Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnrebl2 Structured version   Visualization version   GIF version

Theorem opnrebl2 36309
Description: A set is open in the standard topology of the reals precisely when every point can be enclosed in an arbitrarily small ball. (Contributed by Jeff Hankins, 22-Sep-2013.) (Proof shortened by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
opnrebl2 (𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem opnrebl2
StepHypRef Expression
1 eqid 2729 . . . . 5 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
21rexmet 24679 . . . 4 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
3 eqid 2729 . . . . . 6 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
41, 3tgioo 24684 . . . . 5 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
54mopnss 24334 . . . 4 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝐴 ∈ (topGen‘ran (,))) → 𝐴 ⊆ ℝ)
62, 5mpan 690 . . 3 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ⊆ ℝ)
74mopni3 24382 . . . . . . . 8 (((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴))
87ex 412 . . . . . . 7 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → (𝑦 ∈ ℝ+ → ∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴)))
92, 8mp3an1 1450 . . . . . 6 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → (𝑦 ∈ ℝ+ → ∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴)))
106sselda 3946 . . . . . . 7 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
11 rpre 12960 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
121bl2ioo 24680 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) = ((𝑥𝑧)(,)(𝑥 + 𝑧)))
1311, 12sylan2 593 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ+) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) = ((𝑥𝑧)(,)(𝑥 + 𝑧)))
1413sseq1d 3978 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ+) → ((𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴 ↔ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))
1514anbi2d 630 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ+) → ((𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴) ↔ (𝑧 < 𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
1615rexbidva 3155 . . . . . . . . 9 (𝑥 ∈ ℝ → (∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴) ↔ ∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
1716biimpd 229 . . . . . . . 8 (𝑥 ∈ ℝ → (∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
18 rpre 12960 . . . . . . . . . . 11 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
19 ltle 11262 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦𝑧𝑦))
2011, 18, 19syl2anr 597 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑧 ∈ ℝ+) → (𝑧 < 𝑦𝑧𝑦))
2120anim1d 611 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝑧 ∈ ℝ+) → ((𝑧 < 𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
2221reximdva 3146 . . . . . . . 8 (𝑦 ∈ ℝ+ → (∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
2317, 22syl9 77 . . . . . . 7 (𝑥 ∈ ℝ → (𝑦 ∈ ℝ+ → (∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))))
2410, 23syl 17 . . . . . 6 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → (𝑦 ∈ ℝ+ → (∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))))
259, 24mpdd 43 . . . . 5 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → (𝑦 ∈ ℝ+ → ∃𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
2625expimpd 453 . . . 4 (𝐴 ∈ (topGen‘ran (,)) → ((𝑥𝐴𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
2726ralrimivv 3178 . . 3 (𝐴 ∈ (topGen‘ran (,)) → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))
286, 27jca 511 . 2 (𝐴 ∈ (topGen‘ran (,)) → (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
29 ssel2 3941 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
30 1rp 12955 . . . . . . . 8 1 ∈ ℝ+
31 simpr 484 . . . . . . . . . 10 ((𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)
3231reximi 3067 . . . . . . . . 9 (∃𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)
3332ralimi 3066 . . . . . . . 8 (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)
34 biidd 262 . . . . . . . . 9 (𝑦 = 1 → (∃𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴 ↔ ∃𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))
3534rspcv 3584 . . . . . . . 8 (1 ∈ ℝ+ → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴 → ∃𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))
3630, 33, 35mpsyl 68 . . . . . . 7 (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)
3714rexbidva 3155 . . . . . . 7 (𝑥 ∈ ℝ → (∃𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴 ↔ ∃𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))
3836, 37imbitrrid 246 . . . . . 6 (𝑥 ∈ ℝ → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴))
3929, 38syl 17 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴))
4039ralimdva 3145 . . . 4 (𝐴 ⊆ ℝ → (∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∀𝑥𝐴𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴))
4140imdistani 568 . . 3 ((𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)) → (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴))
424elmopn2 24333 . . . 4 (((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) → (𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴)))
432, 42ax-mp 5 . . 3 (𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴))
4441, 43sylibr 234 . 2 ((𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)) → 𝐴 ∈ (topGen‘ran (,)))
4528, 44impbii 209 1 (𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3914   class class class wbr 5107   × cxp 5636  ran crn 5639  cres 5640  ccom 5642  cfv 6511  (class class class)co 7387  cr 11067  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405  +crp 12951  (,)cioo 13306  abscabs 15200  topGenctg 17400  ∞Metcxmet 21249  ballcbl 21251  MetOpencmopn 21254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator