Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmodlem1 Structured version   Visualization version   GIF version

Theorem pmodlem1 37787
Description: Lemma for pmod1i 37789. (Contributed by NM, 9-Mar-2012.)
Hypotheses
Ref Expression
pmodlem.l = (le‘𝐾)
pmodlem.j = (join‘𝐾)
pmodlem.a 𝐴 = (Atoms‘𝐾)
pmodlem.s 𝑆 = (PSubSp‘𝐾)
pmodlem.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmodlem1 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) → 𝑝 ∈ (𝑋 + (𝑌𝑍)))
Distinct variable groups:   𝑞,𝑝,𝑟,𝐴   ,𝑞,𝑟   𝐾,𝑝,𝑞,𝑟   ,𝑞,𝑟   + ,𝑝,𝑞,𝑟   𝑆,𝑝,𝑞,𝑟   𝑋,𝑝,𝑞,𝑟   𝑌,𝑝,𝑞,𝑟   𝑍,𝑝,𝑞,𝑟
Allowed substitution hints:   (𝑝)   (𝑝)

Proof of Theorem pmodlem1
StepHypRef Expression
1 simpl11 1246 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝 = 𝑞) → 𝐾 ∈ HL)
2 simpl12 1247 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝 = 𝑞) → 𝑋𝐴)
3 simpl13 1248 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝 = 𝑞) → 𝑌𝐴)
4 ssinss1 4168 . . . . 5 (𝑌𝐴 → (𝑌𝑍) ⊆ 𝐴)
53, 4syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝 = 𝑞) → (𝑌𝑍) ⊆ 𝐴)
6 pmodlem.a . . . . 5 𝐴 = (Atoms‘𝐾)
7 pmodlem.p . . . . 5 + = (+𝑃𝐾)
86, 7sspadd1 37756 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴 ∧ (𝑌𝑍) ⊆ 𝐴) → 𝑋 ⊆ (𝑋 + (𝑌𝑍)))
91, 2, 5, 8syl3anc 1369 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝 = 𝑞) → 𝑋 ⊆ (𝑋 + (𝑌𝑍)))
10 simpr 484 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝 = 𝑞) → 𝑝 = 𝑞)
11 simpl31 1252 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝 = 𝑞) → 𝑞𝑋)
1210, 11eqeltrd 2839 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝 = 𝑞) → 𝑝𝑋)
139, 12sseldd 3918 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝 = 𝑞) → 𝑝 ∈ (𝑋 + (𝑌𝑍)))
14 simpl11 1246 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝐾 ∈ HL)
1514hllatd 37305 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝐾 ∈ Lat)
16 simpl12 1247 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑋𝐴)
17 simpl13 1248 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑌𝐴)
1817, 4syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → (𝑌𝑍) ⊆ 𝐴)
19 simpl31 1252 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑞𝑋)
20 simpl32 1253 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑟𝑌)
21 simpl21 1249 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑍𝑆)
22 simpl22 1250 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑋𝑍)
23 simpl23 1251 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑝𝑍)
24 pmodlem.s . . . . . . . . . 10 𝑆 = (PSubSp‘𝐾)
256, 24psubssat 37695 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑍𝑆) → 𝑍𝐴)
2614, 21, 25syl2anc 583 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑍𝐴)
2726, 23sseldd 3918 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑝𝐴)
2817, 20sseldd 3918 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑟𝐴)
2916, 19sseldd 3918 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑞𝐴)
3027, 28, 293jca 1126 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → (𝑝𝐴𝑟𝐴𝑞𝐴))
31 simpr 484 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑝𝑞)
32 simpl33 1254 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑝 (𝑞 𝑟))
33 pmodlem.l . . . . . . . 8 = (le‘𝐾)
34 pmodlem.j . . . . . . . 8 = (join‘𝐾)
3533, 34, 6hlatexch1 37336 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑝𝐴𝑟𝐴𝑞𝐴) ∧ 𝑝𝑞) → (𝑝 (𝑞 𝑟) → 𝑟 (𝑞 𝑝)))
3635imp 406 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑟𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ 𝑝 (𝑞 𝑟)) → 𝑟 (𝑞 𝑝))
3714, 30, 31, 32, 36syl31anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑟 (𝑞 𝑝))
38 simp31 1207 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → 𝑞𝑋)
3938snssd 4739 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → {𝑞} ⊆ 𝑋)
40 simp22 1205 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → 𝑋𝑍)
4139, 40sstrd 3927 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → {𝑞} ⊆ 𝑍)
42 simp23 1206 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → 𝑝𝑍)
4342snssd 4739 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → {𝑝} ⊆ 𝑍)
44 simp11 1201 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → 𝐾 ∈ HL)
45 simp12 1202 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → 𝑋𝐴)
4645, 38sseldd 3918 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → 𝑞𝐴)
4746snssd 4739 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → {𝑞} ⊆ 𝐴)
48 simp21 1204 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → 𝑍𝑆)
4944, 48, 25syl2anc 583 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → 𝑍𝐴)
5049, 42sseldd 3918 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → 𝑝𝐴)
5150snssd 4739 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → {𝑝} ⊆ 𝐴)
526, 24, 7paddss 37786 . . . . . . . 8 ((𝐾 ∈ HL ∧ ({𝑞} ⊆ 𝐴 ∧ {𝑝} ⊆ 𝐴𝑍𝑆)) → (({𝑞} ⊆ 𝑍 ∧ {𝑝} ⊆ 𝑍) ↔ ({𝑞} + {𝑝}) ⊆ 𝑍))
5344, 47, 51, 48, 52syl13anc 1370 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → (({𝑞} ⊆ 𝑍 ∧ {𝑝} ⊆ 𝑍) ↔ ({𝑞} + {𝑝}) ⊆ 𝑍))
5441, 43, 53mpbi2and 708 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → ({𝑞} + {𝑝}) ⊆ 𝑍)
55 simp33 1209 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → 𝑟 (𝑞 𝑝))
5644hllatd 37305 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → 𝐾 ∈ Lat)
57 simp13 1203 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → 𝑌𝐴)
58 simp32 1208 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → 𝑟𝑌)
5957, 58sseldd 3918 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → 𝑟𝐴)
6033, 34, 6, 7elpadd2at2 37748 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑞𝐴𝑝𝐴𝑟𝐴)) → (𝑟 ∈ ({𝑞} + {𝑝}) ↔ 𝑟 (𝑞 𝑝)))
6156, 46, 50, 59, 60syl13anc 1370 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → (𝑟 ∈ ({𝑞} + {𝑝}) ↔ 𝑟 (𝑞 𝑝)))
6255, 61mpbird 256 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → 𝑟 ∈ ({𝑞} + {𝑝}))
6354, 62sseldd 3918 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑟 (𝑞 𝑝))) → 𝑟𝑍)
6414, 16, 17, 21, 22, 23, 19, 20, 37, 63syl333anc 1400 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑟𝑍)
6520, 64elind 4124 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑟 ∈ (𝑌𝑍))
6633, 34, 6, 7elpaddri 37743 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴 ∧ (𝑌𝑍) ⊆ 𝐴) ∧ (𝑞𝑋𝑟 ∈ (𝑌𝑍)) ∧ (𝑝𝐴𝑝 (𝑞 𝑟))) → 𝑝 ∈ (𝑋 + (𝑌𝑍)))
6715, 16, 18, 19, 65, 27, 32, 66syl322anc 1396 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) ∧ 𝑝𝑞) → 𝑝 ∈ (𝑋 + (𝑌𝑍)))
6813, 67pm2.61dane 3031 1 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) → 𝑝 ∈ (𝑋 + (𝑌𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cin 3882  wss 3883  {csn 4558   class class class wbr 5070  cfv 6418  (class class class)co 7255  lecple 16895  joincjn 17944  Latclat 18064  Atomscatm 37204  HLchlt 37291  PSubSpcpsubsp 37437  +𝑃cpadd 37736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-psubsp 37444  df-padd 37737
This theorem is referenced by:  pmodlem2  37788
  Copyright terms: Public domain W3C validator