![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oneqmin | Structured version Visualization version GIF version |
Description: A way to show that an ordinal number equals the minimum of a nonempty collection of ordinal numbers: it must be in the collection, and it must not be larger than any member of the collection. (Contributed by NM, 14-Nov-2003.) |
Ref | Expression |
---|---|
oneqmin | ⊢ ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∩ 𝐵 ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onint 7810 | . . . 4 ⊢ ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → ∩ 𝐵 ∈ 𝐵) | |
2 | eleq1 2827 | . . . 4 ⊢ (𝐴 = ∩ 𝐵 → (𝐴 ∈ 𝐵 ↔ ∩ 𝐵 ∈ 𝐵)) | |
3 | 1, 2 | syl5ibrcom 247 | . . 3 ⊢ ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∩ 𝐵 → 𝐴 ∈ 𝐵)) |
4 | eleq2 2828 | . . . . . . 7 ⊢ (𝐴 = ∩ 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∩ 𝐵)) | |
5 | 4 | biimpd 229 | . . . . . 6 ⊢ (𝐴 = ∩ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ ∩ 𝐵)) |
6 | onnmin 7818 | . . . . . . . 8 ⊢ ((𝐵 ⊆ On ∧ 𝑥 ∈ 𝐵) → ¬ 𝑥 ∈ ∩ 𝐵) | |
7 | 6 | ex 412 | . . . . . . 7 ⊢ (𝐵 ⊆ On → (𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ ∩ 𝐵)) |
8 | 7 | con2d 134 | . . . . . 6 ⊢ (𝐵 ⊆ On → (𝑥 ∈ ∩ 𝐵 → ¬ 𝑥 ∈ 𝐵)) |
9 | 5, 8 | syl9r 78 | . . . . 5 ⊢ (𝐵 ⊆ On → (𝐴 = ∩ 𝐵 → (𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵))) |
10 | 9 | ralrimdv 3150 | . . . 4 ⊢ (𝐵 ⊆ On → (𝐴 = ∩ 𝐵 → ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵)) |
11 | 10 | adantr 480 | . . 3 ⊢ ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∩ 𝐵 → ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵)) |
12 | 3, 11 | jcad 512 | . 2 ⊢ ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∩ 𝐵 → (𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵))) |
13 | oneqmini 6438 | . . 3 ⊢ (𝐵 ⊆ On → ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) → 𝐴 = ∩ 𝐵)) | |
14 | 13 | adantr 480 | . 2 ⊢ ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) → 𝐴 = ∩ 𝐵)) |
15 | 12, 14 | impbid 212 | 1 ⊢ ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∩ 𝐵 ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ⊆ wss 3963 ∅c0 4339 ∩ cint 4951 Oncon0 6386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-11 2155 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 df-on 6390 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |