MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankwflemb Structured version   Visualization version   GIF version

Theorem rankwflemb 9862
Description: Two ways of saying a set is well-founded. (Contributed by NM, 11-Oct-2003.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
rankwflemb (𝐴 (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem rankwflemb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eluni 4934 . . 3 (𝐴 (𝑅1 “ On) ↔ ∃𝑦(𝐴𝑦𝑦 ∈ (𝑅1 “ On)))
2 eleq2 2833 . . . . . . . 8 ((𝑅1𝑥) = 𝑦 → (𝐴 ∈ (𝑅1𝑥) ↔ 𝐴𝑦))
32biimprcd 250 . . . . . . 7 (𝐴𝑦 → ((𝑅1𝑥) = 𝑦𝐴 ∈ (𝑅1𝑥)))
4 r1tr 9845 . . . . . . . . . . 11 Tr (𝑅1𝑥)
5 trss 5294 . . . . . . . . . . 11 (Tr (𝑅1𝑥) → (𝐴 ∈ (𝑅1𝑥) → 𝐴 ⊆ (𝑅1𝑥)))
64, 5ax-mp 5 . . . . . . . . . 10 (𝐴 ∈ (𝑅1𝑥) → 𝐴 ⊆ (𝑅1𝑥))
7 elpwg 4625 . . . . . . . . . 10 (𝐴 ∈ (𝑅1𝑥) → (𝐴 ∈ 𝒫 (𝑅1𝑥) ↔ 𝐴 ⊆ (𝑅1𝑥)))
86, 7mpbird 257 . . . . . . . . 9 (𝐴 ∈ (𝑅1𝑥) → 𝐴 ∈ 𝒫 (𝑅1𝑥))
9 elfvdm 6957 . . . . . . . . . 10 (𝐴 ∈ (𝑅1𝑥) → 𝑥 ∈ dom 𝑅1)
10 r1sucg 9838 . . . . . . . . . 10 (𝑥 ∈ dom 𝑅1 → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
119, 10syl 17 . . . . . . . . 9 (𝐴 ∈ (𝑅1𝑥) → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
128, 11eleqtrrd 2847 . . . . . . . 8 (𝐴 ∈ (𝑅1𝑥) → 𝐴 ∈ (𝑅1‘suc 𝑥))
1312a1i 11 . . . . . . 7 (𝑥 ∈ On → (𝐴 ∈ (𝑅1𝑥) → 𝐴 ∈ (𝑅1‘suc 𝑥)))
143, 13syl9 77 . . . . . 6 (𝐴𝑦 → (𝑥 ∈ On → ((𝑅1𝑥) = 𝑦𝐴 ∈ (𝑅1‘suc 𝑥))))
1514reximdvai 3171 . . . . 5 (𝐴𝑦 → (∃𝑥 ∈ On (𝑅1𝑥) = 𝑦 → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥)))
16 r1funlim 9835 . . . . . . 7 (Fun 𝑅1 ∧ Lim dom 𝑅1)
1716simpli 483 . . . . . 6 Fun 𝑅1
18 fvelima 6987 . . . . . 6 ((Fun 𝑅1𝑦 ∈ (𝑅1 “ On)) → ∃𝑥 ∈ On (𝑅1𝑥) = 𝑦)
1917, 18mpan 689 . . . . 5 (𝑦 ∈ (𝑅1 “ On) → ∃𝑥 ∈ On (𝑅1𝑥) = 𝑦)
2015, 19impel 505 . . . 4 ((𝐴𝑦𝑦 ∈ (𝑅1 “ On)) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
2120exlimiv 1929 . . 3 (∃𝑦(𝐴𝑦𝑦 ∈ (𝑅1 “ On)) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
221, 21sylbi 217 . 2 (𝐴 (𝑅1 “ On) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
23 elfvdm 6957 . . . . . 6 (𝐴 ∈ (𝑅1‘suc 𝑥) → suc 𝑥 ∈ dom 𝑅1)
24 fvelrn 7110 . . . . . 6 ((Fun 𝑅1 ∧ suc 𝑥 ∈ dom 𝑅1) → (𝑅1‘suc 𝑥) ∈ ran 𝑅1)
2517, 23, 24sylancr 586 . . . . 5 (𝐴 ∈ (𝑅1‘suc 𝑥) → (𝑅1‘suc 𝑥) ∈ ran 𝑅1)
26 df-ima 5713 . . . . . 6 (𝑅1 “ On) = ran (𝑅1 ↾ On)
27 funrel 6595 . . . . . . . . 9 (Fun 𝑅1 → Rel 𝑅1)
2817, 27ax-mp 5 . . . . . . . 8 Rel 𝑅1
2916simpri 485 . . . . . . . . 9 Lim dom 𝑅1
30 limord 6455 . . . . . . . . 9 (Lim dom 𝑅1 → Ord dom 𝑅1)
31 ordsson 7818 . . . . . . . . 9 (Ord dom 𝑅1 → dom 𝑅1 ⊆ On)
3229, 30, 31mp2b 10 . . . . . . . 8 dom 𝑅1 ⊆ On
33 relssres 6051 . . . . . . . 8 ((Rel 𝑅1 ∧ dom 𝑅1 ⊆ On) → (𝑅1 ↾ On) = 𝑅1)
3428, 32, 33mp2an 691 . . . . . . 7 (𝑅1 ↾ On) = 𝑅1
3534rneqi 5962 . . . . . 6 ran (𝑅1 ↾ On) = ran 𝑅1
3626, 35eqtri 2768 . . . . 5 (𝑅1 “ On) = ran 𝑅1
3725, 36eleqtrrdi 2855 . . . 4 (𝐴 ∈ (𝑅1‘suc 𝑥) → (𝑅1‘suc 𝑥) ∈ (𝑅1 “ On))
38 elunii 4936 . . . 4 ((𝐴 ∈ (𝑅1‘suc 𝑥) ∧ (𝑅1‘suc 𝑥) ∈ (𝑅1 “ On)) → 𝐴 (𝑅1 “ On))
3937, 38mpdan 686 . . 3 (𝐴 ∈ (𝑅1‘suc 𝑥) → 𝐴 (𝑅1 “ On))
4039rexlimivw 3157 . 2 (∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥) → 𝐴 (𝑅1 “ On))
4122, 40impbii 209 1 (𝐴 (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wrex 3076  wss 3976  𝒫 cpw 4622   cuni 4931  Tr wtr 5283  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  Rel wrel 5705  Ord word 6394  Oncon0 6395  Lim wlim 6396  suc csuc 6397  Fun wfun 6567  cfv 6573  𝑅1cr1 9831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-r1 9833
This theorem is referenced by:  rankf  9863  r1elwf  9865  rankvalb  9866  rankidb  9869  rankwflem  9884  tcrank  9953  dfac12r  10216
  Copyright terms: Public domain W3C validator