MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgredgsscusgredg Structured version   Visualization version   GIF version

Theorem usgredgsscusgredg 29329
Description: A simple graph is a subgraph of a complete simple graph. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 13-Nov-2020.)
Hypotheses
Ref Expression
fusgrmaxsize.v 𝑉 = (Vtx‘𝐺)
fusgrmaxsize.e 𝐸 = (Edg‘𝐺)
usgrsscusgra.h 𝑉 = (Vtx‘𝐻)
usgrsscusgra.f 𝐹 = (Edg‘𝐻)
Assertion
Ref Expression
usgredgsscusgredg ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → 𝐸𝐹)

Proof of Theorem usgredgsscusgredg
Dummy variables 𝑒 𝑎 𝑏 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fusgrmaxsize.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 fusgrmaxsize.e . . . . 5 𝐸 = (Edg‘𝐺)
31, 2usgredg 29068 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑒𝐸) → ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑒 = {𝑎, 𝑏}))
4 usgrsscusgra.h . . . . . . . 8 𝑉 = (Vtx‘𝐻)
5 usgrsscusgra.f . . . . . . . 8 𝐹 = (Edg‘𝐻)
64, 5iscusgredg 29292 . . . . . . 7 (𝐻 ∈ ComplUSGraph ↔ (𝐻 ∈ USGraph ∧ ∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹))
7 sneq 4639 . . . . . . . . . . . . 13 (𝑘 = 𝑎 → {𝑘} = {𝑎})
87difeq2d 4119 . . . . . . . . . . . 12 (𝑘 = 𝑎 → (𝑉 ∖ {𝑘}) = (𝑉 ∖ {𝑎}))
9 preq2 4739 . . . . . . . . . . . . 13 (𝑘 = 𝑎 → {𝑛, 𝑘} = {𝑛, 𝑎})
109eleq1d 2810 . . . . . . . . . . . 12 (𝑘 = 𝑎 → ({𝑛, 𝑘} ∈ 𝐹 ↔ {𝑛, 𝑎} ∈ 𝐹))
118, 10raleqbidv 3330 . . . . . . . . . . 11 (𝑘 = 𝑎 → (∀𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹 ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑎}){𝑛, 𝑎} ∈ 𝐹))
1211rspcv 3603 . . . . . . . . . 10 (𝑎𝑉 → (∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹 → ∀𝑛 ∈ (𝑉 ∖ {𝑎}){𝑛, 𝑎} ∈ 𝐹))
13 simpl 481 . . . . . . . . . . . . . . 15 ((𝑎𝑏𝑒 = {𝑎, 𝑏}) → 𝑎𝑏)
1413necomd 2986 . . . . . . . . . . . . . 14 ((𝑎𝑏𝑒 = {𝑎, 𝑏}) → 𝑏𝑎)
1514anim2i 615 . . . . . . . . . . . . 13 ((𝑏𝑉 ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → (𝑏𝑉𝑏𝑎))
16 eldifsn 4791 . . . . . . . . . . . . 13 (𝑏 ∈ (𝑉 ∖ {𝑎}) ↔ (𝑏𝑉𝑏𝑎))
1715, 16sylibr 233 . . . . . . . . . . . 12 ((𝑏𝑉 ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → 𝑏 ∈ (𝑉 ∖ {𝑎}))
18 preq1 4738 . . . . . . . . . . . . . 14 (𝑛 = 𝑏 → {𝑛, 𝑎} = {𝑏, 𝑎})
1918eleq1d 2810 . . . . . . . . . . . . 13 (𝑛 = 𝑏 → ({𝑛, 𝑎} ∈ 𝐹 ↔ {𝑏, 𝑎} ∈ 𝐹))
2019rspcv 3603 . . . . . . . . . . . 12 (𝑏 ∈ (𝑉 ∖ {𝑎}) → (∀𝑛 ∈ (𝑉 ∖ {𝑎}){𝑛, 𝑎} ∈ 𝐹 → {𝑏, 𝑎} ∈ 𝐹))
2117, 20syl 17 . . . . . . . . . . 11 ((𝑏𝑉 ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → (∀𝑛 ∈ (𝑉 ∖ {𝑎}){𝑛, 𝑎} ∈ 𝐹 → {𝑏, 𝑎} ∈ 𝐹))
22 prcom 4737 . . . . . . . . . . . . . . . 16 {𝑎, 𝑏} = {𝑏, 𝑎}
2322eqeq2i 2738 . . . . . . . . . . . . . . 15 (𝑒 = {𝑎, 𝑏} ↔ 𝑒 = {𝑏, 𝑎})
24 eqcom 2732 . . . . . . . . . . . . . . 15 (𝑒 = {𝑏, 𝑎} ↔ {𝑏, 𝑎} = 𝑒)
2523, 24sylbb 218 . . . . . . . . . . . . . 14 (𝑒 = {𝑎, 𝑏} → {𝑏, 𝑎} = 𝑒)
2625eleq1d 2810 . . . . . . . . . . . . 13 (𝑒 = {𝑎, 𝑏} → ({𝑏, 𝑎} ∈ 𝐹𝑒𝐹))
2726biimpd 228 . . . . . . . . . . . 12 (𝑒 = {𝑎, 𝑏} → ({𝑏, 𝑎} ∈ 𝐹𝑒𝐹))
2827ad2antll 727 . . . . . . . . . . 11 ((𝑏𝑉 ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → ({𝑏, 𝑎} ∈ 𝐹𝑒𝐹))
2921, 28syld 47 . . . . . . . . . 10 ((𝑏𝑉 ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → (∀𝑛 ∈ (𝑉 ∖ {𝑎}){𝑛, 𝑎} ∈ 𝐹𝑒𝐹))
3012, 29syl9 77 . . . . . . . . 9 (𝑎𝑉 → ((𝑏𝑉 ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → (∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹𝑒𝐹)))
3130impl 454 . . . . . . . 8 (((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → (∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹𝑒𝐹))
3231adantld 489 . . . . . . 7 (((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → ((𝐻 ∈ USGraph ∧ ∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹) → 𝑒𝐹))
336, 32biimtrid 241 . . . . . 6 (((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → (𝐻 ∈ ComplUSGraph → 𝑒𝐹))
3433ex 411 . . . . 5 ((𝑎𝑉𝑏𝑉) → ((𝑎𝑏𝑒 = {𝑎, 𝑏}) → (𝐻 ∈ ComplUSGraph → 𝑒𝐹)))
3534rexlimivv 3190 . . . 4 (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑒 = {𝑎, 𝑏}) → (𝐻 ∈ ComplUSGraph → 𝑒𝐹))
363, 35syl 17 . . 3 ((𝐺 ∈ USGraph ∧ 𝑒𝐸) → (𝐻 ∈ ComplUSGraph → 𝑒𝐹))
3736impancom 450 . 2 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (𝑒𝐸𝑒𝐹))
3837ssrdv 3983 1 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → 𝐸𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2930  wral 3051  wrex 3060  cdif 3942  wss 3945  {csn 4629  {cpr 4631  cfv 6547  Vtxcvtx 28865  Edgcedg 28916  USGraphcusgr 29018  ComplUSGraphccusgr 29279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-n0 12503  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13517  df-hash 14322  df-edg 28917  df-upgr 28951  df-umgr 28952  df-usgr 29020  df-nbgr 29202  df-uvtx 29255  df-cplgr 29280  df-cusgr 29281
This theorem is referenced by:  usgrsscusgr  29330  sizusglecusglem1  29331
  Copyright terms: Public domain W3C validator