑟 ∈ 𝐴) | 
| 29 | 16, 19 | sseldd 3984 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) ∧ 𝑝 ≠ 𝑞) → 𝑞 ∈ 𝐴) | 
| 30 | 27, 28, 29 | 3jca 1129 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) ∧ 𝑝 ≠ 𝑞) → (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) | 
| 31 |  | simpr 484 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) ∧ 𝑝 ≠ 𝑞) → 𝑝 ≠ 𝑞) | 
| 32 |  | simpl33 1257 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) ∧ 𝑝 ≠ 𝑞) → 𝑝 ≤ (𝑞 ∨ 𝑟)) | 
| 33 |  | pmodlem.l | . . . . . . . 8
⊢  ≤ =
(le‘𝐾) | 
| 34 |  | pmodlem.j | . . . . . . . 8
⊢  ∨ =
(join‘𝐾) | 
| 35 | 33, 34, 6 | hlatexch1 39397 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ 𝑝 ≠ 𝑞) → (𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑟 ≤ (𝑞 ∨ 𝑝))) | 
| 36 | 35 | imp 406 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ 𝑝 ≠ 𝑞) ∧ 𝑝 ≤ (𝑞 ∨ 𝑟)) → 𝑟 ≤ (𝑞 ∨ 𝑝)) | 
| 37 | 14, 30, 31, 32, 36 | syl31anc 1375 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) ∧ 𝑝 ≠ 𝑞) → 𝑟 ≤ (𝑞 ∨ 𝑝)) | 
| 38 |  | simp31 1210 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑟 ≤ (𝑞 ∨ 𝑝))) → 𝑞 ∈ 𝑋) | 
| 39 | 38 | snssd 4809 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑟 ≤ (𝑞 ∨ 𝑝))) → {𝑞} ⊆ 𝑋) | 
| 40 |  | simp22 1208 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑟 ≤ (𝑞 ∨ 𝑝))) → 𝑋 ⊆ 𝑍) | 
| 41 | 39, 40 | sstrd 3994 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑟 ≤ (𝑞 ∨ 𝑝))) → {𝑞} ⊆ 𝑍) | 
| 42 |  | simp23 1209 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑟 ≤ (𝑞 ∨ 𝑝))) → 𝑝 ∈ 𝑍) | 
| 43 | 42 | snssd 4809 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑟 ≤ (𝑞 ∨ 𝑝))) → {𝑝} ⊆ 𝑍) | 
| 44 |  | simp11 1204 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑟 ≤ (𝑞 ∨ 𝑝))) → 𝐾 ∈ HL) | 
| 45 |  | simp12 1205 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑟 ≤ (𝑞 ∨ 𝑝))) → 𝑋 ⊆ 𝐴) | 
| 46 | 45, 38 | sseldd 3984 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑟 ≤ (𝑞 ∨ 𝑝))) → 𝑞 ∈ 𝐴) | 
| 47 | 46 | snssd 4809 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑟 ≤ (𝑞 ∨ 𝑝))) → {𝑞} ⊆ 𝐴) | 
| 48 |  | simp21 1207 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑟 ≤ (𝑞 ∨ 𝑝))) → 𝑍 ∈ 𝑆) | 
| 49 | 44, 48, 25 | syl2anc 584 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑟 ≤ (𝑞 ∨ 𝑝))) → 𝑍 ⊆ 𝐴) | 
| 50 | 49, 42 | sseldd 3984 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑟 ≤ (𝑞 ∨ 𝑝))) → 𝑝 ∈ 𝐴) | 
| 51 | 50 | snssd 4809 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑟 ≤ (𝑞 ∨ 𝑝))) → {𝑝} ⊆ 𝐴) | 
| 52 | 6, 24, 7 | paddss 39847 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ ({𝑞} ⊆ 𝐴 ∧ {𝑝} ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → (({𝑞} ⊆ 𝑍 ∧ {𝑝} ⊆ 𝑍) ↔ ({𝑞} + {𝑝}) ⊆ 𝑍)) | 
| 53 | 44, 47, 51, 48, 52 | syl13anc 1374 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑟 ≤ (𝑞 ∨ 𝑝))) → (({𝑞} ⊆ 𝑍 ∧ {𝑝} ⊆ 𝑍) ↔ ({𝑞} + {𝑝}) ⊆ 𝑍)) | 
| 54 | 41, 43, 53 | mpbi2and 712 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑟 ≤ (𝑞 ∨ 𝑝))) → ({𝑞} + {𝑝}) ⊆ 𝑍) | 
| 55 |  | simp33 1212 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑟 ≤ (𝑞 ∨ 𝑝))) → 𝑟 ≤ (𝑞 ∨ 𝑝)) | 
| 56 | 44 | hllatd 39365 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑟 ≤ (𝑞 ∨ 𝑝))) → 𝐾 ∈ Lat) | 
| 57 |  | simp13 1206 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑟 ≤ (𝑞 ∨ 𝑝))) → 𝑌 ⊆ 𝐴) | 
| 58 |  | simp32 1211 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑟 ≤ (𝑞 ∨ 𝑝))) → 𝑟 ∈ 𝑌) | 
| 59 | 57, 58 | sseldd 3984 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑟 ≤ (𝑞 ∨ 𝑝))) → 𝑟 ∈ 𝐴) | 
| 60 | 33, 34, 6, 7 | elpadd2at2 39809 | . . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑞 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) → (𝑟 ∈ ({𝑞} + {𝑝}) ↔ 𝑟 ≤ (𝑞 ∨ 𝑝))) | 
| 61 | 56, 46, 50, 59, 60 | syl13anc 1374 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑟 ≤ (𝑞 ∨ 𝑝))) → (𝑟 ∈ ({𝑞} + {𝑝}) ↔ 𝑟 ≤ (𝑞 ∨ 𝑝))) | 
| 62 | 55, 61 | mpbird 257 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑟 ≤ (𝑞 ∨ 𝑝))) → 𝑟 ∈ ({𝑞} + {𝑝})) | 
| 63 | 54, 62 | sseldd 3984 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑟 ≤ (𝑞 ∨ 𝑝))) → 𝑟 ∈ 𝑍) | 
| 64 | 14, 16, 17, 21, 22, 23, 19, 20, 37, 63 | syl333anc 1404 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) ∧ 𝑝 ≠ 𝑞) → 𝑟 ∈ 𝑍) | 
| 65 | 20, 64 | elind 4200 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) ∧ 𝑝 ≠ 𝑞) → 𝑟 ∈ (𝑌 ∩ 𝑍)) | 
| 66 | 33, 34, 6, 7 | elpaddri 39804 | . . 3
⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ (𝑌 ∩ 𝑍) ⊆ 𝐴) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ (𝑌 ∩ 𝑍)) ∧ (𝑝 ∈ 𝐴 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) → 𝑝 ∈ (𝑋 + (𝑌 ∩ 𝑍))) | 
| 67 | 15, 16, 18, 19, 65, 27, 32, 66 | syl322anc 1400 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) ∧ 𝑝 ≠ 𝑞) → 𝑝 ∈ (𝑋 + (𝑌 ∩ 𝑍))) | 
| 68 | 13, 67 | pm2.61dane 3029 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) → 𝑝 ∈ (𝑋 + (𝑌 ∩ 𝑍))) |