MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankwflemb Structured version   Visualization version   GIF version

Theorem rankwflemb 9737
Description: Two ways of saying a set is well-founded. (Contributed by NM, 11-Oct-2003.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
rankwflemb (𝐴 (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem rankwflemb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eluni 4872 . . 3 (𝐴 (𝑅1 “ On) ↔ ∃𝑦(𝐴𝑦𝑦 ∈ (𝑅1 “ On)))
2 eleq2 2823 . . . . . . . 8 ((𝑅1𝑥) = 𝑦 → (𝐴 ∈ (𝑅1𝑥) ↔ 𝐴𝑦))
32biimprcd 250 . . . . . . 7 (𝐴𝑦 → ((𝑅1𝑥) = 𝑦𝐴 ∈ (𝑅1𝑥)))
4 r1tr 9720 . . . . . . . . . . 11 Tr (𝑅1𝑥)
5 trss 5237 . . . . . . . . . . 11 (Tr (𝑅1𝑥) → (𝐴 ∈ (𝑅1𝑥) → 𝐴 ⊆ (𝑅1𝑥)))
64, 5ax-mp 5 . . . . . . . . . 10 (𝐴 ∈ (𝑅1𝑥) → 𝐴 ⊆ (𝑅1𝑥))
7 elpwg 4567 . . . . . . . . . 10 (𝐴 ∈ (𝑅1𝑥) → (𝐴 ∈ 𝒫 (𝑅1𝑥) ↔ 𝐴 ⊆ (𝑅1𝑥)))
86, 7mpbird 257 . . . . . . . . 9 (𝐴 ∈ (𝑅1𝑥) → 𝐴 ∈ 𝒫 (𝑅1𝑥))
9 elfvdm 6883 . . . . . . . . . 10 (𝐴 ∈ (𝑅1𝑥) → 𝑥 ∈ dom 𝑅1)
10 r1sucg 9713 . . . . . . . . . 10 (𝑥 ∈ dom 𝑅1 → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
119, 10syl 17 . . . . . . . . 9 (𝐴 ∈ (𝑅1𝑥) → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
128, 11eleqtrrd 2837 . . . . . . . 8 (𝐴 ∈ (𝑅1𝑥) → 𝐴 ∈ (𝑅1‘suc 𝑥))
1312a1i 11 . . . . . . 7 (𝑥 ∈ On → (𝐴 ∈ (𝑅1𝑥) → 𝐴 ∈ (𝑅1‘suc 𝑥)))
143, 13syl9 77 . . . . . 6 (𝐴𝑦 → (𝑥 ∈ On → ((𝑅1𝑥) = 𝑦𝐴 ∈ (𝑅1‘suc 𝑥))))
1514reximdvai 3159 . . . . 5 (𝐴𝑦 → (∃𝑥 ∈ On (𝑅1𝑥) = 𝑦 → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥)))
16 r1funlim 9710 . . . . . . 7 (Fun 𝑅1 ∧ Lim dom 𝑅1)
1716simpli 485 . . . . . 6 Fun 𝑅1
18 fvelima 6912 . . . . . 6 ((Fun 𝑅1𝑦 ∈ (𝑅1 “ On)) → ∃𝑥 ∈ On (𝑅1𝑥) = 𝑦)
1917, 18mpan 689 . . . . 5 (𝑦 ∈ (𝑅1 “ On) → ∃𝑥 ∈ On (𝑅1𝑥) = 𝑦)
2015, 19impel 507 . . . 4 ((𝐴𝑦𝑦 ∈ (𝑅1 “ On)) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
2120exlimiv 1934 . . 3 (∃𝑦(𝐴𝑦𝑦 ∈ (𝑅1 “ On)) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
221, 21sylbi 216 . 2 (𝐴 (𝑅1 “ On) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
23 elfvdm 6883 . . . . . 6 (𝐴 ∈ (𝑅1‘suc 𝑥) → suc 𝑥 ∈ dom 𝑅1)
24 fvelrn 7031 . . . . . 6 ((Fun 𝑅1 ∧ suc 𝑥 ∈ dom 𝑅1) → (𝑅1‘suc 𝑥) ∈ ran 𝑅1)
2517, 23, 24sylancr 588 . . . . 5 (𝐴 ∈ (𝑅1‘suc 𝑥) → (𝑅1‘suc 𝑥) ∈ ran 𝑅1)
26 df-ima 5650 . . . . . 6 (𝑅1 “ On) = ran (𝑅1 ↾ On)
27 funrel 6522 . . . . . . . . 9 (Fun 𝑅1 → Rel 𝑅1)
2817, 27ax-mp 5 . . . . . . . 8 Rel 𝑅1
2916simpri 487 . . . . . . . . 9 Lim dom 𝑅1
30 limord 6381 . . . . . . . . 9 (Lim dom 𝑅1 → Ord dom 𝑅1)
31 ordsson 7721 . . . . . . . . 9 (Ord dom 𝑅1 → dom 𝑅1 ⊆ On)
3229, 30, 31mp2b 10 . . . . . . . 8 dom 𝑅1 ⊆ On
33 relssres 5982 . . . . . . . 8 ((Rel 𝑅1 ∧ dom 𝑅1 ⊆ On) → (𝑅1 ↾ On) = 𝑅1)
3428, 32, 33mp2an 691 . . . . . . 7 (𝑅1 ↾ On) = 𝑅1
3534rneqi 5896 . . . . . 6 ran (𝑅1 ↾ On) = ran 𝑅1
3626, 35eqtri 2761 . . . . 5 (𝑅1 “ On) = ran 𝑅1
3725, 36eleqtrrdi 2845 . . . 4 (𝐴 ∈ (𝑅1‘suc 𝑥) → (𝑅1‘suc 𝑥) ∈ (𝑅1 “ On))
38 elunii 4874 . . . 4 ((𝐴 ∈ (𝑅1‘suc 𝑥) ∧ (𝑅1‘suc 𝑥) ∈ (𝑅1 “ On)) → 𝐴 (𝑅1 “ On))
3937, 38mpdan 686 . . 3 (𝐴 ∈ (𝑅1‘suc 𝑥) → 𝐴 (𝑅1 “ On))
4039rexlimivw 3145 . 2 (∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥) → 𝐴 (𝑅1 “ On))
4122, 40impbii 208 1 (𝐴 (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wex 1782  wcel 2107  wrex 3070  wss 3914  𝒫 cpw 4564   cuni 4869  Tr wtr 5226  dom cdm 5637  ran crn 5638  cres 5639  cima 5640  Rel wrel 5642  Ord word 6320  Oncon0 6321  Lim wlim 6322  suc csuc 6323  Fun wfun 6494  cfv 6500  𝑅1cr1 9706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-om 7807  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-r1 9708
This theorem is referenced by:  rankf  9738  r1elwf  9740  rankvalb  9741  rankidb  9744  rankwflem  9759  tcrank  9828  dfac12r  10090
  Copyright terms: Public domain W3C validator