MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankwflemb Structured version   Visualization version   GIF version

Theorem rankwflemb 9689
Description: Two ways of saying a set is well-founded. (Contributed by NM, 11-Oct-2003.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
rankwflemb (𝐴 (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem rankwflemb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eluni 4861 . . 3 (𝐴 (𝑅1 “ On) ↔ ∃𝑦(𝐴𝑦𝑦 ∈ (𝑅1 “ On)))
2 eleq2 2817 . . . . . . . 8 ((𝑅1𝑥) = 𝑦 → (𝐴 ∈ (𝑅1𝑥) ↔ 𝐴𝑦))
32biimprcd 250 . . . . . . 7 (𝐴𝑦 → ((𝑅1𝑥) = 𝑦𝐴 ∈ (𝑅1𝑥)))
4 r1tr 9672 . . . . . . . . . . 11 Tr (𝑅1𝑥)
5 trss 5209 . . . . . . . . . . 11 (Tr (𝑅1𝑥) → (𝐴 ∈ (𝑅1𝑥) → 𝐴 ⊆ (𝑅1𝑥)))
64, 5ax-mp 5 . . . . . . . . . 10 (𝐴 ∈ (𝑅1𝑥) → 𝐴 ⊆ (𝑅1𝑥))
7 elpwg 4554 . . . . . . . . . 10 (𝐴 ∈ (𝑅1𝑥) → (𝐴 ∈ 𝒫 (𝑅1𝑥) ↔ 𝐴 ⊆ (𝑅1𝑥)))
86, 7mpbird 257 . . . . . . . . 9 (𝐴 ∈ (𝑅1𝑥) → 𝐴 ∈ 𝒫 (𝑅1𝑥))
9 elfvdm 6857 . . . . . . . . . 10 (𝐴 ∈ (𝑅1𝑥) → 𝑥 ∈ dom 𝑅1)
10 r1sucg 9665 . . . . . . . . . 10 (𝑥 ∈ dom 𝑅1 → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
119, 10syl 17 . . . . . . . . 9 (𝐴 ∈ (𝑅1𝑥) → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
128, 11eleqtrrd 2831 . . . . . . . 8 (𝐴 ∈ (𝑅1𝑥) → 𝐴 ∈ (𝑅1‘suc 𝑥))
1312a1i 11 . . . . . . 7 (𝑥 ∈ On → (𝐴 ∈ (𝑅1𝑥) → 𝐴 ∈ (𝑅1‘suc 𝑥)))
143, 13syl9 77 . . . . . 6 (𝐴𝑦 → (𝑥 ∈ On → ((𝑅1𝑥) = 𝑦𝐴 ∈ (𝑅1‘suc 𝑥))))
1514reximdvai 3140 . . . . 5 (𝐴𝑦 → (∃𝑥 ∈ On (𝑅1𝑥) = 𝑦 → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥)))
16 r1funlim 9662 . . . . . . 7 (Fun 𝑅1 ∧ Lim dom 𝑅1)
1716simpli 483 . . . . . 6 Fun 𝑅1
18 fvelima 6888 . . . . . 6 ((Fun 𝑅1𝑦 ∈ (𝑅1 “ On)) → ∃𝑥 ∈ On (𝑅1𝑥) = 𝑦)
1917, 18mpan 690 . . . . 5 (𝑦 ∈ (𝑅1 “ On) → ∃𝑥 ∈ On (𝑅1𝑥) = 𝑦)
2015, 19impel 505 . . . 4 ((𝐴𝑦𝑦 ∈ (𝑅1 “ On)) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
2120exlimiv 1930 . . 3 (∃𝑦(𝐴𝑦𝑦 ∈ (𝑅1 “ On)) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
221, 21sylbi 217 . 2 (𝐴 (𝑅1 “ On) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
23 elfvdm 6857 . . . . . 6 (𝐴 ∈ (𝑅1‘suc 𝑥) → suc 𝑥 ∈ dom 𝑅1)
24 fvelrn 7010 . . . . . 6 ((Fun 𝑅1 ∧ suc 𝑥 ∈ dom 𝑅1) → (𝑅1‘suc 𝑥) ∈ ran 𝑅1)
2517, 23, 24sylancr 587 . . . . 5 (𝐴 ∈ (𝑅1‘suc 𝑥) → (𝑅1‘suc 𝑥) ∈ ran 𝑅1)
26 df-ima 5632 . . . . . 6 (𝑅1 “ On) = ran (𝑅1 ↾ On)
27 funrel 6499 . . . . . . . . 9 (Fun 𝑅1 → Rel 𝑅1)
2817, 27ax-mp 5 . . . . . . . 8 Rel 𝑅1
2916simpri 485 . . . . . . . . 9 Lim dom 𝑅1
30 limord 6368 . . . . . . . . 9 (Lim dom 𝑅1 → Ord dom 𝑅1)
31 ordsson 7719 . . . . . . . . 9 (Ord dom 𝑅1 → dom 𝑅1 ⊆ On)
3229, 30, 31mp2b 10 . . . . . . . 8 dom 𝑅1 ⊆ On
33 relssres 5973 . . . . . . . 8 ((Rel 𝑅1 ∧ dom 𝑅1 ⊆ On) → (𝑅1 ↾ On) = 𝑅1)
3428, 32, 33mp2an 692 . . . . . . 7 (𝑅1 ↾ On) = 𝑅1
3534rneqi 5879 . . . . . 6 ran (𝑅1 ↾ On) = ran 𝑅1
3626, 35eqtri 2752 . . . . 5 (𝑅1 “ On) = ran 𝑅1
3725, 36eleqtrrdi 2839 . . . 4 (𝐴 ∈ (𝑅1‘suc 𝑥) → (𝑅1‘suc 𝑥) ∈ (𝑅1 “ On))
38 elunii 4863 . . . 4 ((𝐴 ∈ (𝑅1‘suc 𝑥) ∧ (𝑅1‘suc 𝑥) ∈ (𝑅1 “ On)) → 𝐴 (𝑅1 “ On))
3937, 38mpdan 687 . . 3 (𝐴 ∈ (𝑅1‘suc 𝑥) → 𝐴 (𝑅1 “ On))
4039rexlimivw 3126 . 2 (∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥) → 𝐴 (𝑅1 “ On))
4122, 40impbii 209 1 (𝐴 (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3053  wss 3903  𝒫 cpw 4551   cuni 4858  Tr wtr 5199  dom cdm 5619  ran crn 5620  cres 5621  cima 5622  Rel wrel 5624  Ord word 6306  Oncon0 6307  Lim wlim 6308  suc csuc 6309  Fun wfun 6476  cfv 6482  𝑅1cr1 9658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-r1 9660
This theorem is referenced by:  rankf  9690  r1elwf  9692  rankvalb  9693  rankidb  9696  rankwflem  9711  tcrank  9780  dfac12r  10041
  Copyright terms: Public domain W3C validator