MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnsub Structured version   Visualization version   GIF version

Theorem nnsub 12206
Description: Subtraction of positive integers. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nnsub ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℕ))

Proof of Theorem nnsub
Dummy variables 𝑧 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5106 . . . . . 6 (𝑥 = 1 → (𝑧 < 𝑥𝑧 < 1))
2 oveq1 7376 . . . . . . 7 (𝑥 = 1 → (𝑥𝑧) = (1 − 𝑧))
32eleq1d 2813 . . . . . 6 (𝑥 = 1 → ((𝑥𝑧) ∈ ℕ ↔ (1 − 𝑧) ∈ ℕ))
41, 3imbi12d 344 . . . . 5 (𝑥 = 1 → ((𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ (𝑧 < 1 → (1 − 𝑧) ∈ ℕ)))
54ralbidv 3156 . . . 4 (𝑥 = 1 → (∀𝑧 ∈ ℕ (𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ ∀𝑧 ∈ ℕ (𝑧 < 1 → (1 − 𝑧) ∈ ℕ)))
6 breq2 5106 . . . . . 6 (𝑥 = 𝑦 → (𝑧 < 𝑥𝑧 < 𝑦))
7 oveq1 7376 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝑧) = (𝑦𝑧))
87eleq1d 2813 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝑧) ∈ ℕ ↔ (𝑦𝑧) ∈ ℕ))
96, 8imbi12d 344 . . . . 5 (𝑥 = 𝑦 → ((𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ (𝑧 < 𝑦 → (𝑦𝑧) ∈ ℕ)))
109ralbidv 3156 . . . 4 (𝑥 = 𝑦 → (∀𝑧 ∈ ℕ (𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ ∀𝑧 ∈ ℕ (𝑧 < 𝑦 → (𝑦𝑧) ∈ ℕ)))
11 breq2 5106 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝑧 < 𝑥𝑧 < (𝑦 + 1)))
12 oveq1 7376 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑥𝑧) = ((𝑦 + 1) − 𝑧))
1312eleq1d 2813 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝑥𝑧) ∈ ℕ ↔ ((𝑦 + 1) − 𝑧) ∈ ℕ))
1411, 13imbi12d 344 . . . . 5 (𝑥 = (𝑦 + 1) → ((𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
1514ralbidv 3156 . . . 4 (𝑥 = (𝑦 + 1) → (∀𝑧 ∈ ℕ (𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
16 breq2 5106 . . . . . 6 (𝑥 = 𝐵 → (𝑧 < 𝑥𝑧 < 𝐵))
17 oveq1 7376 . . . . . . 7 (𝑥 = 𝐵 → (𝑥𝑧) = (𝐵𝑧))
1817eleq1d 2813 . . . . . 6 (𝑥 = 𝐵 → ((𝑥𝑧) ∈ ℕ ↔ (𝐵𝑧) ∈ ℕ))
1916, 18imbi12d 344 . . . . 5 (𝑥 = 𝐵 → ((𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ (𝑧 < 𝐵 → (𝐵𝑧) ∈ ℕ)))
2019ralbidv 3156 . . . 4 (𝑥 = 𝐵 → (∀𝑧 ∈ ℕ (𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ ∀𝑧 ∈ ℕ (𝑧 < 𝐵 → (𝐵𝑧) ∈ ℕ)))
21 nnnlt1 12194 . . . . . 6 (𝑧 ∈ ℕ → ¬ 𝑧 < 1)
2221pm2.21d 121 . . . . 5 (𝑧 ∈ ℕ → (𝑧 < 1 → (1 − 𝑧) ∈ ℕ))
2322rgen 3046 . . . 4 𝑧 ∈ ℕ (𝑧 < 1 → (1 − 𝑧) ∈ ℕ)
24 breq1 5105 . . . . . . 7 (𝑧 = 𝑥 → (𝑧 < 𝑦𝑥 < 𝑦))
25 oveq2 7377 . . . . . . . 8 (𝑧 = 𝑥 → (𝑦𝑧) = (𝑦𝑥))
2625eleq1d 2813 . . . . . . 7 (𝑧 = 𝑥 → ((𝑦𝑧) ∈ ℕ ↔ (𝑦𝑥) ∈ ℕ))
2724, 26imbi12d 344 . . . . . 6 (𝑧 = 𝑥 → ((𝑧 < 𝑦 → (𝑦𝑧) ∈ ℕ) ↔ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ)))
2827cbvralvw 3213 . . . . 5 (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → (𝑦𝑧) ∈ ℕ) ↔ ∀𝑥 ∈ ℕ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ))
29 nncn 12170 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
3029adantr 480 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → 𝑦 ∈ ℂ)
31 ax-1cn 11102 . . . . . . . . . . 11 1 ∈ ℂ
32 pncan 11403 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑦 + 1) − 1) = 𝑦)
3330, 31, 32sylancl 586 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑦 + 1) − 1) = 𝑦)
34 simpl 482 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → 𝑦 ∈ ℕ)
3533, 34eqeltrd 2828 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑦 + 1) − 1) ∈ ℕ)
36 oveq2 7377 . . . . . . . . . 10 (𝑧 = 1 → ((𝑦 + 1) − 𝑧) = ((𝑦 + 1) − 1))
3736eleq1d 2813 . . . . . . . . 9 (𝑧 = 1 → (((𝑦 + 1) − 𝑧) ∈ ℕ ↔ ((𝑦 + 1) − 1) ∈ ℕ))
3835, 37syl5ibrcom 247 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧 = 1 → ((𝑦 + 1) − 𝑧) ∈ ℕ))
39382a1dd 51 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧 = 1 → (∀𝑥 ∈ ℕ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ) → (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ))))
40 breq1 5105 . . . . . . . . . 10 (𝑥 = (𝑧 − 1) → (𝑥 < 𝑦 ↔ (𝑧 − 1) < 𝑦))
41 oveq2 7377 . . . . . . . . . . 11 (𝑥 = (𝑧 − 1) → (𝑦𝑥) = (𝑦 − (𝑧 − 1)))
4241eleq1d 2813 . . . . . . . . . 10 (𝑥 = (𝑧 − 1) → ((𝑦𝑥) ∈ ℕ ↔ (𝑦 − (𝑧 − 1)) ∈ ℕ))
4340, 42imbi12d 344 . . . . . . . . 9 (𝑥 = (𝑧 − 1) → ((𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ) ↔ ((𝑧 − 1) < 𝑦 → (𝑦 − (𝑧 − 1)) ∈ ℕ)))
4443rspcv 3581 . . . . . . . 8 ((𝑧 − 1) ∈ ℕ → (∀𝑥 ∈ ℕ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ) → ((𝑧 − 1) < 𝑦 → (𝑦 − (𝑧 − 1)) ∈ ℕ)))
45 nnre 12169 . . . . . . . . . . 11 (𝑧 ∈ ℕ → 𝑧 ∈ ℝ)
46 nnre 12169 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
47 1re 11150 . . . . . . . . . . . 12 1 ∈ ℝ
48 ltsubadd 11624 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 − 1) < 𝑦𝑧 < (𝑦 + 1)))
4947, 48mp3an2 1451 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 − 1) < 𝑦𝑧 < (𝑦 + 1)))
5045, 46, 49syl2anr 597 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧 − 1) < 𝑦𝑧 < (𝑦 + 1)))
51 nncn 12170 . . . . . . . . . . . 12 (𝑧 ∈ ℕ → 𝑧 ∈ ℂ)
52 subsub3 11430 . . . . . . . . . . . . 13 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑦 − (𝑧 − 1)) = ((𝑦 + 1) − 𝑧))
5331, 52mp3an3 1452 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦 − (𝑧 − 1)) = ((𝑦 + 1) − 𝑧))
5429, 51, 53syl2an 596 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑦 − (𝑧 − 1)) = ((𝑦 + 1) − 𝑧))
5554eleq1d 2813 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑦 − (𝑧 − 1)) ∈ ℕ ↔ ((𝑦 + 1) − 𝑧) ∈ ℕ))
5650, 55imbi12d 344 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (((𝑧 − 1) < 𝑦 → (𝑦 − (𝑧 − 1)) ∈ ℕ) ↔ (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
5756biimpd 229 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (((𝑧 − 1) < 𝑦 → (𝑦 − (𝑧 − 1)) ∈ ℕ) → (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
5844, 57syl9r 78 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧 − 1) ∈ ℕ → (∀𝑥 ∈ ℕ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ) → (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ))))
59 nn1m1nn 12183 . . . . . . . 8 (𝑧 ∈ ℕ → (𝑧 = 1 ∨ (𝑧 − 1) ∈ ℕ))
6059adantl 481 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧 = 1 ∨ (𝑧 − 1) ∈ ℕ))
6139, 58, 60mpjaod 860 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (∀𝑥 ∈ ℕ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ) → (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
6261ralrimdva 3133 . . . . 5 (𝑦 ∈ ℕ → (∀𝑥 ∈ ℕ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ) → ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
6328, 62biimtrid 242 . . . 4 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → (𝑦𝑧) ∈ ℕ) → ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
645, 10, 15, 20, 23, 63nnind 12180 . . 3 (𝐵 ∈ ℕ → ∀𝑧 ∈ ℕ (𝑧 < 𝐵 → (𝐵𝑧) ∈ ℕ))
65 breq1 5105 . . . . 5 (𝑧 = 𝐴 → (𝑧 < 𝐵𝐴 < 𝐵))
66 oveq2 7377 . . . . . 6 (𝑧 = 𝐴 → (𝐵𝑧) = (𝐵𝐴))
6766eleq1d 2813 . . . . 5 (𝑧 = 𝐴 → ((𝐵𝑧) ∈ ℕ ↔ (𝐵𝐴) ∈ ℕ))
6865, 67imbi12d 344 . . . 4 (𝑧 = 𝐴 → ((𝑧 < 𝐵 → (𝐵𝑧) ∈ ℕ) ↔ (𝐴 < 𝐵 → (𝐵𝐴) ∈ ℕ)))
6968rspcva 3583 . . 3 ((𝐴 ∈ ℕ ∧ ∀𝑧 ∈ ℕ (𝑧 < 𝐵 → (𝐵𝑧) ∈ ℕ)) → (𝐴 < 𝐵 → (𝐵𝐴) ∈ ℕ))
7064, 69sylan2 593 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 → (𝐵𝐴) ∈ ℕ))
71 nngt0 12193 . . 3 ((𝐵𝐴) ∈ ℕ → 0 < (𝐵𝐴))
72 nnre 12169 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
73 nnre 12169 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
74 posdif 11647 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
7572, 73, 74syl2an 596 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
7671, 75imbitrrid 246 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐵𝐴) ∈ ℕ → 𝐴 < 𝐵))
7770, 76impbid 212 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5102  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   < clt 11184  cmin 11381  cn 12162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163
This theorem is referenced by:  nnsubi  12207  nn0sub  12468  uz3m2nn  12829  faclbnd4lem4  14237  pythagtriplem13  16774  vdwlem12  16939  perfectlem1  27116  crctcshwlkn0lem6  29718  crctcshwlkn0lem7  29719  bcprod  35698  nndivsub  36418  fimgmcyc  42495  perfectALTVlem1  47695
  Copyright terms: Public domain W3C validator