MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnsub Structured version   Visualization version   GIF version

Theorem nnsub 11899
Description: Subtraction of positive integers. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nnsub ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℕ))

Proof of Theorem nnsub
Dummy variables 𝑧 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5072 . . . . . 6 (𝑥 = 1 → (𝑧 < 𝑥𝑧 < 1))
2 oveq1 7239 . . . . . . 7 (𝑥 = 1 → (𝑥𝑧) = (1 − 𝑧))
32eleq1d 2823 . . . . . 6 (𝑥 = 1 → ((𝑥𝑧) ∈ ℕ ↔ (1 − 𝑧) ∈ ℕ))
41, 3imbi12d 348 . . . . 5 (𝑥 = 1 → ((𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ (𝑧 < 1 → (1 − 𝑧) ∈ ℕ)))
54ralbidv 3119 . . . 4 (𝑥 = 1 → (∀𝑧 ∈ ℕ (𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ ∀𝑧 ∈ ℕ (𝑧 < 1 → (1 − 𝑧) ∈ ℕ)))
6 breq2 5072 . . . . . 6 (𝑥 = 𝑦 → (𝑧 < 𝑥𝑧 < 𝑦))
7 oveq1 7239 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝑧) = (𝑦𝑧))
87eleq1d 2823 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝑧) ∈ ℕ ↔ (𝑦𝑧) ∈ ℕ))
96, 8imbi12d 348 . . . . 5 (𝑥 = 𝑦 → ((𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ (𝑧 < 𝑦 → (𝑦𝑧) ∈ ℕ)))
109ralbidv 3119 . . . 4 (𝑥 = 𝑦 → (∀𝑧 ∈ ℕ (𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ ∀𝑧 ∈ ℕ (𝑧 < 𝑦 → (𝑦𝑧) ∈ ℕ)))
11 breq2 5072 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝑧 < 𝑥𝑧 < (𝑦 + 1)))
12 oveq1 7239 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑥𝑧) = ((𝑦 + 1) − 𝑧))
1312eleq1d 2823 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝑥𝑧) ∈ ℕ ↔ ((𝑦 + 1) − 𝑧) ∈ ℕ))
1411, 13imbi12d 348 . . . . 5 (𝑥 = (𝑦 + 1) → ((𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
1514ralbidv 3119 . . . 4 (𝑥 = (𝑦 + 1) → (∀𝑧 ∈ ℕ (𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
16 breq2 5072 . . . . . 6 (𝑥 = 𝐵 → (𝑧 < 𝑥𝑧 < 𝐵))
17 oveq1 7239 . . . . . . 7 (𝑥 = 𝐵 → (𝑥𝑧) = (𝐵𝑧))
1817eleq1d 2823 . . . . . 6 (𝑥 = 𝐵 → ((𝑥𝑧) ∈ ℕ ↔ (𝐵𝑧) ∈ ℕ))
1916, 18imbi12d 348 . . . . 5 (𝑥 = 𝐵 → ((𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ (𝑧 < 𝐵 → (𝐵𝑧) ∈ ℕ)))
2019ralbidv 3119 . . . 4 (𝑥 = 𝐵 → (∀𝑧 ∈ ℕ (𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ ∀𝑧 ∈ ℕ (𝑧 < 𝐵 → (𝐵𝑧) ∈ ℕ)))
21 nnnlt1 11887 . . . . . 6 (𝑧 ∈ ℕ → ¬ 𝑧 < 1)
2221pm2.21d 121 . . . . 5 (𝑧 ∈ ℕ → (𝑧 < 1 → (1 − 𝑧) ∈ ℕ))
2322rgen 3072 . . . 4 𝑧 ∈ ℕ (𝑧 < 1 → (1 − 𝑧) ∈ ℕ)
24 breq1 5071 . . . . . . 7 (𝑧 = 𝑥 → (𝑧 < 𝑦𝑥 < 𝑦))
25 oveq2 7240 . . . . . . . 8 (𝑧 = 𝑥 → (𝑦𝑧) = (𝑦𝑥))
2625eleq1d 2823 . . . . . . 7 (𝑧 = 𝑥 → ((𝑦𝑧) ∈ ℕ ↔ (𝑦𝑥) ∈ ℕ))
2724, 26imbi12d 348 . . . . . 6 (𝑧 = 𝑥 → ((𝑧 < 𝑦 → (𝑦𝑧) ∈ ℕ) ↔ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ)))
2827cbvralvw 3371 . . . . 5 (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → (𝑦𝑧) ∈ ℕ) ↔ ∀𝑥 ∈ ℕ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ))
29 nncn 11863 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
3029adantr 484 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → 𝑦 ∈ ℂ)
31 ax-1cn 10812 . . . . . . . . . . 11 1 ∈ ℂ
32 pncan 11109 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑦 + 1) − 1) = 𝑦)
3330, 31, 32sylancl 589 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑦 + 1) − 1) = 𝑦)
34 simpl 486 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → 𝑦 ∈ ℕ)
3533, 34eqeltrd 2839 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑦 + 1) − 1) ∈ ℕ)
36 oveq2 7240 . . . . . . . . . 10 (𝑧 = 1 → ((𝑦 + 1) − 𝑧) = ((𝑦 + 1) − 1))
3736eleq1d 2823 . . . . . . . . 9 (𝑧 = 1 → (((𝑦 + 1) − 𝑧) ∈ ℕ ↔ ((𝑦 + 1) − 1) ∈ ℕ))
3835, 37syl5ibrcom 250 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧 = 1 → ((𝑦 + 1) − 𝑧) ∈ ℕ))
39382a1dd 51 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧 = 1 → (∀𝑥 ∈ ℕ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ) → (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ))))
40 breq1 5071 . . . . . . . . . 10 (𝑥 = (𝑧 − 1) → (𝑥 < 𝑦 ↔ (𝑧 − 1) < 𝑦))
41 oveq2 7240 . . . . . . . . . . 11 (𝑥 = (𝑧 − 1) → (𝑦𝑥) = (𝑦 − (𝑧 − 1)))
4241eleq1d 2823 . . . . . . . . . 10 (𝑥 = (𝑧 − 1) → ((𝑦𝑥) ∈ ℕ ↔ (𝑦 − (𝑧 − 1)) ∈ ℕ))
4340, 42imbi12d 348 . . . . . . . . 9 (𝑥 = (𝑧 − 1) → ((𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ) ↔ ((𝑧 − 1) < 𝑦 → (𝑦 − (𝑧 − 1)) ∈ ℕ)))
4443rspcv 3545 . . . . . . . 8 ((𝑧 − 1) ∈ ℕ → (∀𝑥 ∈ ℕ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ) → ((𝑧 − 1) < 𝑦 → (𝑦 − (𝑧 − 1)) ∈ ℕ)))
45 nnre 11862 . . . . . . . . . . 11 (𝑧 ∈ ℕ → 𝑧 ∈ ℝ)
46 nnre 11862 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
47 1re 10858 . . . . . . . . . . . 12 1 ∈ ℝ
48 ltsubadd 11327 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 − 1) < 𝑦𝑧 < (𝑦 + 1)))
4947, 48mp3an2 1451 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 − 1) < 𝑦𝑧 < (𝑦 + 1)))
5045, 46, 49syl2anr 600 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧 − 1) < 𝑦𝑧 < (𝑦 + 1)))
51 nncn 11863 . . . . . . . . . . . 12 (𝑧 ∈ ℕ → 𝑧 ∈ ℂ)
52 subsub3 11135 . . . . . . . . . . . . 13 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑦 − (𝑧 − 1)) = ((𝑦 + 1) − 𝑧))
5331, 52mp3an3 1452 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦 − (𝑧 − 1)) = ((𝑦 + 1) − 𝑧))
5429, 51, 53syl2an 599 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑦 − (𝑧 − 1)) = ((𝑦 + 1) − 𝑧))
5554eleq1d 2823 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑦 − (𝑧 − 1)) ∈ ℕ ↔ ((𝑦 + 1) − 𝑧) ∈ ℕ))
5650, 55imbi12d 348 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (((𝑧 − 1) < 𝑦 → (𝑦 − (𝑧 − 1)) ∈ ℕ) ↔ (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
5756biimpd 232 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (((𝑧 − 1) < 𝑦 → (𝑦 − (𝑧 − 1)) ∈ ℕ) → (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
5844, 57syl9r 78 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧 − 1) ∈ ℕ → (∀𝑥 ∈ ℕ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ) → (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ))))
59 nn1m1nn 11876 . . . . . . . 8 (𝑧 ∈ ℕ → (𝑧 = 1 ∨ (𝑧 − 1) ∈ ℕ))
6059adantl 485 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧 = 1 ∨ (𝑧 − 1) ∈ ℕ))
6139, 58, 60mpjaod 860 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (∀𝑥 ∈ ℕ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ) → (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
6261ralrimdva 3111 . . . . 5 (𝑦 ∈ ℕ → (∀𝑥 ∈ ℕ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ) → ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
6328, 62syl5bi 245 . . . 4 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → (𝑦𝑧) ∈ ℕ) → ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
645, 10, 15, 20, 23, 63nnind 11873 . . 3 (𝐵 ∈ ℕ → ∀𝑧 ∈ ℕ (𝑧 < 𝐵 → (𝐵𝑧) ∈ ℕ))
65 breq1 5071 . . . . 5 (𝑧 = 𝐴 → (𝑧 < 𝐵𝐴 < 𝐵))
66 oveq2 7240 . . . . . 6 (𝑧 = 𝐴 → (𝐵𝑧) = (𝐵𝐴))
6766eleq1d 2823 . . . . 5 (𝑧 = 𝐴 → ((𝐵𝑧) ∈ ℕ ↔ (𝐵𝐴) ∈ ℕ))
6865, 67imbi12d 348 . . . 4 (𝑧 = 𝐴 → ((𝑧 < 𝐵 → (𝐵𝑧) ∈ ℕ) ↔ (𝐴 < 𝐵 → (𝐵𝐴) ∈ ℕ)))
6968rspcva 3548 . . 3 ((𝐴 ∈ ℕ ∧ ∀𝑧 ∈ ℕ (𝑧 < 𝐵 → (𝐵𝑧) ∈ ℕ)) → (𝐴 < 𝐵 → (𝐵𝐴) ∈ ℕ))
7064, 69sylan2 596 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 → (𝐵𝐴) ∈ ℕ))
71 nngt0 11886 . . 3 ((𝐵𝐴) ∈ ℕ → 0 < (𝐵𝐴))
72 nnre 11862 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
73 nnre 11862 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
74 posdif 11350 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
7572, 73, 74syl2an 599 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
7671, 75syl5ibr 249 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐵𝐴) ∈ ℕ → 𝐴 < 𝐵))
7770, 76impbid 215 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2111  wral 3062   class class class wbr 5068  (class class class)co 7232  cc 10752  cr 10753  0cc0 10754  1c1 10755   + caddc 10757   < clt 10892  cmin 11087  cn 11855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542  ax-resscn 10811  ax-1cn 10812  ax-icn 10813  ax-addcl 10814  ax-addrcl 10815  ax-mulcl 10816  ax-mulrcl 10817  ax-mulcom 10818  ax-addass 10819  ax-mulass 10820  ax-distr 10821  ax-i2m1 10822  ax-1ne0 10823  ax-1rid 10824  ax-rnegex 10825  ax-rrecex 10826  ax-cnre 10827  ax-pre-lttri 10828  ax-pre-lttrn 10829  ax-pre-ltadd 10830  ax-pre-mulgt0 10831
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-tp 4561  df-op 4563  df-uni 4835  df-iun 4921  df-br 5069  df-opab 5131  df-mpt 5151  df-tr 5177  df-id 5470  df-eprel 5475  df-po 5483  df-so 5484  df-fr 5524  df-we 5526  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-pred 6176  df-ord 6234  df-on 6235  df-lim 6236  df-suc 6237  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-riota 7189  df-ov 7235  df-oprab 7236  df-mpo 7237  df-om 7664  df-wrecs 8068  df-recs 8129  df-rdg 8167  df-er 8412  df-en 8648  df-dom 8649  df-sdom 8650  df-pnf 10894  df-mnf 10895  df-xr 10896  df-ltxr 10897  df-le 10898  df-sub 11089  df-neg 11090  df-nn 11856
This theorem is referenced by:  nnsubi  11900  nn0sub  12165  uz3m2nn  12512  faclbnd4lem4  13887  pythagtriplem13  16405  vdwlem12  16570  perfectlem1  26134  crctcshwlkn0lem6  27923  crctcshwlkn0lem7  27924  bcprod  33446  nndivsub  34409  perfectALTVlem1  44875
  Copyright terms: Public domain W3C validator