MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankwflemb Structured version   Visualization version   GIF version

Theorem rankwflemb 9551
Description: Two ways of saying a set is well-founded. (Contributed by NM, 11-Oct-2003.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
rankwflemb (𝐴 (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem rankwflemb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eluni 4842 . . 3 (𝐴 (𝑅1 “ On) ↔ ∃𝑦(𝐴𝑦𝑦 ∈ (𝑅1 “ On)))
2 eleq2 2827 . . . . . . . 8 ((𝑅1𝑥) = 𝑦 → (𝐴 ∈ (𝑅1𝑥) ↔ 𝐴𝑦))
32biimprcd 249 . . . . . . 7 (𝐴𝑦 → ((𝑅1𝑥) = 𝑦𝐴 ∈ (𝑅1𝑥)))
4 r1tr 9534 . . . . . . . . . . 11 Tr (𝑅1𝑥)
5 trss 5200 . . . . . . . . . . 11 (Tr (𝑅1𝑥) → (𝐴 ∈ (𝑅1𝑥) → 𝐴 ⊆ (𝑅1𝑥)))
64, 5ax-mp 5 . . . . . . . . . 10 (𝐴 ∈ (𝑅1𝑥) → 𝐴 ⊆ (𝑅1𝑥))
7 elpwg 4536 . . . . . . . . . 10 (𝐴 ∈ (𝑅1𝑥) → (𝐴 ∈ 𝒫 (𝑅1𝑥) ↔ 𝐴 ⊆ (𝑅1𝑥)))
86, 7mpbird 256 . . . . . . . . 9 (𝐴 ∈ (𝑅1𝑥) → 𝐴 ∈ 𝒫 (𝑅1𝑥))
9 elfvdm 6806 . . . . . . . . . 10 (𝐴 ∈ (𝑅1𝑥) → 𝑥 ∈ dom 𝑅1)
10 r1sucg 9527 . . . . . . . . . 10 (𝑥 ∈ dom 𝑅1 → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
119, 10syl 17 . . . . . . . . 9 (𝐴 ∈ (𝑅1𝑥) → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
128, 11eleqtrrd 2842 . . . . . . . 8 (𝐴 ∈ (𝑅1𝑥) → 𝐴 ∈ (𝑅1‘suc 𝑥))
1312a1i 11 . . . . . . 7 (𝑥 ∈ On → (𝐴 ∈ (𝑅1𝑥) → 𝐴 ∈ (𝑅1‘suc 𝑥)))
143, 13syl9 77 . . . . . 6 (𝐴𝑦 → (𝑥 ∈ On → ((𝑅1𝑥) = 𝑦𝐴 ∈ (𝑅1‘suc 𝑥))))
1514reximdvai 3200 . . . . 5 (𝐴𝑦 → (∃𝑥 ∈ On (𝑅1𝑥) = 𝑦 → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥)))
16 r1funlim 9524 . . . . . . 7 (Fun 𝑅1 ∧ Lim dom 𝑅1)
1716simpli 484 . . . . . 6 Fun 𝑅1
18 fvelima 6835 . . . . . 6 ((Fun 𝑅1𝑦 ∈ (𝑅1 “ On)) → ∃𝑥 ∈ On (𝑅1𝑥) = 𝑦)
1917, 18mpan 687 . . . . 5 (𝑦 ∈ (𝑅1 “ On) → ∃𝑥 ∈ On (𝑅1𝑥) = 𝑦)
2015, 19impel 506 . . . 4 ((𝐴𝑦𝑦 ∈ (𝑅1 “ On)) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
2120exlimiv 1933 . . 3 (∃𝑦(𝐴𝑦𝑦 ∈ (𝑅1 “ On)) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
221, 21sylbi 216 . 2 (𝐴 (𝑅1 “ On) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
23 elfvdm 6806 . . . . . 6 (𝐴 ∈ (𝑅1‘suc 𝑥) → suc 𝑥 ∈ dom 𝑅1)
24 fvelrn 6954 . . . . . 6 ((Fun 𝑅1 ∧ suc 𝑥 ∈ dom 𝑅1) → (𝑅1‘suc 𝑥) ∈ ran 𝑅1)
2517, 23, 24sylancr 587 . . . . 5 (𝐴 ∈ (𝑅1‘suc 𝑥) → (𝑅1‘suc 𝑥) ∈ ran 𝑅1)
26 df-ima 5602 . . . . . 6 (𝑅1 “ On) = ran (𝑅1 ↾ On)
27 funrel 6451 . . . . . . . . 9 (Fun 𝑅1 → Rel 𝑅1)
2817, 27ax-mp 5 . . . . . . . 8 Rel 𝑅1
2916simpri 486 . . . . . . . . 9 Lim dom 𝑅1
30 limord 6325 . . . . . . . . 9 (Lim dom 𝑅1 → Ord dom 𝑅1)
31 ordsson 7633 . . . . . . . . 9 (Ord dom 𝑅1 → dom 𝑅1 ⊆ On)
3229, 30, 31mp2b 10 . . . . . . . 8 dom 𝑅1 ⊆ On
33 relssres 5932 . . . . . . . 8 ((Rel 𝑅1 ∧ dom 𝑅1 ⊆ On) → (𝑅1 ↾ On) = 𝑅1)
3428, 32, 33mp2an 689 . . . . . . 7 (𝑅1 ↾ On) = 𝑅1
3534rneqi 5846 . . . . . 6 ran (𝑅1 ↾ On) = ran 𝑅1
3626, 35eqtri 2766 . . . . 5 (𝑅1 “ On) = ran 𝑅1
3725, 36eleqtrrdi 2850 . . . 4 (𝐴 ∈ (𝑅1‘suc 𝑥) → (𝑅1‘suc 𝑥) ∈ (𝑅1 “ On))
38 elunii 4844 . . . 4 ((𝐴 ∈ (𝑅1‘suc 𝑥) ∧ (𝑅1‘suc 𝑥) ∈ (𝑅1 “ On)) → 𝐴 (𝑅1 “ On))
3937, 38mpdan 684 . . 3 (𝐴 ∈ (𝑅1‘suc 𝑥) → 𝐴 (𝑅1 “ On))
4039rexlimivw 3211 . 2 (∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥) → 𝐴 (𝑅1 “ On))
4122, 40impbii 208 1 (𝐴 (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wrex 3065  wss 3887  𝒫 cpw 4533   cuni 4839  Tr wtr 5191  dom cdm 5589  ran crn 5590  cres 5591  cima 5592  Rel wrel 5594  Ord word 6265  Oncon0 6266  Lim wlim 6267  suc csuc 6268  Fun wfun 6427  cfv 6433  𝑅1cr1 9520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-r1 9522
This theorem is referenced by:  rankf  9552  r1elwf  9554  rankvalb  9555  rankidb  9558  rankwflem  9573  tcrank  9642  dfac12r  9902
  Copyright terms: Public domain W3C validator