Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem4 Structured version   Visualization version   GIF version

Theorem heiborlem4 37815
Description: Lemma for heibor 37822. Using the function 𝑇 constructed in heiborlem3 37814, construct an infinite path in 𝐺. (Contributed by Jeff Madsen, 23-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heibor.5 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
heibor.6 (𝜑𝐷 ∈ (CMet‘𝑋))
heibor.7 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
heibor.8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
heibor.9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
heibor.10 (𝜑𝐶𝐺0)
heibor.11 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
Assertion
Ref Expression
heiborlem4 ((𝜑𝐴 ∈ ℕ0) → (𝑆𝐴)𝐺𝐴)
Distinct variable groups:   𝑥,𝑛,𝑦,𝐴   𝑢,𝑛,𝐹,𝑥,𝑦   𝑥,𝐺   𝜑,𝑥   𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧,𝐷   𝑇,𝑚,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛,𝑢,𝑣,𝑦   𝑚,𝐽,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑈,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑆,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑚,𝑋,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝐶,𝑚,𝑛,𝑢,𝑣,𝑦   𝑛,𝐾,𝑥,𝑦,𝑧   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐴(𝑧,𝑣,𝑢,𝑚)   𝐵(𝑧,𝑚)   𝐶(𝑥,𝑧)   𝑇(𝑣,𝑢)   𝑈(𝑚)   𝐹(𝑧,𝑣,𝑚)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐾(𝑣,𝑢,𝑚)

Proof of Theorem heiborlem4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6861 . . . . 5 (𝑥 = 0 → (𝑆𝑥) = (𝑆‘0))
2 id 22 . . . . 5 (𝑥 = 0 → 𝑥 = 0)
31, 2breq12d 5123 . . . 4 (𝑥 = 0 → ((𝑆𝑥)𝐺𝑥 ↔ (𝑆‘0)𝐺0))
43imbi2d 340 . . 3 (𝑥 = 0 → ((𝜑 → (𝑆𝑥)𝐺𝑥) ↔ (𝜑 → (𝑆‘0)𝐺0)))
5 fveq2 6861 . . . . 5 (𝑥 = 𝑘 → (𝑆𝑥) = (𝑆𝑘))
6 id 22 . . . . 5 (𝑥 = 𝑘𝑥 = 𝑘)
75, 6breq12d 5123 . . . 4 (𝑥 = 𝑘 → ((𝑆𝑥)𝐺𝑥 ↔ (𝑆𝑘)𝐺𝑘))
87imbi2d 340 . . 3 (𝑥 = 𝑘 → ((𝜑 → (𝑆𝑥)𝐺𝑥) ↔ (𝜑 → (𝑆𝑘)𝐺𝑘)))
9 fveq2 6861 . . . . 5 (𝑥 = (𝑘 + 1) → (𝑆𝑥) = (𝑆‘(𝑘 + 1)))
10 id 22 . . . . 5 (𝑥 = (𝑘 + 1) → 𝑥 = (𝑘 + 1))
119, 10breq12d 5123 . . . 4 (𝑥 = (𝑘 + 1) → ((𝑆𝑥)𝐺𝑥 ↔ (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1)))
1211imbi2d 340 . . 3 (𝑥 = (𝑘 + 1) → ((𝜑 → (𝑆𝑥)𝐺𝑥) ↔ (𝜑 → (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1))))
13 fveq2 6861 . . . . 5 (𝑥 = 𝐴 → (𝑆𝑥) = (𝑆𝐴))
14 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
1513, 14breq12d 5123 . . . 4 (𝑥 = 𝐴 → ((𝑆𝑥)𝐺𝑥 ↔ (𝑆𝐴)𝐺𝐴))
1615imbi2d 340 . . 3 (𝑥 = 𝐴 → ((𝜑 → (𝑆𝑥)𝐺𝑥) ↔ (𝜑 → (𝑆𝐴)𝐺𝐴)))
17 heibor.11 . . . . . . 7 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
1817fveq1i 6862 . . . . . 6 (𝑆‘0) = (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘0)
19 0z 12547 . . . . . . 7 0 ∈ ℤ
20 seq1 13986 . . . . . . 7 (0 ∈ ℤ → (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘0) = ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘0))
2119, 20ax-mp 5 . . . . . 6 (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘0) = ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘0)
2218, 21eqtri 2753 . . . . 5 (𝑆‘0) = ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘0)
23 0nn0 12464 . . . . . 6 0 ∈ ℕ0
24 heibor.10 . . . . . . 7 (𝜑𝐶𝐺0)
25 heibor.4 . . . . . . . . 9 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
2625relopabiv 5786 . . . . . . . 8 Rel 𝐺
2726brrelex1i 5697 . . . . . . 7 (𝐶𝐺0 → 𝐶 ∈ V)
2824, 27syl 17 . . . . . 6 (𝜑𝐶 ∈ V)
29 iftrue 4497 . . . . . . 7 (𝑚 = 0 → if(𝑚 = 0, 𝐶, (𝑚 − 1)) = 𝐶)
30 eqid 2730 . . . . . . 7 (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))) = (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))
3129, 30fvmptg 6969 . . . . . 6 ((0 ∈ ℕ0𝐶 ∈ V) → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘0) = 𝐶)
3223, 28, 31sylancr 587 . . . . 5 (𝜑 → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘0) = 𝐶)
3322, 32eqtrid 2777 . . . 4 (𝜑 → (𝑆‘0) = 𝐶)
3433, 24eqbrtrd 5132 . . 3 (𝜑 → (𝑆‘0)𝐺0)
35 df-br 5111 . . . . . 6 ((𝑆𝑘)𝐺𝑘 ↔ ⟨(𝑆𝑘), 𝑘⟩ ∈ 𝐺)
36 heibor.9 . . . . . . 7 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
37 fveq2 6861 . . . . . . . . . . 11 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (𝑇𝑥) = (𝑇‘⟨(𝑆𝑘), 𝑘⟩))
38 df-ov 7393 . . . . . . . . . . 11 ((𝑆𝑘)𝑇𝑘) = (𝑇‘⟨(𝑆𝑘), 𝑘⟩)
3937, 38eqtr4di 2783 . . . . . . . . . 10 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (𝑇𝑥) = ((𝑆𝑘)𝑇𝑘))
40 fvex 6874 . . . . . . . . . . . 12 (𝑆𝑘) ∈ V
41 vex 3454 . . . . . . . . . . . 12 𝑘 ∈ V
4240, 41op2ndd 7982 . . . . . . . . . . 11 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (2nd𝑥) = 𝑘)
4342oveq1d 7405 . . . . . . . . . 10 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → ((2nd𝑥) + 1) = (𝑘 + 1))
4439, 43breq12d 5123 . . . . . . . . 9 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → ((𝑇𝑥)𝐺((2nd𝑥) + 1) ↔ ((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1)))
45 fveq2 6861 . . . . . . . . . . . 12 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (𝐵𝑥) = (𝐵‘⟨(𝑆𝑘), 𝑘⟩))
46 df-ov 7393 . . . . . . . . . . . 12 ((𝑆𝑘)𝐵𝑘) = (𝐵‘⟨(𝑆𝑘), 𝑘⟩)
4745, 46eqtr4di 2783 . . . . . . . . . . 11 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (𝐵𝑥) = ((𝑆𝑘)𝐵𝑘))
4839, 43oveq12d 7408 . . . . . . . . . . 11 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → ((𝑇𝑥)𝐵((2nd𝑥) + 1)) = (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1)))
4947, 48ineq12d 4187 . . . . . . . . . 10 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) = (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))))
5049eleq1d 2814 . . . . . . . . 9 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾 ↔ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾))
5144, 50anbi12d 632 . . . . . . . 8 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾) ↔ (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
5251rspccv 3588 . . . . . . 7 (∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾) → (⟨(𝑆𝑘), 𝑘⟩ ∈ 𝐺 → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
5336, 52syl 17 . . . . . 6 (𝜑 → (⟨(𝑆𝑘), 𝑘⟩ ∈ 𝐺 → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
5435, 53biimtrid 242 . . . . 5 (𝜑 → ((𝑆𝑘)𝐺𝑘 → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
55 seqp1 13988 . . . . . . . . . . 11 (𝑘 ∈ (ℤ‘0) → (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘(𝑘 + 1)) = ((seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))))
56 nn0uz 12842 . . . . . . . . . . 11 0 = (ℤ‘0)
5755, 56eleq2s 2847 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘(𝑘 + 1)) = ((seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))))
5817fveq1i 6862 . . . . . . . . . 10 (𝑆‘(𝑘 + 1)) = (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘(𝑘 + 1))
5917fveq1i 6862 . . . . . . . . . . 11 (𝑆𝑘) = (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)
6059oveq1i 7400 . . . . . . . . . 10 ((𝑆𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))) = ((seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)))
6157, 58, 603eqtr4g 2790 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (𝑆‘(𝑘 + 1)) = ((𝑆𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))))
62 eqeq1 2734 . . . . . . . . . . . . 13 (𝑚 = (𝑘 + 1) → (𝑚 = 0 ↔ (𝑘 + 1) = 0))
63 oveq1 7397 . . . . . . . . . . . . 13 (𝑚 = (𝑘 + 1) → (𝑚 − 1) = ((𝑘 + 1) − 1))
6462, 63ifbieq2d 4518 . . . . . . . . . . . 12 (𝑚 = (𝑘 + 1) → if(𝑚 = 0, 𝐶, (𝑚 − 1)) = if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)))
65 peano2nn0 12489 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
66 nn0p1nn 12488 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
67 nnne0 12227 . . . . . . . . . . . . . . 15 ((𝑘 + 1) ∈ ℕ → (𝑘 + 1) ≠ 0)
6867neneqd 2931 . . . . . . . . . . . . . 14 ((𝑘 + 1) ∈ ℕ → ¬ (𝑘 + 1) = 0)
69 iffalse 4500 . . . . . . . . . . . . . 14 (¬ (𝑘 + 1) = 0 → if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)) = ((𝑘 + 1) − 1))
7066, 68, 693syl 18 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)) = ((𝑘 + 1) − 1))
71 ovex 7423 . . . . . . . . . . . . 13 ((𝑘 + 1) − 1) ∈ V
7270, 71eqeltrdi 2837 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)) ∈ V)
7330, 64, 65, 72fvmptd3 6994 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)) = if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)))
74 nn0cn 12459 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
75 ax-1cn 11133 . . . . . . . . . . . 12 1 ∈ ℂ
76 pncan 11434 . . . . . . . . . . . 12 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
7774, 75, 76sylancl 586 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((𝑘 + 1) − 1) = 𝑘)
7873, 70, 773eqtrd 2769 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)) = 𝑘)
7978oveq2d 7406 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((𝑆𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))) = ((𝑆𝑘)𝑇𝑘))
8061, 79eqtrd 2765 . . . . . . . 8 (𝑘 ∈ ℕ0 → (𝑆‘(𝑘 + 1)) = ((𝑆𝑘)𝑇𝑘))
8180breq1d 5120 . . . . . . 7 (𝑘 ∈ ℕ0 → ((𝑆‘(𝑘 + 1))𝐺(𝑘 + 1) ↔ ((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1)))
8281biimprd 248 . . . . . 6 (𝑘 ∈ ℕ0 → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) → (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1)))
8382adantrd 491 . . . . 5 (𝑘 ∈ ℕ0 → ((((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾) → (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1)))
8454, 83syl9r 78 . . . 4 (𝑘 ∈ ℕ0 → (𝜑 → ((𝑆𝑘)𝐺𝑘 → (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1))))
8584a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝜑 → (𝑆𝑘)𝐺𝑘) → (𝜑 → (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1))))
864, 8, 12, 16, 34, 85nn0ind 12636 . 2 (𝐴 ∈ ℕ0 → (𝜑 → (𝑆𝐴)𝐺𝐴))
8786impcom 407 1 ((𝜑𝐴 ∈ ℕ0) → (𝑆𝐴)𝐺𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wral 3045  wrex 3054  Vcvv 3450  cin 3916  wss 3917  ifcif 4491  𝒫 cpw 4566  cop 4598   cuni 4874   ciun 4958   class class class wbr 5110  {copab 5172  cmpt 5191  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  2nd c2nd 7970  Fincfn 8921  cc 11073  0cc0 11075  1c1 11076   + caddc 11078  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  0cn0 12449  cz 12536  cuz 12800  seqcseq 13973  cexp 14033  ballcbl 21258  MetOpencmopn 21261  CMetccmet 25161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-seq 13974
This theorem is referenced by:  heiborlem5  37816  heiborlem6  37817  heiborlem8  37819
  Copyright terms: Public domain W3C validator