Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnrebl2 Structured version   Visualization version   GIF version

Theorem opnrebl2 34793
Description: A set is open in the standard topology of the reals precisely when every point can be enclosed in an arbitrarily small ball. (Contributed by Jeff Hankins, 22-Sep-2013.) (Proof shortened by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
opnrebl2 (𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem opnrebl2
StepHypRef Expression
1 eqid 2736 . . . . 5 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
21rexmet 24154 . . . 4 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
3 eqid 2736 . . . . . 6 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
41, 3tgioo 24159 . . . . 5 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
54mopnss 23799 . . . 4 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝐴 ∈ (topGen‘ran (,))) → 𝐴 ⊆ ℝ)
62, 5mpan 688 . . 3 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ⊆ ℝ)
74mopni3 23850 . . . . . . . 8 (((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴))
87ex 413 . . . . . . 7 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → (𝑦 ∈ ℝ+ → ∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴)))
92, 8mp3an1 1448 . . . . . 6 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → (𝑦 ∈ ℝ+ → ∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴)))
106sselda 3944 . . . . . . 7 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
11 rpre 12923 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
121bl2ioo 24155 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) = ((𝑥𝑧)(,)(𝑥 + 𝑧)))
1311, 12sylan2 593 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ+) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) = ((𝑥𝑧)(,)(𝑥 + 𝑧)))
1413sseq1d 3975 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ+) → ((𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴 ↔ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))
1514anbi2d 629 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ+) → ((𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴) ↔ (𝑧 < 𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
1615rexbidva 3173 . . . . . . . . 9 (𝑥 ∈ ℝ → (∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴) ↔ ∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
1716biimpd 228 . . . . . . . 8 (𝑥 ∈ ℝ → (∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
18 rpre 12923 . . . . . . . . . . 11 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
19 ltle 11243 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦𝑧𝑦))
2011, 18, 19syl2anr 597 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑧 ∈ ℝ+) → (𝑧 < 𝑦𝑧𝑦))
2120anim1d 611 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝑧 ∈ ℝ+) → ((𝑧 < 𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
2221reximdva 3165 . . . . . . . 8 (𝑦 ∈ ℝ+ → (∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
2317, 22syl9 77 . . . . . . 7 (𝑥 ∈ ℝ → (𝑦 ∈ ℝ+ → (∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))))
2410, 23syl 17 . . . . . 6 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → (𝑦 ∈ ℝ+ → (∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))))
259, 24mpdd 43 . . . . 5 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → (𝑦 ∈ ℝ+ → ∃𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
2625expimpd 454 . . . 4 (𝐴 ∈ (topGen‘ran (,)) → ((𝑥𝐴𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
2726ralrimivv 3195 . . 3 (𝐴 ∈ (topGen‘ran (,)) → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))
286, 27jca 512 . 2 (𝐴 ∈ (topGen‘ran (,)) → (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
29 ssel2 3939 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
30 1rp 12919 . . . . . . . 8 1 ∈ ℝ+
31 simpr 485 . . . . . . . . . 10 ((𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)
3231reximi 3087 . . . . . . . . 9 (∃𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)
3332ralimi 3086 . . . . . . . 8 (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)
34 biidd 261 . . . . . . . . 9 (𝑦 = 1 → (∃𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴 ↔ ∃𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))
3534rspcv 3577 . . . . . . . 8 (1 ∈ ℝ+ → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴 → ∃𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))
3630, 33, 35mpsyl 68 . . . . . . 7 (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)
3714rexbidva 3173 . . . . . . 7 (𝑥 ∈ ℝ → (∃𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴 ↔ ∃𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))
3836, 37syl5ibr 245 . . . . . 6 (𝑥 ∈ ℝ → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴))
3929, 38syl 17 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴))
4039ralimdva 3164 . . . 4 (𝐴 ⊆ ℝ → (∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∀𝑥𝐴𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴))
4140imdistani 569 . . 3 ((𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)) → (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴))
424elmopn2 23798 . . . 4 (((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) → (𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴)))
432, 42ax-mp 5 . . 3 (𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴))
4441, 43sylibr 233 . 2 ((𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)) → 𝐴 ∈ (topGen‘ran (,)))
4528, 44impbii 208 1 (𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wrex 3073  wss 3910   class class class wbr 5105   × cxp 5631  ran crn 5634  cres 5635  ccom 5637  cfv 6496  (class class class)co 7357  cr 11050  1c1 11052   + caddc 11054   < clt 11189  cle 11190  cmin 11385  +crp 12915  (,)cioo 13264  abscabs 15119  topGenctg 17319  ∞Metcxmet 20781  ballcbl 20783  MetOpencmopn 20786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-top 22243  df-topon 22260  df-bases 22296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator