Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnrebl2 Structured version   Visualization version   GIF version

Theorem opnrebl2 36304
Description: A set is open in the standard topology of the reals precisely when every point can be enclosed in an arbitrarily small ball. (Contributed by Jeff Hankins, 22-Sep-2013.) (Proof shortened by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
opnrebl2 (𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem opnrebl2
StepHypRef Expression
1 eqid 2735 . . . . 5 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
21rexmet 24827 . . . 4 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
3 eqid 2735 . . . . . 6 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
41, 3tgioo 24832 . . . . 5 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
54mopnss 24472 . . . 4 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝐴 ∈ (topGen‘ran (,))) → 𝐴 ⊆ ℝ)
62, 5mpan 690 . . 3 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ⊆ ℝ)
74mopni3 24523 . . . . . . . 8 (((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴))
87ex 412 . . . . . . 7 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → (𝑦 ∈ ℝ+ → ∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴)))
92, 8mp3an1 1447 . . . . . 6 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → (𝑦 ∈ ℝ+ → ∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴)))
106sselda 3995 . . . . . . 7 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
11 rpre 13041 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
121bl2ioo 24828 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) = ((𝑥𝑧)(,)(𝑥 + 𝑧)))
1311, 12sylan2 593 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ+) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) = ((𝑥𝑧)(,)(𝑥 + 𝑧)))
1413sseq1d 4027 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ+) → ((𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴 ↔ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))
1514anbi2d 630 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ+) → ((𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴) ↔ (𝑧 < 𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
1615rexbidva 3175 . . . . . . . . 9 (𝑥 ∈ ℝ → (∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴) ↔ ∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
1716biimpd 229 . . . . . . . 8 (𝑥 ∈ ℝ → (∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
18 rpre 13041 . . . . . . . . . . 11 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
19 ltle 11347 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦𝑧𝑦))
2011, 18, 19syl2anr 597 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑧 ∈ ℝ+) → (𝑧 < 𝑦𝑧𝑦))
2120anim1d 611 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝑧 ∈ ℝ+) → ((𝑧 < 𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
2221reximdva 3166 . . . . . . . 8 (𝑦 ∈ ℝ+ → (∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
2317, 22syl9 77 . . . . . . 7 (𝑥 ∈ ℝ → (𝑦 ∈ ℝ+ → (∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))))
2410, 23syl 17 . . . . . 6 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → (𝑦 ∈ ℝ+ → (∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))))
259, 24mpdd 43 . . . . 5 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → (𝑦 ∈ ℝ+ → ∃𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
2625expimpd 453 . . . 4 (𝐴 ∈ (topGen‘ran (,)) → ((𝑥𝐴𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
2726ralrimivv 3198 . . 3 (𝐴 ∈ (topGen‘ran (,)) → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))
286, 27jca 511 . 2 (𝐴 ∈ (topGen‘ran (,)) → (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
29 ssel2 3990 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
30 1rp 13036 . . . . . . . 8 1 ∈ ℝ+
31 simpr 484 . . . . . . . . . 10 ((𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)
3231reximi 3082 . . . . . . . . 9 (∃𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)
3332ralimi 3081 . . . . . . . 8 (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)
34 biidd 262 . . . . . . . . 9 (𝑦 = 1 → (∃𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴 ↔ ∃𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))
3534rspcv 3618 . . . . . . . 8 (1 ∈ ℝ+ → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴 → ∃𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))
3630, 33, 35mpsyl 68 . . . . . . 7 (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)
3714rexbidva 3175 . . . . . . 7 (𝑥 ∈ ℝ → (∃𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴 ↔ ∃𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))
3836, 37imbitrrid 246 . . . . . 6 (𝑥 ∈ ℝ → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴))
3929, 38syl 17 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴))
4039ralimdva 3165 . . . 4 (𝐴 ⊆ ℝ → (∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∀𝑥𝐴𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴))
4140imdistani 568 . . 3 ((𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)) → (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴))
424elmopn2 24471 . . . 4 (((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) → (𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴)))
432, 42ax-mp 5 . . 3 (𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴))
4441, 43sylibr 234 . 2 ((𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)) → 𝐴 ∈ (topGen‘ran (,)))
4528, 44impbii 209 1 (𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068  wss 3963   class class class wbr 5148   × cxp 5687  ran crn 5690  cres 5691  ccom 5693  cfv 6563  (class class class)co 7431  cr 11152  1c1 11154   + caddc 11156   < clt 11293  cle 11294  cmin 11490  +crp 13032  (,)cioo 13384  abscabs 15270  topGenctg 17484  ∞Metcxmet 21367  ballcbl 21369  MetOpencmopn 21372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-topgen 17490  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-top 22916  df-topon 22933  df-bases 22969
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator