MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnsub Structured version   Visualization version   GIF version

Theorem nnsub 12172
Description: Subtraction of positive integers. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nnsub ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℕ))

Proof of Theorem nnsub
Dummy variables 𝑧 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5096 . . . . . 6 (𝑥 = 1 → (𝑧 < 𝑥𝑧 < 1))
2 oveq1 7356 . . . . . . 7 (𝑥 = 1 → (𝑥𝑧) = (1 − 𝑧))
32eleq1d 2813 . . . . . 6 (𝑥 = 1 → ((𝑥𝑧) ∈ ℕ ↔ (1 − 𝑧) ∈ ℕ))
41, 3imbi12d 344 . . . . 5 (𝑥 = 1 → ((𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ (𝑧 < 1 → (1 − 𝑧) ∈ ℕ)))
54ralbidv 3152 . . . 4 (𝑥 = 1 → (∀𝑧 ∈ ℕ (𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ ∀𝑧 ∈ ℕ (𝑧 < 1 → (1 − 𝑧) ∈ ℕ)))
6 breq2 5096 . . . . . 6 (𝑥 = 𝑦 → (𝑧 < 𝑥𝑧 < 𝑦))
7 oveq1 7356 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝑧) = (𝑦𝑧))
87eleq1d 2813 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝑧) ∈ ℕ ↔ (𝑦𝑧) ∈ ℕ))
96, 8imbi12d 344 . . . . 5 (𝑥 = 𝑦 → ((𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ (𝑧 < 𝑦 → (𝑦𝑧) ∈ ℕ)))
109ralbidv 3152 . . . 4 (𝑥 = 𝑦 → (∀𝑧 ∈ ℕ (𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ ∀𝑧 ∈ ℕ (𝑧 < 𝑦 → (𝑦𝑧) ∈ ℕ)))
11 breq2 5096 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝑧 < 𝑥𝑧 < (𝑦 + 1)))
12 oveq1 7356 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑥𝑧) = ((𝑦 + 1) − 𝑧))
1312eleq1d 2813 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝑥𝑧) ∈ ℕ ↔ ((𝑦 + 1) − 𝑧) ∈ ℕ))
1411, 13imbi12d 344 . . . . 5 (𝑥 = (𝑦 + 1) → ((𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
1514ralbidv 3152 . . . 4 (𝑥 = (𝑦 + 1) → (∀𝑧 ∈ ℕ (𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
16 breq2 5096 . . . . . 6 (𝑥 = 𝐵 → (𝑧 < 𝑥𝑧 < 𝐵))
17 oveq1 7356 . . . . . . 7 (𝑥 = 𝐵 → (𝑥𝑧) = (𝐵𝑧))
1817eleq1d 2813 . . . . . 6 (𝑥 = 𝐵 → ((𝑥𝑧) ∈ ℕ ↔ (𝐵𝑧) ∈ ℕ))
1916, 18imbi12d 344 . . . . 5 (𝑥 = 𝐵 → ((𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ (𝑧 < 𝐵 → (𝐵𝑧) ∈ ℕ)))
2019ralbidv 3152 . . . 4 (𝑥 = 𝐵 → (∀𝑧 ∈ ℕ (𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ ∀𝑧 ∈ ℕ (𝑧 < 𝐵 → (𝐵𝑧) ∈ ℕ)))
21 nnnlt1 12160 . . . . . 6 (𝑧 ∈ ℕ → ¬ 𝑧 < 1)
2221pm2.21d 121 . . . . 5 (𝑧 ∈ ℕ → (𝑧 < 1 → (1 − 𝑧) ∈ ℕ))
2322rgen 3046 . . . 4 𝑧 ∈ ℕ (𝑧 < 1 → (1 − 𝑧) ∈ ℕ)
24 breq1 5095 . . . . . . 7 (𝑧 = 𝑥 → (𝑧 < 𝑦𝑥 < 𝑦))
25 oveq2 7357 . . . . . . . 8 (𝑧 = 𝑥 → (𝑦𝑧) = (𝑦𝑥))
2625eleq1d 2813 . . . . . . 7 (𝑧 = 𝑥 → ((𝑦𝑧) ∈ ℕ ↔ (𝑦𝑥) ∈ ℕ))
2724, 26imbi12d 344 . . . . . 6 (𝑧 = 𝑥 → ((𝑧 < 𝑦 → (𝑦𝑧) ∈ ℕ) ↔ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ)))
2827cbvralvw 3207 . . . . 5 (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → (𝑦𝑧) ∈ ℕ) ↔ ∀𝑥 ∈ ℕ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ))
29 nncn 12136 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
3029adantr 480 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → 𝑦 ∈ ℂ)
31 ax-1cn 11067 . . . . . . . . . . 11 1 ∈ ℂ
32 pncan 11369 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑦 + 1) − 1) = 𝑦)
3330, 31, 32sylancl 586 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑦 + 1) − 1) = 𝑦)
34 simpl 482 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → 𝑦 ∈ ℕ)
3533, 34eqeltrd 2828 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑦 + 1) − 1) ∈ ℕ)
36 oveq2 7357 . . . . . . . . . 10 (𝑧 = 1 → ((𝑦 + 1) − 𝑧) = ((𝑦 + 1) − 1))
3736eleq1d 2813 . . . . . . . . 9 (𝑧 = 1 → (((𝑦 + 1) − 𝑧) ∈ ℕ ↔ ((𝑦 + 1) − 1) ∈ ℕ))
3835, 37syl5ibrcom 247 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧 = 1 → ((𝑦 + 1) − 𝑧) ∈ ℕ))
39382a1dd 51 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧 = 1 → (∀𝑥 ∈ ℕ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ) → (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ))))
40 breq1 5095 . . . . . . . . . 10 (𝑥 = (𝑧 − 1) → (𝑥 < 𝑦 ↔ (𝑧 − 1) < 𝑦))
41 oveq2 7357 . . . . . . . . . . 11 (𝑥 = (𝑧 − 1) → (𝑦𝑥) = (𝑦 − (𝑧 − 1)))
4241eleq1d 2813 . . . . . . . . . 10 (𝑥 = (𝑧 − 1) → ((𝑦𝑥) ∈ ℕ ↔ (𝑦 − (𝑧 − 1)) ∈ ℕ))
4340, 42imbi12d 344 . . . . . . . . 9 (𝑥 = (𝑧 − 1) → ((𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ) ↔ ((𝑧 − 1) < 𝑦 → (𝑦 − (𝑧 − 1)) ∈ ℕ)))
4443rspcv 3573 . . . . . . . 8 ((𝑧 − 1) ∈ ℕ → (∀𝑥 ∈ ℕ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ) → ((𝑧 − 1) < 𝑦 → (𝑦 − (𝑧 − 1)) ∈ ℕ)))
45 nnre 12135 . . . . . . . . . . 11 (𝑧 ∈ ℕ → 𝑧 ∈ ℝ)
46 nnre 12135 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
47 1re 11115 . . . . . . . . . . . 12 1 ∈ ℝ
48 ltsubadd 11590 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 − 1) < 𝑦𝑧 < (𝑦 + 1)))
4947, 48mp3an2 1451 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 − 1) < 𝑦𝑧 < (𝑦 + 1)))
5045, 46, 49syl2anr 597 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧 − 1) < 𝑦𝑧 < (𝑦 + 1)))
51 nncn 12136 . . . . . . . . . . . 12 (𝑧 ∈ ℕ → 𝑧 ∈ ℂ)
52 subsub3 11396 . . . . . . . . . . . . 13 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑦 − (𝑧 − 1)) = ((𝑦 + 1) − 𝑧))
5331, 52mp3an3 1452 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦 − (𝑧 − 1)) = ((𝑦 + 1) − 𝑧))
5429, 51, 53syl2an 596 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑦 − (𝑧 − 1)) = ((𝑦 + 1) − 𝑧))
5554eleq1d 2813 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑦 − (𝑧 − 1)) ∈ ℕ ↔ ((𝑦 + 1) − 𝑧) ∈ ℕ))
5650, 55imbi12d 344 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (((𝑧 − 1) < 𝑦 → (𝑦 − (𝑧 − 1)) ∈ ℕ) ↔ (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
5756biimpd 229 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (((𝑧 − 1) < 𝑦 → (𝑦 − (𝑧 − 1)) ∈ ℕ) → (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
5844, 57syl9r 78 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧 − 1) ∈ ℕ → (∀𝑥 ∈ ℕ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ) → (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ))))
59 nn1m1nn 12149 . . . . . . . 8 (𝑧 ∈ ℕ → (𝑧 = 1 ∨ (𝑧 − 1) ∈ ℕ))
6059adantl 481 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧 = 1 ∨ (𝑧 − 1) ∈ ℕ))
6139, 58, 60mpjaod 860 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (∀𝑥 ∈ ℕ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ) → (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
6261ralrimdva 3129 . . . . 5 (𝑦 ∈ ℕ → (∀𝑥 ∈ ℕ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ) → ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
6328, 62biimtrid 242 . . . 4 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → (𝑦𝑧) ∈ ℕ) → ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
645, 10, 15, 20, 23, 63nnind 12146 . . 3 (𝐵 ∈ ℕ → ∀𝑧 ∈ ℕ (𝑧 < 𝐵 → (𝐵𝑧) ∈ ℕ))
65 breq1 5095 . . . . 5 (𝑧 = 𝐴 → (𝑧 < 𝐵𝐴 < 𝐵))
66 oveq2 7357 . . . . . 6 (𝑧 = 𝐴 → (𝐵𝑧) = (𝐵𝐴))
6766eleq1d 2813 . . . . 5 (𝑧 = 𝐴 → ((𝐵𝑧) ∈ ℕ ↔ (𝐵𝐴) ∈ ℕ))
6865, 67imbi12d 344 . . . 4 (𝑧 = 𝐴 → ((𝑧 < 𝐵 → (𝐵𝑧) ∈ ℕ) ↔ (𝐴 < 𝐵 → (𝐵𝐴) ∈ ℕ)))
6968rspcva 3575 . . 3 ((𝐴 ∈ ℕ ∧ ∀𝑧 ∈ ℕ (𝑧 < 𝐵 → (𝐵𝑧) ∈ ℕ)) → (𝐴 < 𝐵 → (𝐵𝐴) ∈ ℕ))
7064, 69sylan2 593 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 → (𝐵𝐴) ∈ ℕ))
71 nngt0 12159 . . 3 ((𝐵𝐴) ∈ ℕ → 0 < (𝐵𝐴))
72 nnre 12135 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
73 nnre 12135 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
74 posdif 11613 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
7572, 73, 74syl2an 596 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
7671, 75imbitrrid 246 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐵𝐴) ∈ ℕ → 𝐴 < 𝐵))
7770, 76impbid 212 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5092  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   < clt 11149  cmin 11347  cn 12128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129
This theorem is referenced by:  nnsubi  12173  nn0sub  12434  uz3m2nn  12795  faclbnd4lem4  14203  pythagtriplem13  16739  vdwlem12  16904  perfectlem1  27138  crctcshwlkn0lem6  29760  crctcshwlkn0lem7  29761  bcprod  35715  nndivsub  36435  fimgmcyc  42511  perfectALTVlem1  47709
  Copyright terms: Public domain W3C validator