|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > oneqmin | Structured version Visualization version GIF version | ||
| Description: A way to show that an ordinal number equals the minimum of a nonempty collection of ordinal numbers: it must be in the collection, and it must not be larger than any member of the collection. (Contributed by NM, 14-Nov-2003.) | 
| Ref | Expression | 
|---|---|
| oneqmin | ⊢ ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∩ 𝐵 ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | onint 7811 | . . . 4 ⊢ ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → ∩ 𝐵 ∈ 𝐵) | |
| 2 | eleq1 2828 | . . . 4 ⊢ (𝐴 = ∩ 𝐵 → (𝐴 ∈ 𝐵 ↔ ∩ 𝐵 ∈ 𝐵)) | |
| 3 | 1, 2 | syl5ibrcom 247 | . . 3 ⊢ ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∩ 𝐵 → 𝐴 ∈ 𝐵)) | 
| 4 | eleq2 2829 | . . . . . . 7 ⊢ (𝐴 = ∩ 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∩ 𝐵)) | |
| 5 | 4 | biimpd 229 | . . . . . 6 ⊢ (𝐴 = ∩ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ ∩ 𝐵)) | 
| 6 | onnmin 7819 | . . . . . . . 8 ⊢ ((𝐵 ⊆ On ∧ 𝑥 ∈ 𝐵) → ¬ 𝑥 ∈ ∩ 𝐵) | |
| 7 | 6 | ex 412 | . . . . . . 7 ⊢ (𝐵 ⊆ On → (𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ ∩ 𝐵)) | 
| 8 | 7 | con2d 134 | . . . . . 6 ⊢ (𝐵 ⊆ On → (𝑥 ∈ ∩ 𝐵 → ¬ 𝑥 ∈ 𝐵)) | 
| 9 | 5, 8 | syl9r 78 | . . . . 5 ⊢ (𝐵 ⊆ On → (𝐴 = ∩ 𝐵 → (𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵))) | 
| 10 | 9 | ralrimdv 3151 | . . . 4 ⊢ (𝐵 ⊆ On → (𝐴 = ∩ 𝐵 → ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵)) | 
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∩ 𝐵 → ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵)) | 
| 12 | 3, 11 | jcad 512 | . 2 ⊢ ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∩ 𝐵 → (𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵))) | 
| 13 | oneqmini 6435 | . . 3 ⊢ (𝐵 ⊆ On → ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) → 𝐴 = ∩ 𝐵)) | |
| 14 | 13 | adantr 480 | . 2 ⊢ ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) → 𝐴 = ∩ 𝐵)) | 
| 15 | 12, 14 | impbid 212 | 1 ⊢ ((𝐵 ⊆ On ∧ 𝐵 ≠ ∅) → (𝐴 = ∩ 𝐵 ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∀wral 3060 ⊆ wss 3950 ∅c0 4332 ∩ cint 4945 Oncon0 6383 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-11 2156 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-br 5143 df-opab 5205 df-tr 5259 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-ord 6386 df-on 6387 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |