Step | Hyp | Ref
| Expression |
1 | | eluni 4839 |
. . 3
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∃𝑦(𝐴 ∈ 𝑦 ∧ 𝑦 ∈ (𝑅1 “
On))) |
2 | | eleq2 2827 |
. . . . . . . 8
⊢
((𝑅1‘𝑥) = 𝑦 → (𝐴 ∈ (𝑅1‘𝑥) ↔ 𝐴 ∈ 𝑦)) |
3 | 2 | biimprcd 249 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑦 → ((𝑅1‘𝑥) = 𝑦 → 𝐴 ∈ (𝑅1‘𝑥))) |
4 | | r1tr 9465 |
. . . . . . . . . . 11
⊢ Tr
(𝑅1‘𝑥) |
5 | | trss 5196 |
. . . . . . . . . . 11
⊢ (Tr
(𝑅1‘𝑥) → (𝐴 ∈ (𝑅1‘𝑥) → 𝐴 ⊆ (𝑅1‘𝑥))) |
6 | 4, 5 | ax-mp 5 |
. . . . . . . . . 10
⊢ (𝐴 ∈
(𝑅1‘𝑥) → 𝐴 ⊆ (𝑅1‘𝑥)) |
7 | | elpwg 4533 |
. . . . . . . . . 10
⊢ (𝐴 ∈
(𝑅1‘𝑥) → (𝐴 ∈ 𝒫
(𝑅1‘𝑥) ↔ 𝐴 ⊆ (𝑅1‘𝑥))) |
8 | 6, 7 | mpbird 256 |
. . . . . . . . 9
⊢ (𝐴 ∈
(𝑅1‘𝑥) → 𝐴 ∈ 𝒫
(𝑅1‘𝑥)) |
9 | | elfvdm 6788 |
. . . . . . . . . 10
⊢ (𝐴 ∈
(𝑅1‘𝑥) → 𝑥 ∈ dom
𝑅1) |
10 | | r1sucg 9458 |
. . . . . . . . . 10
⊢ (𝑥 ∈ dom
𝑅1 → (𝑅1‘suc 𝑥) = 𝒫
(𝑅1‘𝑥)) |
11 | 9, 10 | syl 17 |
. . . . . . . . 9
⊢ (𝐴 ∈
(𝑅1‘𝑥) → (𝑅1‘suc
𝑥) = 𝒫
(𝑅1‘𝑥)) |
12 | 8, 11 | eleqtrrd 2842 |
. . . . . . . 8
⊢ (𝐴 ∈
(𝑅1‘𝑥) → 𝐴 ∈ (𝑅1‘suc
𝑥)) |
13 | 12 | a1i 11 |
. . . . . . 7
⊢ (𝑥 ∈ On → (𝐴 ∈
(𝑅1‘𝑥) → 𝐴 ∈ (𝑅1‘suc
𝑥))) |
14 | 3, 13 | syl9 77 |
. . . . . 6
⊢ (𝐴 ∈ 𝑦 → (𝑥 ∈ On →
((𝑅1‘𝑥) = 𝑦 → 𝐴 ∈ (𝑅1‘suc
𝑥)))) |
15 | 14 | reximdvai 3199 |
. . . . 5
⊢ (𝐴 ∈ 𝑦 → (∃𝑥 ∈ On (𝑅1‘𝑥) = 𝑦 → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc
𝑥))) |
16 | | r1funlim 9455 |
. . . . . . 7
⊢ (Fun
𝑅1 ∧ Lim dom 𝑅1) |
17 | 16 | simpli 483 |
. . . . . 6
⊢ Fun
𝑅1 |
18 | | fvelima 6817 |
. . . . . 6
⊢ ((Fun
𝑅1 ∧ 𝑦 ∈ (𝑅1 “ On))
→ ∃𝑥 ∈ On
(𝑅1‘𝑥) = 𝑦) |
19 | 17, 18 | mpan 686 |
. . . . 5
⊢ (𝑦 ∈ (𝑅1
“ On) → ∃𝑥
∈ On (𝑅1‘𝑥) = 𝑦) |
20 | 15, 19 | impel 505 |
. . . 4
⊢ ((𝐴 ∈ 𝑦 ∧ 𝑦 ∈ (𝑅1 “ On))
→ ∃𝑥 ∈ On
𝐴 ∈
(𝑅1‘suc 𝑥)) |
21 | 20 | exlimiv 1934 |
. . 3
⊢
(∃𝑦(𝐴 ∈ 𝑦 ∧ 𝑦 ∈ (𝑅1 “ On))
→ ∃𝑥 ∈ On
𝐴 ∈
(𝑅1‘suc 𝑥)) |
22 | 1, 21 | sylbi 216 |
. 2
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc
𝑥)) |
23 | | elfvdm 6788 |
. . . . . 6
⊢ (𝐴 ∈
(𝑅1‘suc 𝑥) → suc 𝑥 ∈ dom
𝑅1) |
24 | | fvelrn 6936 |
. . . . . 6
⊢ ((Fun
𝑅1 ∧ suc 𝑥 ∈ dom 𝑅1) →
(𝑅1‘suc 𝑥) ∈ ran
𝑅1) |
25 | 17, 23, 24 | sylancr 586 |
. . . . 5
⊢ (𝐴 ∈
(𝑅1‘suc 𝑥) → (𝑅1‘suc
𝑥) ∈ ran
𝑅1) |
26 | | df-ima 5593 |
. . . . . 6
⊢
(𝑅1 “ On) = ran (𝑅1 ↾
On) |
27 | | funrel 6435 |
. . . . . . . . 9
⊢ (Fun
𝑅1 → Rel 𝑅1) |
28 | 17, 27 | ax-mp 5 |
. . . . . . . 8
⊢ Rel
𝑅1 |
29 | 16 | simpri 485 |
. . . . . . . . 9
⊢ Lim dom
𝑅1 |
30 | | limord 6310 |
. . . . . . . . 9
⊢ (Lim dom
𝑅1 → Ord dom 𝑅1) |
31 | | ordsson 7610 |
. . . . . . . . 9
⊢ (Ord dom
𝑅1 → dom 𝑅1 ⊆
On) |
32 | 29, 30, 31 | mp2b 10 |
. . . . . . . 8
⊢ dom
𝑅1 ⊆ On |
33 | | relssres 5921 |
. . . . . . . 8
⊢ ((Rel
𝑅1 ∧ dom 𝑅1 ⊆ On) →
(𝑅1 ↾ On) = 𝑅1) |
34 | 28, 32, 33 | mp2an 688 |
. . . . . . 7
⊢
(𝑅1 ↾ On) =
𝑅1 |
35 | 34 | rneqi 5835 |
. . . . . 6
⊢ ran
(𝑅1 ↾ On) = ran 𝑅1 |
36 | 26, 35 | eqtri 2766 |
. . . . 5
⊢
(𝑅1 “ On) = ran
𝑅1 |
37 | 25, 36 | eleqtrrdi 2850 |
. . . 4
⊢ (𝐴 ∈
(𝑅1‘suc 𝑥) → (𝑅1‘suc
𝑥) ∈
(𝑅1 “ On)) |
38 | | elunii 4841 |
. . . 4
⊢ ((𝐴 ∈
(𝑅1‘suc 𝑥) ∧ (𝑅1‘suc
𝑥) ∈
(𝑅1 “ On)) → 𝐴 ∈ ∪
(𝑅1 “ On)) |
39 | 37, 38 | mpdan 683 |
. . 3
⊢ (𝐴 ∈
(𝑅1‘suc 𝑥) → 𝐴 ∈ ∪
(𝑅1 “ On)) |
40 | 39 | rexlimivw 3210 |
. 2
⊢
(∃𝑥 ∈ On
𝐴 ∈
(𝑅1‘suc 𝑥) → 𝐴 ∈ ∪
(𝑅1 “ On)) |
41 | 22, 40 | impbii 208 |
1
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc
𝑥)) |