Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oneqmin | Structured version Visualization version GIF version |
Description: A way to show that an ordinal number equals the minimum of a nonempty collection of ordinal numbers: it must be in the collection, and it must not be larger than any member of the collection. (Contributed by NM, 14-Nov-2003.) |
Ref | Expression |
---|---|
oneqmin | ⊢ ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∩ 𝐵 ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onint 7617 | . . . 4 ⊢ ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → ∩ 𝐵 ∈ 𝐵) | |
2 | eleq1 2826 | . . . 4 ⊢ (𝐴 = ∩ 𝐵 → (𝐴 ∈ 𝐵 ↔ ∩ 𝐵 ∈ 𝐵)) | |
3 | 1, 2 | syl5ibrcom 246 | . . 3 ⊢ ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∩ 𝐵 → 𝐴 ∈ 𝐵)) |
4 | eleq2 2827 | . . . . . . 7 ⊢ (𝐴 = ∩ 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∩ 𝐵)) | |
5 | 4 | biimpd 228 | . . . . . 6 ⊢ (𝐴 = ∩ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ ∩ 𝐵)) |
6 | onnmin 7625 | . . . . . . . 8 ⊢ ((𝐵 ⊆ On ∧ 𝑥 ∈ 𝐵) → ¬ 𝑥 ∈ ∩ 𝐵) | |
7 | 6 | ex 412 | . . . . . . 7 ⊢ (𝐵 ⊆ On → (𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ ∩ 𝐵)) |
8 | 7 | con2d 134 | . . . . . 6 ⊢ (𝐵 ⊆ On → (𝑥 ∈ ∩ 𝐵 → ¬ 𝑥 ∈ 𝐵)) |
9 | 5, 8 | syl9r 78 | . . . . 5 ⊢ (𝐵 ⊆ On → (𝐴 = ∩ 𝐵 → (𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵))) |
10 | 9 | ralrimdv 3111 | . . . 4 ⊢ (𝐵 ⊆ On → (𝐴 = ∩ 𝐵 → ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵)) |
11 | 10 | adantr 480 | . . 3 ⊢ ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∩ 𝐵 → ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵)) |
12 | 3, 11 | jcad 512 | . 2 ⊢ ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∩ 𝐵 → (𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵))) |
13 | oneqmini 6302 | . . 3 ⊢ (𝐵 ⊆ On → ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) → 𝐴 = ∩ 𝐵)) | |
14 | 13 | adantr 480 | . 2 ⊢ ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) → 𝐴 = ∩ 𝐵)) |
15 | 12, 14 | impbid 211 | 1 ⊢ ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∩ 𝐵 ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ⊆ wss 3883 ∅c0 4253 ∩ cint 4876 Oncon0 6251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |