MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sup3 Structured version   Visualization version   GIF version

Theorem sup3 11576
Description: A version of the completeness axiom for reals. (Contributed by NM, 12-Oct-2004.)
Assertion
Ref Expression
sup3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem sup3
StepHypRef Expression
1 ssel 3940 . . . . . . . . 9 (𝐴 ⊆ ℝ → (𝑦𝐴𝑦 ∈ ℝ))
2 leloe 10705 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦𝑥 ↔ (𝑦 < 𝑥𝑦 = 𝑥)))
32expcom 416 . . . . . . . . 9 (𝑥 ∈ ℝ → (𝑦 ∈ ℝ → (𝑦𝑥 ↔ (𝑦 < 𝑥𝑦 = 𝑥))))
41, 3syl9 77 . . . . . . . 8 (𝐴 ⊆ ℝ → (𝑥 ∈ ℝ → (𝑦𝐴 → (𝑦𝑥 ↔ (𝑦 < 𝑥𝑦 = 𝑥)))))
54imp31 420 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (𝑦𝑥 ↔ (𝑦 < 𝑥𝑦 = 𝑥)))
65ralbidva 3183 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑦𝐴 𝑦𝑥 ↔ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)))
76rexbidva 3283 . . . . 5 (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)))
87anbi2d 630 . . . 4 (𝐴 ⊆ ℝ → ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ↔ (𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥))))
98pm5.32i 577 . . 3 ((𝐴 ⊆ ℝ ∧ (𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)) ↔ (𝐴 ⊆ ℝ ∧ (𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥))))
10 3anass 1091 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ↔ (𝐴 ⊆ ℝ ∧ (𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)))
11 3anass 1091 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) ↔ (𝐴 ⊆ ℝ ∧ (𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥))))
129, 10, 113bitr4i 305 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ↔ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)))
13 sup2 11575 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
1412, 13sylbi 219 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083  wcel 2114  wne 3006  wral 3125  wrex 3126  wss 3913  c0 4269   class class class wbr 5042  cr 10514   < clt 10653  cle 10654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-pre-sup 10593
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5436  df-po 5450  df-so 5451  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851
This theorem is referenced by:  infm3  11578  suprcl  11579  suprub  11580  suprlub  11583  sup3ii  11592  xrsupsslem  12679
  Copyright terms: Public domain W3C validator