MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oneqmin Structured version   Visualization version   GIF version

Theorem oneqmin 7336
Description: A way to show that an ordinal number equals the minimum of a nonempty collection of ordinal numbers: it must be in the collection, and it must not be larger than any member of the collection. (Contributed by NM, 14-Nov-2003.)
Assertion
Ref Expression
oneqmin ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = 𝐵 ↔ (𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝑥𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem oneqmin
StepHypRef Expression
1 onint 7326 . . . 4 ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → 𝐵𝐵)
2 eleq1 2853 . . . 4 (𝐴 = 𝐵 → (𝐴𝐵 𝐵𝐵))
31, 2syl5ibrcom 239 . . 3 ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = 𝐵𝐴𝐵))
4 eleq2 2854 . . . . . . 7 (𝐴 = 𝐵 → (𝑥𝐴𝑥 𝐵))
54biimpd 221 . . . . . 6 (𝐴 = 𝐵 → (𝑥𝐴𝑥 𝐵))
6 onnmin 7334 . . . . . . . 8 ((𝐵 ⊆ On ∧ 𝑥𝐵) → ¬ 𝑥 𝐵)
76ex 405 . . . . . . 7 (𝐵 ⊆ On → (𝑥𝐵 → ¬ 𝑥 𝐵))
87con2d 132 . . . . . 6 (𝐵 ⊆ On → (𝑥 𝐵 → ¬ 𝑥𝐵))
95, 8syl9r 78 . . . . 5 (𝐵 ⊆ On → (𝐴 = 𝐵 → (𝑥𝐴 → ¬ 𝑥𝐵)))
109ralrimdv 3138 . . . 4 (𝐵 ⊆ On → (𝐴 = 𝐵 → ∀𝑥𝐴 ¬ 𝑥𝐵))
1110adantr 473 . . 3 ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = 𝐵 → ∀𝑥𝐴 ¬ 𝑥𝐵))
123, 11jcad 505 . 2 ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = 𝐵 → (𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝑥𝐵)))
13 oneqmini 6080 . . 3 (𝐵 ⊆ On → ((𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝑥𝐵) → 𝐴 = 𝐵))
1413adantr 473 . 2 ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → ((𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝑥𝐵) → 𝐴 = 𝐵))
1512, 14impbid 204 1 ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = 𝐵 ↔ (𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝑥𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  wne 2967  wral 3088  wss 3829  c0 4178   cint 4749  Oncon0 6029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-sbc 3682  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-br 4930  df-opab 4992  df-tr 5031  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-ord 6032  df-on 6033
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator