Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnrebl2 Structured version   Visualization version   GIF version

Theorem opnrebl2 33673
Description: A set is open in the standard topology of the reals precisely when every point can be enclosed in an arbitrarily small ball. (Contributed by Jeff Hankins, 22-Sep-2013.) (Proof shortened by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
opnrebl2 (𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem opnrebl2
StepHypRef Expression
1 eqid 2824 . . . . 5 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
21rexmet 23402 . . . 4 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
3 eqid 2824 . . . . . 6 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
41, 3tgioo 23407 . . . . 5 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
54mopnss 23059 . . . 4 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝐴 ∈ (topGen‘ran (,))) → 𝐴 ⊆ ℝ)
62, 5mpan 688 . . 3 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ⊆ ℝ)
74mopni3 23107 . . . . . . . 8 (((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴))
87ex 415 . . . . . . 7 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → (𝑦 ∈ ℝ+ → ∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴)))
92, 8mp3an1 1444 . . . . . 6 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → (𝑦 ∈ ℝ+ → ∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴)))
106sselda 3970 . . . . . . 7 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
11 rpre 12400 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
121bl2ioo 23403 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) = ((𝑥𝑧)(,)(𝑥 + 𝑧)))
1311, 12sylan2 594 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ+) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) = ((𝑥𝑧)(,)(𝑥 + 𝑧)))
1413sseq1d 4001 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ+) → ((𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴 ↔ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))
1514anbi2d 630 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ+) → ((𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴) ↔ (𝑧 < 𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
1615rexbidva 3299 . . . . . . . . 9 (𝑥 ∈ ℝ → (∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴) ↔ ∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
1716biimpd 231 . . . . . . . 8 (𝑥 ∈ ℝ → (∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
18 rpre 12400 . . . . . . . . . . 11 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
19 ltle 10732 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦𝑧𝑦))
2011, 18, 19syl2anr 598 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑧 ∈ ℝ+) → (𝑧 < 𝑦𝑧𝑦))
2120anim1d 612 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝑧 ∈ ℝ+) → ((𝑧 < 𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
2221reximdva 3277 . . . . . . . 8 (𝑦 ∈ ℝ+ → (∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
2317, 22syl9 77 . . . . . . 7 (𝑥 ∈ ℝ → (𝑦 ∈ ℝ+ → (∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))))
2410, 23syl 17 . . . . . 6 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → (𝑦 ∈ ℝ+ → (∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))))
259, 24mpdd 43 . . . . 5 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → (𝑦 ∈ ℝ+ → ∃𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
2625expimpd 456 . . . 4 (𝐴 ∈ (topGen‘ran (,)) → ((𝑥𝐴𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
2726ralrimivv 3193 . . 3 (𝐴 ∈ (topGen‘ran (,)) → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))
286, 27jca 514 . 2 (𝐴 ∈ (topGen‘ran (,)) → (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
29 ssel2 3965 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
30 1rp 12396 . . . . . . . 8 1 ∈ ℝ+
31 simpr 487 . . . . . . . . . 10 ((𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)
3231reximi 3246 . . . . . . . . 9 (∃𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)
3332ralimi 3163 . . . . . . . 8 (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)
34 biidd 264 . . . . . . . . 9 (𝑦 = 1 → (∃𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴 ↔ ∃𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))
3534rspcv 3621 . . . . . . . 8 (1 ∈ ℝ+ → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴 → ∃𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))
3630, 33, 35mpsyl 68 . . . . . . 7 (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)
3714rexbidva 3299 . . . . . . 7 (𝑥 ∈ ℝ → (∃𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴 ↔ ∃𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))
3836, 37syl5ibr 248 . . . . . 6 (𝑥 ∈ ℝ → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴))
3929, 38syl 17 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴))
4039ralimdva 3180 . . . 4 (𝐴 ⊆ ℝ → (∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∀𝑥𝐴𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴))
4140imdistani 571 . . 3 ((𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)) → (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴))
424elmopn2 23058 . . . 4 (((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) → (𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴)))
432, 42ax-mp 5 . . 3 (𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴))
4441, 43sylibr 236 . 2 ((𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)) → 𝐴 ∈ (topGen‘ran (,)))
4528, 44impbii 211 1 (𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  wrex 3142  wss 3939   class class class wbr 5069   × cxp 5556  ran crn 5559  cres 5560  ccom 5562  cfv 6358  (class class class)co 7159  cr 10539  1c1 10541   + caddc 10543   < clt 10678  cle 10679  cmin 10873  +crp 12392  (,)cioo 12741  abscabs 14596  topGenctg 16714  ∞Metcxmet 20533  ballcbl 20535  MetOpencmopn 20538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-sup 8909  df-inf 8910  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-seq 13373  df-exp 13433  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-topgen 16720  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-top 21505  df-topon 21522  df-bases 21557
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator