MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgredgsscusgredg Structured version   Visualization version   GIF version

Theorem usgredgsscusgredg 29439
Description: A simple graph is a subgraph of a complete simple graph. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 13-Nov-2020.)
Hypotheses
Ref Expression
fusgrmaxsize.v 𝑉 = (Vtx‘𝐺)
fusgrmaxsize.e 𝐸 = (Edg‘𝐺)
usgrsscusgra.h 𝑉 = (Vtx‘𝐻)
usgrsscusgra.f 𝐹 = (Edg‘𝐻)
Assertion
Ref Expression
usgredgsscusgredg ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → 𝐸𝐹)

Proof of Theorem usgredgsscusgredg
Dummy variables 𝑒 𝑎 𝑏 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fusgrmaxsize.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 fusgrmaxsize.e . . . . 5 𝐸 = (Edg‘𝐺)
31, 2usgredg 29178 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑒𝐸) → ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑒 = {𝑎, 𝑏}))
4 usgrsscusgra.h . . . . . . . 8 𝑉 = (Vtx‘𝐻)
5 usgrsscusgra.f . . . . . . . 8 𝐹 = (Edg‘𝐻)
64, 5iscusgredg 29402 . . . . . . 7 (𝐻 ∈ ComplUSGraph ↔ (𝐻 ∈ USGraph ∧ ∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹))
7 sneq 4611 . . . . . . . . . . . . 13 (𝑘 = 𝑎 → {𝑘} = {𝑎})
87difeq2d 4101 . . . . . . . . . . . 12 (𝑘 = 𝑎 → (𝑉 ∖ {𝑘}) = (𝑉 ∖ {𝑎}))
9 preq2 4710 . . . . . . . . . . . . 13 (𝑘 = 𝑎 → {𝑛, 𝑘} = {𝑛, 𝑎})
109eleq1d 2819 . . . . . . . . . . . 12 (𝑘 = 𝑎 → ({𝑛, 𝑘} ∈ 𝐹 ↔ {𝑛, 𝑎} ∈ 𝐹))
118, 10raleqbidv 3325 . . . . . . . . . . 11 (𝑘 = 𝑎 → (∀𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹 ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑎}){𝑛, 𝑎} ∈ 𝐹))
1211rspcv 3597 . . . . . . . . . 10 (𝑎𝑉 → (∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹 → ∀𝑛 ∈ (𝑉 ∖ {𝑎}){𝑛, 𝑎} ∈ 𝐹))
13 simpl 482 . . . . . . . . . . . . . . 15 ((𝑎𝑏𝑒 = {𝑎, 𝑏}) → 𝑎𝑏)
1413necomd 2987 . . . . . . . . . . . . . 14 ((𝑎𝑏𝑒 = {𝑎, 𝑏}) → 𝑏𝑎)
1514anim2i 617 . . . . . . . . . . . . 13 ((𝑏𝑉 ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → (𝑏𝑉𝑏𝑎))
16 eldifsn 4762 . . . . . . . . . . . . 13 (𝑏 ∈ (𝑉 ∖ {𝑎}) ↔ (𝑏𝑉𝑏𝑎))
1715, 16sylibr 234 . . . . . . . . . . . 12 ((𝑏𝑉 ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → 𝑏 ∈ (𝑉 ∖ {𝑎}))
18 preq1 4709 . . . . . . . . . . . . . 14 (𝑛 = 𝑏 → {𝑛, 𝑎} = {𝑏, 𝑎})
1918eleq1d 2819 . . . . . . . . . . . . 13 (𝑛 = 𝑏 → ({𝑛, 𝑎} ∈ 𝐹 ↔ {𝑏, 𝑎} ∈ 𝐹))
2019rspcv 3597 . . . . . . . . . . . 12 (𝑏 ∈ (𝑉 ∖ {𝑎}) → (∀𝑛 ∈ (𝑉 ∖ {𝑎}){𝑛, 𝑎} ∈ 𝐹 → {𝑏, 𝑎} ∈ 𝐹))
2117, 20syl 17 . . . . . . . . . . 11 ((𝑏𝑉 ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → (∀𝑛 ∈ (𝑉 ∖ {𝑎}){𝑛, 𝑎} ∈ 𝐹 → {𝑏, 𝑎} ∈ 𝐹))
22 prcom 4708 . . . . . . . . . . . . . . . 16 {𝑎, 𝑏} = {𝑏, 𝑎}
2322eqeq2i 2748 . . . . . . . . . . . . . . 15 (𝑒 = {𝑎, 𝑏} ↔ 𝑒 = {𝑏, 𝑎})
24 eqcom 2742 . . . . . . . . . . . . . . 15 (𝑒 = {𝑏, 𝑎} ↔ {𝑏, 𝑎} = 𝑒)
2523, 24sylbb 219 . . . . . . . . . . . . . 14 (𝑒 = {𝑎, 𝑏} → {𝑏, 𝑎} = 𝑒)
2625eleq1d 2819 . . . . . . . . . . . . 13 (𝑒 = {𝑎, 𝑏} → ({𝑏, 𝑎} ∈ 𝐹𝑒𝐹))
2726biimpd 229 . . . . . . . . . . . 12 (𝑒 = {𝑎, 𝑏} → ({𝑏, 𝑎} ∈ 𝐹𝑒𝐹))
2827ad2antll 729 . . . . . . . . . . 11 ((𝑏𝑉 ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → ({𝑏, 𝑎} ∈ 𝐹𝑒𝐹))
2921, 28syld 47 . . . . . . . . . 10 ((𝑏𝑉 ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → (∀𝑛 ∈ (𝑉 ∖ {𝑎}){𝑛, 𝑎} ∈ 𝐹𝑒𝐹))
3012, 29syl9 77 . . . . . . . . 9 (𝑎𝑉 → ((𝑏𝑉 ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → (∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹𝑒𝐹)))
3130impl 455 . . . . . . . 8 (((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → (∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹𝑒𝐹))
3231adantld 490 . . . . . . 7 (((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → ((𝐻 ∈ USGraph ∧ ∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹) → 𝑒𝐹))
336, 32biimtrid 242 . . . . . 6 (((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → (𝐻 ∈ ComplUSGraph → 𝑒𝐹))
3433ex 412 . . . . 5 ((𝑎𝑉𝑏𝑉) → ((𝑎𝑏𝑒 = {𝑎, 𝑏}) → (𝐻 ∈ ComplUSGraph → 𝑒𝐹)))
3534rexlimivv 3186 . . . 4 (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑒 = {𝑎, 𝑏}) → (𝐻 ∈ ComplUSGraph → 𝑒𝐹))
363, 35syl 17 . . 3 ((𝐺 ∈ USGraph ∧ 𝑒𝐸) → (𝐻 ∈ ComplUSGraph → 𝑒𝐹))
3736impancom 451 . 2 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (𝑒𝐸𝑒𝐹))
3837ssrdv 3964 1 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → 𝐸𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  cdif 3923  wss 3926  {csn 4601  {cpr 4603  cfv 6531  Vtxcvtx 28975  Edgcedg 29026  USGraphcusgr 29128  ComplUSGraphccusgr 29389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13525  df-hash 14349  df-edg 29027  df-upgr 29061  df-umgr 29062  df-usgr 29130  df-nbgr 29312  df-uvtx 29365  df-cplgr 29390  df-cusgr 29391
This theorem is referenced by:  usgrsscusgr  29440  sizusglecusglem1  29441
  Copyright terms: Public domain W3C validator