MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oneqmin Structured version   Visualization version   GIF version

Theorem oneqmin 7836
Description: A way to show that an ordinal number equals the minimum of a nonempty collection of ordinal numbers: it must be in the collection, and it must not be larger than any member of the collection. (Contributed by NM, 14-Nov-2003.)
Assertion
Ref Expression
oneqmin ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = 𝐵 ↔ (𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝑥𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem oneqmin
StepHypRef Expression
1 onint 7826 . . . 4 ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → 𝐵𝐵)
2 eleq1 2832 . . . 4 (𝐴 = 𝐵 → (𝐴𝐵 𝐵𝐵))
31, 2syl5ibrcom 247 . . 3 ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = 𝐵𝐴𝐵))
4 eleq2 2833 . . . . . . 7 (𝐴 = 𝐵 → (𝑥𝐴𝑥 𝐵))
54biimpd 229 . . . . . 6 (𝐴 = 𝐵 → (𝑥𝐴𝑥 𝐵))
6 onnmin 7834 . . . . . . . 8 ((𝐵 ⊆ On ∧ 𝑥𝐵) → ¬ 𝑥 𝐵)
76ex 412 . . . . . . 7 (𝐵 ⊆ On → (𝑥𝐵 → ¬ 𝑥 𝐵))
87con2d 134 . . . . . 6 (𝐵 ⊆ On → (𝑥 𝐵 → ¬ 𝑥𝐵))
95, 8syl9r 78 . . . . 5 (𝐵 ⊆ On → (𝐴 = 𝐵 → (𝑥𝐴 → ¬ 𝑥𝐵)))
109ralrimdv 3158 . . . 4 (𝐵 ⊆ On → (𝐴 = 𝐵 → ∀𝑥𝐴 ¬ 𝑥𝐵))
1110adantr 480 . . 3 ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = 𝐵 → ∀𝑥𝐴 ¬ 𝑥𝐵))
123, 11jcad 512 . 2 ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = 𝐵 → (𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝑥𝐵)))
13 oneqmini 6447 . . 3 (𝐵 ⊆ On → ((𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝑥𝐵) → 𝐴 = 𝐵))
1413adantr 480 . 2 ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → ((𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝑥𝐵) → 𝐴 = 𝐵))
1512, 14impbid 212 1 ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = 𝐵 ↔ (𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝑥𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wss 3976  c0 4352   cint 4970  Oncon0 6395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator