MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oneqmin Structured version   Visualization version   GIF version

Theorem oneqmin 7627
Description: A way to show that an ordinal number equals the minimum of a nonempty collection of ordinal numbers: it must be in the collection, and it must not be larger than any member of the collection. (Contributed by NM, 14-Nov-2003.)
Assertion
Ref Expression
oneqmin ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = 𝐵 ↔ (𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝑥𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem oneqmin
StepHypRef Expression
1 onint 7617 . . . 4 ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → 𝐵𝐵)
2 eleq1 2826 . . . 4 (𝐴 = 𝐵 → (𝐴𝐵 𝐵𝐵))
31, 2syl5ibrcom 246 . . 3 ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = 𝐵𝐴𝐵))
4 eleq2 2827 . . . . . . 7 (𝐴 = 𝐵 → (𝑥𝐴𝑥 𝐵))
54biimpd 228 . . . . . 6 (𝐴 = 𝐵 → (𝑥𝐴𝑥 𝐵))
6 onnmin 7625 . . . . . . . 8 ((𝐵 ⊆ On ∧ 𝑥𝐵) → ¬ 𝑥 𝐵)
76ex 412 . . . . . . 7 (𝐵 ⊆ On → (𝑥𝐵 → ¬ 𝑥 𝐵))
87con2d 134 . . . . . 6 (𝐵 ⊆ On → (𝑥 𝐵 → ¬ 𝑥𝐵))
95, 8syl9r 78 . . . . 5 (𝐵 ⊆ On → (𝐴 = 𝐵 → (𝑥𝐴 → ¬ 𝑥𝐵)))
109ralrimdv 3111 . . . 4 (𝐵 ⊆ On → (𝐴 = 𝐵 → ∀𝑥𝐴 ¬ 𝑥𝐵))
1110adantr 480 . . 3 ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = 𝐵 → ∀𝑥𝐴 ¬ 𝑥𝐵))
123, 11jcad 512 . 2 ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = 𝐵 → (𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝑥𝐵)))
13 oneqmini 6302 . . 3 (𝐵 ⊆ On → ((𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝑥𝐵) → 𝐴 = 𝐵))
1413adantr 480 . 2 ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → ((𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝑥𝐵) → 𝐴 = 𝐵))
1512, 14impbid 211 1 ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = 𝐵 ↔ (𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝑥𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wss 3883  c0 4253   cint 4876  Oncon0 6251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator