MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgredgsscusgredg Structured version   Visualization version   GIF version

Theorem usgredgsscusgredg 29440
Description: A simple graph is a subgraph of a complete simple graph. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 13-Nov-2020.)
Hypotheses
Ref Expression
fusgrmaxsize.v 𝑉 = (Vtx‘𝐺)
fusgrmaxsize.e 𝐸 = (Edg‘𝐺)
usgrsscusgra.h 𝑉 = (Vtx‘𝐻)
usgrsscusgra.f 𝐹 = (Edg‘𝐻)
Assertion
Ref Expression
usgredgsscusgredg ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → 𝐸𝐹)

Proof of Theorem usgredgsscusgredg
Dummy variables 𝑒 𝑎 𝑏 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fusgrmaxsize.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 fusgrmaxsize.e . . . . 5 𝐸 = (Edg‘𝐺)
31, 2usgredg 29179 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑒𝐸) → ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑒 = {𝑎, 𝑏}))
4 usgrsscusgra.h . . . . . . . 8 𝑉 = (Vtx‘𝐻)
5 usgrsscusgra.f . . . . . . . 8 𝐹 = (Edg‘𝐻)
64, 5iscusgredg 29403 . . . . . . 7 (𝐻 ∈ ComplUSGraph ↔ (𝐻 ∈ USGraph ∧ ∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹))
7 sneq 4585 . . . . . . . . . . . . 13 (𝑘 = 𝑎 → {𝑘} = {𝑎})
87difeq2d 4075 . . . . . . . . . . . 12 (𝑘 = 𝑎 → (𝑉 ∖ {𝑘}) = (𝑉 ∖ {𝑎}))
9 preq2 4686 . . . . . . . . . . . . 13 (𝑘 = 𝑎 → {𝑛, 𝑘} = {𝑛, 𝑎})
109eleq1d 2818 . . . . . . . . . . . 12 (𝑘 = 𝑎 → ({𝑛, 𝑘} ∈ 𝐹 ↔ {𝑛, 𝑎} ∈ 𝐹))
118, 10raleqbidv 3313 . . . . . . . . . . 11 (𝑘 = 𝑎 → (∀𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹 ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑎}){𝑛, 𝑎} ∈ 𝐹))
1211rspcv 3569 . . . . . . . . . 10 (𝑎𝑉 → (∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹 → ∀𝑛 ∈ (𝑉 ∖ {𝑎}){𝑛, 𝑎} ∈ 𝐹))
13 simpl 482 . . . . . . . . . . . . . . 15 ((𝑎𝑏𝑒 = {𝑎, 𝑏}) → 𝑎𝑏)
1413necomd 2984 . . . . . . . . . . . . . 14 ((𝑎𝑏𝑒 = {𝑎, 𝑏}) → 𝑏𝑎)
1514anim2i 617 . . . . . . . . . . . . 13 ((𝑏𝑉 ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → (𝑏𝑉𝑏𝑎))
16 eldifsn 4737 . . . . . . . . . . . . 13 (𝑏 ∈ (𝑉 ∖ {𝑎}) ↔ (𝑏𝑉𝑏𝑎))
1715, 16sylibr 234 . . . . . . . . . . . 12 ((𝑏𝑉 ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → 𝑏 ∈ (𝑉 ∖ {𝑎}))
18 preq1 4685 . . . . . . . . . . . . . 14 (𝑛 = 𝑏 → {𝑛, 𝑎} = {𝑏, 𝑎})
1918eleq1d 2818 . . . . . . . . . . . . 13 (𝑛 = 𝑏 → ({𝑛, 𝑎} ∈ 𝐹 ↔ {𝑏, 𝑎} ∈ 𝐹))
2019rspcv 3569 . . . . . . . . . . . 12 (𝑏 ∈ (𝑉 ∖ {𝑎}) → (∀𝑛 ∈ (𝑉 ∖ {𝑎}){𝑛, 𝑎} ∈ 𝐹 → {𝑏, 𝑎} ∈ 𝐹))
2117, 20syl 17 . . . . . . . . . . 11 ((𝑏𝑉 ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → (∀𝑛 ∈ (𝑉 ∖ {𝑎}){𝑛, 𝑎} ∈ 𝐹 → {𝑏, 𝑎} ∈ 𝐹))
22 prcom 4684 . . . . . . . . . . . . . . . 16 {𝑎, 𝑏} = {𝑏, 𝑎}
2322eqeq2i 2746 . . . . . . . . . . . . . . 15 (𝑒 = {𝑎, 𝑏} ↔ 𝑒 = {𝑏, 𝑎})
24 eqcom 2740 . . . . . . . . . . . . . . 15 (𝑒 = {𝑏, 𝑎} ↔ {𝑏, 𝑎} = 𝑒)
2523, 24sylbb 219 . . . . . . . . . . . . . 14 (𝑒 = {𝑎, 𝑏} → {𝑏, 𝑎} = 𝑒)
2625eleq1d 2818 . . . . . . . . . . . . 13 (𝑒 = {𝑎, 𝑏} → ({𝑏, 𝑎} ∈ 𝐹𝑒𝐹))
2726biimpd 229 . . . . . . . . . . . 12 (𝑒 = {𝑎, 𝑏} → ({𝑏, 𝑎} ∈ 𝐹𝑒𝐹))
2827ad2antll 729 . . . . . . . . . . 11 ((𝑏𝑉 ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → ({𝑏, 𝑎} ∈ 𝐹𝑒𝐹))
2921, 28syld 47 . . . . . . . . . 10 ((𝑏𝑉 ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → (∀𝑛 ∈ (𝑉 ∖ {𝑎}){𝑛, 𝑎} ∈ 𝐹𝑒𝐹))
3012, 29syl9 77 . . . . . . . . 9 (𝑎𝑉 → ((𝑏𝑉 ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → (∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹𝑒𝐹)))
3130impl 455 . . . . . . . 8 (((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → (∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹𝑒𝐹))
3231adantld 490 . . . . . . 7 (((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → ((𝐻 ∈ USGraph ∧ ∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹) → 𝑒𝐹))
336, 32biimtrid 242 . . . . . 6 (((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → (𝐻 ∈ ComplUSGraph → 𝑒𝐹))
3433ex 412 . . . . 5 ((𝑎𝑉𝑏𝑉) → ((𝑎𝑏𝑒 = {𝑎, 𝑏}) → (𝐻 ∈ ComplUSGraph → 𝑒𝐹)))
3534rexlimivv 3175 . . . 4 (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑒 = {𝑎, 𝑏}) → (𝐻 ∈ ComplUSGraph → 𝑒𝐹))
363, 35syl 17 . . 3 ((𝐺 ∈ USGraph ∧ 𝑒𝐸) → (𝐻 ∈ ComplUSGraph → 𝑒𝐹))
3736impancom 451 . 2 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (𝑒𝐸𝑒𝐹))
3837ssrdv 3936 1 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → 𝐸𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  cdif 3895  wss 3898  {csn 4575  {cpr 4577  cfv 6486  Vtxcvtx 28976  Edgcedg 29027  USGraphcusgr 29129  ComplUSGraphccusgr 29390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-dju 9801  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-n0 12389  df-xnn0 12462  df-z 12476  df-uz 12739  df-fz 13410  df-hash 14240  df-edg 29028  df-upgr 29062  df-umgr 29063  df-usgr 29131  df-nbgr 29313  df-uvtx 29366  df-cplgr 29391  df-cusgr 29392
This theorem is referenced by:  usgrsscusgr  29441  sizusglecusglem1  29442
  Copyright terms: Public domain W3C validator