Step | Hyp | Ref
| Expression |
1 | | fusgrmaxsize.v |
. . . . 5
⊢ 𝑉 = (Vtx‘𝐺) |
2 | | fusgrmaxsize.e |
. . . . 5
⊢ 𝐸 = (Edg‘𝐺) |
3 | 1, 2 | usgredg 27566 |
. . . 4
⊢ ((𝐺 ∈ USGraph ∧ 𝑒 ∈ 𝐸) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑒 = {𝑎, 𝑏})) |
4 | | usgrsscusgra.h |
. . . . . . . 8
⊢ 𝑉 = (Vtx‘𝐻) |
5 | | usgrsscusgra.f |
. . . . . . . 8
⊢ 𝐹 = (Edg‘𝐻) |
6 | 4, 5 | iscusgredg 27790 |
. . . . . . 7
⊢ (𝐻 ∈ ComplUSGraph ↔
(𝐻 ∈ USGraph ∧
∀𝑘 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹)) |
7 | | sneq 4571 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑎 → {𝑘} = {𝑎}) |
8 | 7 | difeq2d 4057 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑎 → (𝑉 ∖ {𝑘}) = (𝑉 ∖ {𝑎})) |
9 | | preq2 4670 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑎 → {𝑛, 𝑘} = {𝑛, 𝑎}) |
10 | 9 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑎 → ({𝑛, 𝑘} ∈ 𝐹 ↔ {𝑛, 𝑎} ∈ 𝐹)) |
11 | 8, 10 | raleqbidv 3336 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑎 → (∀𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹 ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑎}){𝑛, 𝑎} ∈ 𝐹)) |
12 | 11 | rspcv 3557 |
. . . . . . . . . 10
⊢ (𝑎 ∈ 𝑉 → (∀𝑘 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹 → ∀𝑛 ∈ (𝑉 ∖ {𝑎}){𝑛, 𝑎} ∈ 𝐹)) |
13 | | simpl 483 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ≠ 𝑏 ∧ 𝑒 = {𝑎, 𝑏}) → 𝑎 ≠ 𝑏) |
14 | 13 | necomd 2999 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ≠ 𝑏 ∧ 𝑒 = {𝑎, 𝑏}) → 𝑏 ≠ 𝑎) |
15 | 14 | anim2i 617 |
. . . . . . . . . . . . 13
⊢ ((𝑏 ∈ 𝑉 ∧ (𝑎 ≠ 𝑏 ∧ 𝑒 = {𝑎, 𝑏})) → (𝑏 ∈ 𝑉 ∧ 𝑏 ≠ 𝑎)) |
16 | | eldifsn 4720 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ (𝑉 ∖ {𝑎}) ↔ (𝑏 ∈ 𝑉 ∧ 𝑏 ≠ 𝑎)) |
17 | 15, 16 | sylibr 233 |
. . . . . . . . . . . 12
⊢ ((𝑏 ∈ 𝑉 ∧ (𝑎 ≠ 𝑏 ∧ 𝑒 = {𝑎, 𝑏})) → 𝑏 ∈ (𝑉 ∖ {𝑎})) |
18 | | preq1 4669 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑏 → {𝑛, 𝑎} = {𝑏, 𝑎}) |
19 | 18 | eleq1d 2823 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑏 → ({𝑛, 𝑎} ∈ 𝐹 ↔ {𝑏, 𝑎} ∈ 𝐹)) |
20 | 19 | rspcv 3557 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ (𝑉 ∖ {𝑎}) → (∀𝑛 ∈ (𝑉 ∖ {𝑎}){𝑛, 𝑎} ∈ 𝐹 → {𝑏, 𝑎} ∈ 𝐹)) |
21 | 17, 20 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑏 ∈ 𝑉 ∧ (𝑎 ≠ 𝑏 ∧ 𝑒 = {𝑎, 𝑏})) → (∀𝑛 ∈ (𝑉 ∖ {𝑎}){𝑛, 𝑎} ∈ 𝐹 → {𝑏, 𝑎} ∈ 𝐹)) |
22 | | prcom 4668 |
. . . . . . . . . . . . . . . 16
⊢ {𝑎, 𝑏} = {𝑏, 𝑎} |
23 | 22 | eqeq2i 2751 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 = {𝑎, 𝑏} ↔ 𝑒 = {𝑏, 𝑎}) |
24 | | eqcom 2745 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 = {𝑏, 𝑎} ↔ {𝑏, 𝑎} = 𝑒) |
25 | 23, 24 | sylbb 218 |
. . . . . . . . . . . . . 14
⊢ (𝑒 = {𝑎, 𝑏} → {𝑏, 𝑎} = 𝑒) |
26 | 25 | eleq1d 2823 |
. . . . . . . . . . . . 13
⊢ (𝑒 = {𝑎, 𝑏} → ({𝑏, 𝑎} ∈ 𝐹 ↔ 𝑒 ∈ 𝐹)) |
27 | 26 | biimpd 228 |
. . . . . . . . . . . 12
⊢ (𝑒 = {𝑎, 𝑏} → ({𝑏, 𝑎} ∈ 𝐹 → 𝑒 ∈ 𝐹)) |
28 | 27 | ad2antll 726 |
. . . . . . . . . . 11
⊢ ((𝑏 ∈ 𝑉 ∧ (𝑎 ≠ 𝑏 ∧ 𝑒 = {𝑎, 𝑏})) → ({𝑏, 𝑎} ∈ 𝐹 → 𝑒 ∈ 𝐹)) |
29 | 21, 28 | syld 47 |
. . . . . . . . . 10
⊢ ((𝑏 ∈ 𝑉 ∧ (𝑎 ≠ 𝑏 ∧ 𝑒 = {𝑎, 𝑏})) → (∀𝑛 ∈ (𝑉 ∖ {𝑎}){𝑛, 𝑎} ∈ 𝐹 → 𝑒 ∈ 𝐹)) |
30 | 12, 29 | syl9 77 |
. . . . . . . . 9
⊢ (𝑎 ∈ 𝑉 → ((𝑏 ∈ 𝑉 ∧ (𝑎 ≠ 𝑏 ∧ 𝑒 = {𝑎, 𝑏})) → (∀𝑘 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹 → 𝑒 ∈ 𝐹))) |
31 | 30 | impl 456 |
. . . . . . . 8
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑒 = {𝑎, 𝑏})) → (∀𝑘 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹 → 𝑒 ∈ 𝐹)) |
32 | 31 | adantld 491 |
. . . . . . 7
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑒 = {𝑎, 𝑏})) → ((𝐻 ∈ USGraph ∧ ∀𝑘 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹) → 𝑒 ∈ 𝐹)) |
33 | 6, 32 | syl5bi 241 |
. . . . . 6
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑒 = {𝑎, 𝑏})) → (𝐻 ∈ ComplUSGraph → 𝑒 ∈ 𝐹)) |
34 | 33 | ex 413 |
. . . . 5
⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝑎 ≠ 𝑏 ∧ 𝑒 = {𝑎, 𝑏}) → (𝐻 ∈ ComplUSGraph → 𝑒 ∈ 𝐹))) |
35 | 34 | rexlimivv 3221 |
. . . 4
⊢
(∃𝑎 ∈
𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑒 = {𝑎, 𝑏}) → (𝐻 ∈ ComplUSGraph → 𝑒 ∈ 𝐹)) |
36 | 3, 35 | syl 17 |
. . 3
⊢ ((𝐺 ∈ USGraph ∧ 𝑒 ∈ 𝐸) → (𝐻 ∈ ComplUSGraph → 𝑒 ∈ 𝐹)) |
37 | 36 | impancom 452 |
. 2
⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) →
(𝑒 ∈ 𝐸 → 𝑒 ∈ 𝐹)) |
38 | 37 | ssrdv 3927 |
1
⊢ ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) →
𝐸 ⊆ 𝐹) |