Proof of Theorem opnrebl2
Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . 5
⊢ ((abs
∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − )
↾ (ℝ × ℝ)) |
2 | 1 | rexmet 23954 |
. . . 4
⊢ ((abs
∘ − ) ↾ (ℝ × ℝ)) ∈
(∞Met‘ℝ) |
3 | | eqid 2738 |
. . . . . 6
⊢
(MetOpen‘((abs ∘ − ) ↾ (ℝ ×
ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ ×
ℝ))) |
4 | 1, 3 | tgioo 23959 |
. . . . 5
⊢
(topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾
(ℝ × ℝ))) |
5 | 4 | mopnss 23599 |
. . . 4
⊢ ((((abs
∘ − ) ↾ (ℝ × ℝ)) ∈
(∞Met‘ℝ) ∧ 𝐴 ∈ (topGen‘ran (,))) → 𝐴 ⊆
ℝ) |
6 | 2, 5 | mpan 687 |
. . 3
⊢ (𝐴 ∈ (topGen‘ran (,))
→ 𝐴 ⊆
ℝ) |
7 | 4 | mopni3 23650 |
. . . . . . . 8
⊢ (((((abs
∘ − ) ↾ (ℝ × ℝ)) ∈
(∞Met‘ℝ) ∧ 𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+) →
∃𝑧 ∈
ℝ+ (𝑧 <
𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑧) ⊆ 𝐴)) |
8 | 7 | ex 413 |
. . . . . . 7
⊢ ((((abs
∘ − ) ↾ (ℝ × ℝ)) ∈
(∞Met‘ℝ) ∧ 𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ ℝ+ →
∃𝑧 ∈
ℝ+ (𝑧 <
𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑧) ⊆ 𝐴))) |
9 | 2, 8 | mp3an1 1447 |
. . . . . 6
⊢ ((𝐴 ∈ (topGen‘ran (,))
∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ ℝ+ →
∃𝑧 ∈
ℝ+ (𝑧 <
𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑧) ⊆ 𝐴))) |
10 | 6 | sselda 3921 |
. . . . . . 7
⊢ ((𝐴 ∈ (topGen‘ran (,))
∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
11 | | rpre 12738 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ℝ+
→ 𝑧 ∈
ℝ) |
12 | 1 | bl2ioo 23955 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑧) = ((𝑥 − 𝑧)(,)(𝑥 + 𝑧))) |
13 | 11, 12 | sylan2 593 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ+)
→ (𝑥(ball‘((abs
∘ − ) ↾ (ℝ × ℝ)))𝑧) = ((𝑥 − 𝑧)(,)(𝑥 + 𝑧))) |
14 | 13 | sseq1d 3952 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ+)
→ ((𝑥(ball‘((abs
∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴 ↔ ((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)) |
15 | 14 | anbi2d 629 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ+)
→ ((𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑧) ⊆ 𝐴) ↔ (𝑧 < 𝑦 ∧ ((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))) |
16 | 15 | rexbidva 3225 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ →
(∃𝑧 ∈
ℝ+ (𝑧 <
𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑧) ⊆ 𝐴) ↔ ∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ ((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))) |
17 | 16 | biimpd 228 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ →
(∃𝑧 ∈
ℝ+ (𝑧 <
𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑧) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ ((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))) |
18 | | rpre 12738 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℝ+
→ 𝑦 ∈
ℝ) |
19 | | ltle 11063 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦 → 𝑧 ≤ 𝑦)) |
20 | 11, 18, 19 | syl2anr 597 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℝ+
∧ 𝑧 ∈
ℝ+) → (𝑧 < 𝑦 → 𝑧 ≤ 𝑦)) |
21 | 20 | anim1d 611 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℝ+
∧ 𝑧 ∈
ℝ+) → ((𝑧 < 𝑦 ∧ ((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → (𝑧 ≤ 𝑦 ∧ ((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))) |
22 | 21 | reximdva 3203 |
. . . . . . . 8
⊢ (𝑦 ∈ ℝ+
→ (∃𝑧 ∈
ℝ+ (𝑧 <
𝑦 ∧ ((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑧 ≤ 𝑦 ∧ ((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))) |
23 | 17, 22 | syl9 77 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ → (𝑦 ∈ ℝ+
→ (∃𝑧 ∈
ℝ+ (𝑧 <
𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑧) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑧 ≤ 𝑦 ∧ ((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))) |
24 | 10, 23 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ (topGen‘ran (,))
∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ ℝ+ →
(∃𝑧 ∈
ℝ+ (𝑧 <
𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑧) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑧 ≤ 𝑦 ∧ ((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))) |
25 | 9, 24 | mpdd 43 |
. . . . 5
⊢ ((𝐴 ∈ (topGen‘ran (,))
∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ ℝ+ →
∃𝑧 ∈
ℝ+ (𝑧 ≤
𝑦 ∧ ((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))) |
26 | 25 | expimpd 454 |
. . . 4
⊢ (𝐴 ∈ (topGen‘ran (,))
→ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+) →
∃𝑧 ∈
ℝ+ (𝑧 ≤
𝑦 ∧ ((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))) |
27 | 26 | ralrimivv 3122 |
. . 3
⊢ (𝐴 ∈ (topGen‘ran (,))
→ ∀𝑥 ∈
𝐴 ∀𝑦 ∈ ℝ+
∃𝑧 ∈
ℝ+ (𝑧 ≤
𝑦 ∧ ((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)) |
28 | 6, 27 | jca 512 |
. 2
⊢ (𝐴 ∈ (topGen‘ran (,))
→ (𝐴 ⊆ ℝ
∧ ∀𝑥 ∈
𝐴 ∀𝑦 ∈ ℝ+
∃𝑧 ∈
ℝ+ (𝑧 ≤
𝑦 ∧ ((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))) |
29 | | ssel2 3916 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
30 | | 1rp 12734 |
. . . . . . . 8
⊢ 1 ∈
ℝ+ |
31 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝑧 ≤ 𝑦 ∧ ((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) |
32 | 31 | reximi 3178 |
. . . . . . . . 9
⊢
(∃𝑧 ∈
ℝ+ (𝑧 ≤
𝑦 ∧ ((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ ((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) |
33 | 32 | ralimi 3087 |
. . . . . . . 8
⊢
(∀𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ+ (𝑧 ≤ 𝑦 ∧ ((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) |
34 | | biidd 261 |
. . . . . . . . 9
⊢ (𝑦 = 1 → (∃𝑧 ∈ ℝ+
((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴 ↔ ∃𝑧 ∈ ℝ+ ((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)) |
35 | 34 | rspcv 3557 |
. . . . . . . 8
⊢ (1 ∈
ℝ+ → (∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴 → ∃𝑧 ∈ ℝ+ ((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)) |
36 | 30, 33, 35 | mpsyl 68 |
. . . . . . 7
⊢
(∀𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ+ (𝑧 ≤ 𝑦 ∧ ((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ ((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) |
37 | 14 | rexbidva 3225 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ →
(∃𝑧 ∈
ℝ+ (𝑥(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑧) ⊆ 𝐴 ↔ ∃𝑧 ∈ ℝ+ ((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)) |
38 | 36, 37 | syl5ibr 245 |
. . . . . 6
⊢ (𝑥 ∈ ℝ →
(∀𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ+ (𝑧 ≤ 𝑦 ∧ ((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴)) |
39 | 29, 38 | syl 17 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
(𝑧 ≤ 𝑦 ∧ ((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴)) |
40 | 39 | ralimdva 3108 |
. . . 4
⊢ (𝐴 ⊆ ℝ →
(∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
(𝑧 ≤ 𝑦 ∧ ((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴)) |
41 | 40 | imdistani 569 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
(𝑧 ≤ 𝑦 ∧ ((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)) → (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴)) |
42 | 4 | elmopn2 23598 |
. . . 4
⊢ (((abs
∘ − ) ↾ (ℝ × ℝ)) ∈
(∞Met‘ℝ) → (𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∃𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴))) |
43 | 2, 42 | ax-mp 5 |
. . 3
⊢ (𝐴 ∈ (topGen‘ran (,))
↔ (𝐴 ⊆ ℝ
∧ ∀𝑥 ∈
𝐴 ∃𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴)) |
44 | 41, 43 | sylibr 233 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
(𝑧 ≤ 𝑦 ∧ ((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)) → 𝐴 ∈ (topGen‘ran
(,))) |
45 | 28, 44 | impbii 208 |
1
⊢ (𝐴 ∈ (topGen‘ran (,))
↔ (𝐴 ⊆ ℝ
∧ ∀𝑥 ∈
𝐴 ∀𝑦 ∈ ℝ+
∃𝑧 ∈
ℝ+ (𝑧 ≤
𝑦 ∧ ((𝑥 − 𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))) |