Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem4 Structured version   Visualization version   GIF version

Theorem heiborlem4 35568
 Description: Lemma for heibor 35575. Using the function 𝑇 constructed in heiborlem3 35567, construct an infinite path in 𝐺. (Contributed by Jeff Madsen, 23-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heibor.5 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
heibor.6 (𝜑𝐷 ∈ (CMet‘𝑋))
heibor.7 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
heibor.8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
heibor.9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
heibor.10 (𝜑𝐶𝐺0)
heibor.11 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
Assertion
Ref Expression
heiborlem4 ((𝜑𝐴 ∈ ℕ0) → (𝑆𝐴)𝐺𝐴)
Distinct variable groups:   𝑥,𝑛,𝑦,𝐴   𝑢,𝑛,𝐹,𝑥,𝑦   𝑥,𝐺   𝜑,𝑥   𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧,𝐷   𝑇,𝑚,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛,𝑢,𝑣,𝑦   𝑚,𝐽,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑈,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑆,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑚,𝑋,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝐶,𝑚,𝑛,𝑢,𝑣,𝑦   𝑛,𝐾,𝑥,𝑦,𝑧   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐴(𝑧,𝑣,𝑢,𝑚)   𝐵(𝑧,𝑚)   𝐶(𝑥,𝑧)   𝑇(𝑣,𝑢)   𝑈(𝑚)   𝐹(𝑧,𝑣,𝑚)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐾(𝑣,𝑢,𝑚)

Proof of Theorem heiborlem4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6664 . . . . 5 (𝑥 = 0 → (𝑆𝑥) = (𝑆‘0))
2 id 22 . . . . 5 (𝑥 = 0 → 𝑥 = 0)
31, 2breq12d 5050 . . . 4 (𝑥 = 0 → ((𝑆𝑥)𝐺𝑥 ↔ (𝑆‘0)𝐺0))
43imbi2d 344 . . 3 (𝑥 = 0 → ((𝜑 → (𝑆𝑥)𝐺𝑥) ↔ (𝜑 → (𝑆‘0)𝐺0)))
5 fveq2 6664 . . . . 5 (𝑥 = 𝑘 → (𝑆𝑥) = (𝑆𝑘))
6 id 22 . . . . 5 (𝑥 = 𝑘𝑥 = 𝑘)
75, 6breq12d 5050 . . . 4 (𝑥 = 𝑘 → ((𝑆𝑥)𝐺𝑥 ↔ (𝑆𝑘)𝐺𝑘))
87imbi2d 344 . . 3 (𝑥 = 𝑘 → ((𝜑 → (𝑆𝑥)𝐺𝑥) ↔ (𝜑 → (𝑆𝑘)𝐺𝑘)))
9 fveq2 6664 . . . . 5 (𝑥 = (𝑘 + 1) → (𝑆𝑥) = (𝑆‘(𝑘 + 1)))
10 id 22 . . . . 5 (𝑥 = (𝑘 + 1) → 𝑥 = (𝑘 + 1))
119, 10breq12d 5050 . . . 4 (𝑥 = (𝑘 + 1) → ((𝑆𝑥)𝐺𝑥 ↔ (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1)))
1211imbi2d 344 . . 3 (𝑥 = (𝑘 + 1) → ((𝜑 → (𝑆𝑥)𝐺𝑥) ↔ (𝜑 → (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1))))
13 fveq2 6664 . . . . 5 (𝑥 = 𝐴 → (𝑆𝑥) = (𝑆𝐴))
14 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
1513, 14breq12d 5050 . . . 4 (𝑥 = 𝐴 → ((𝑆𝑥)𝐺𝑥 ↔ (𝑆𝐴)𝐺𝐴))
1615imbi2d 344 . . 3 (𝑥 = 𝐴 → ((𝜑 → (𝑆𝑥)𝐺𝑥) ↔ (𝜑 → (𝑆𝐴)𝐺𝐴)))
17 heibor.11 . . . . . . 7 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
1817fveq1i 6665 . . . . . 6 (𝑆‘0) = (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘0)
19 0z 12045 . . . . . . 7 0 ∈ ℤ
20 seq1 13445 . . . . . . 7 (0 ∈ ℤ → (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘0) = ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘0))
2119, 20ax-mp 5 . . . . . 6 (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘0) = ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘0)
2218, 21eqtri 2782 . . . . 5 (𝑆‘0) = ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘0)
23 0nn0 11963 . . . . . 6 0 ∈ ℕ0
24 heibor.10 . . . . . . 7 (𝜑𝐶𝐺0)
25 heibor.4 . . . . . . . . 9 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
2625relopabiv 5668 . . . . . . . 8 Rel 𝐺
2726brrelex1i 5583 . . . . . . 7 (𝐶𝐺0 → 𝐶 ∈ V)
2824, 27syl 17 . . . . . 6 (𝜑𝐶 ∈ V)
29 iftrue 4430 . . . . . . 7 (𝑚 = 0 → if(𝑚 = 0, 𝐶, (𝑚 − 1)) = 𝐶)
30 eqid 2759 . . . . . . 7 (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))) = (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))
3129, 30fvmptg 6763 . . . . . 6 ((0 ∈ ℕ0𝐶 ∈ V) → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘0) = 𝐶)
3223, 28, 31sylancr 590 . . . . 5 (𝜑 → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘0) = 𝐶)
3322, 32syl5eq 2806 . . . 4 (𝜑 → (𝑆‘0) = 𝐶)
3433, 24eqbrtrd 5059 . . 3 (𝜑 → (𝑆‘0)𝐺0)
35 df-br 5038 . . . . . 6 ((𝑆𝑘)𝐺𝑘 ↔ ⟨(𝑆𝑘), 𝑘⟩ ∈ 𝐺)
36 heibor.9 . . . . . . 7 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
37 fveq2 6664 . . . . . . . . . . 11 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (𝑇𝑥) = (𝑇‘⟨(𝑆𝑘), 𝑘⟩))
38 df-ov 7160 . . . . . . . . . . 11 ((𝑆𝑘)𝑇𝑘) = (𝑇‘⟨(𝑆𝑘), 𝑘⟩)
3937, 38eqtr4di 2812 . . . . . . . . . 10 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (𝑇𝑥) = ((𝑆𝑘)𝑇𝑘))
40 fvex 6677 . . . . . . . . . . . 12 (𝑆𝑘) ∈ V
41 vex 3414 . . . . . . . . . . . 12 𝑘 ∈ V
4240, 41op2ndd 7711 . . . . . . . . . . 11 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (2nd𝑥) = 𝑘)
4342oveq1d 7172 . . . . . . . . . 10 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → ((2nd𝑥) + 1) = (𝑘 + 1))
4439, 43breq12d 5050 . . . . . . . . 9 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → ((𝑇𝑥)𝐺((2nd𝑥) + 1) ↔ ((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1)))
45 fveq2 6664 . . . . . . . . . . . 12 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (𝐵𝑥) = (𝐵‘⟨(𝑆𝑘), 𝑘⟩))
46 df-ov 7160 . . . . . . . . . . . 12 ((𝑆𝑘)𝐵𝑘) = (𝐵‘⟨(𝑆𝑘), 𝑘⟩)
4745, 46eqtr4di 2812 . . . . . . . . . . 11 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (𝐵𝑥) = ((𝑆𝑘)𝐵𝑘))
4839, 43oveq12d 7175 . . . . . . . . . . 11 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → ((𝑇𝑥)𝐵((2nd𝑥) + 1)) = (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1)))
4947, 48ineq12d 4121 . . . . . . . . . 10 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) = (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))))
5049eleq1d 2837 . . . . . . . . 9 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾 ↔ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾))
5144, 50anbi12d 633 . . . . . . . 8 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾) ↔ (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
5251rspccv 3541 . . . . . . 7 (∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾) → (⟨(𝑆𝑘), 𝑘⟩ ∈ 𝐺 → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
5336, 52syl 17 . . . . . 6 (𝜑 → (⟨(𝑆𝑘), 𝑘⟩ ∈ 𝐺 → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
5435, 53syl5bi 245 . . . . 5 (𝜑 → ((𝑆𝑘)𝐺𝑘 → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
55 seqp1 13447 . . . . . . . . . . 11 (𝑘 ∈ (ℤ‘0) → (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘(𝑘 + 1)) = ((seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))))
56 nn0uz 12334 . . . . . . . . . . 11 0 = (ℤ‘0)
5755, 56eleq2s 2871 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘(𝑘 + 1)) = ((seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))))
5817fveq1i 6665 . . . . . . . . . 10 (𝑆‘(𝑘 + 1)) = (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘(𝑘 + 1))
5917fveq1i 6665 . . . . . . . . . . 11 (𝑆𝑘) = (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)
6059oveq1i 7167 . . . . . . . . . 10 ((𝑆𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))) = ((seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)))
6157, 58, 603eqtr4g 2819 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (𝑆‘(𝑘 + 1)) = ((𝑆𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))))
62 eqeq1 2763 . . . . . . . . . . . . 13 (𝑚 = (𝑘 + 1) → (𝑚 = 0 ↔ (𝑘 + 1) = 0))
63 oveq1 7164 . . . . . . . . . . . . 13 (𝑚 = (𝑘 + 1) → (𝑚 − 1) = ((𝑘 + 1) − 1))
6462, 63ifbieq2d 4450 . . . . . . . . . . . 12 (𝑚 = (𝑘 + 1) → if(𝑚 = 0, 𝐶, (𝑚 − 1)) = if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)))
65 peano2nn0 11988 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
66 nn0p1nn 11987 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
67 nnne0 11722 . . . . . . . . . . . . . . 15 ((𝑘 + 1) ∈ ℕ → (𝑘 + 1) ≠ 0)
6867neneqd 2957 . . . . . . . . . . . . . 14 ((𝑘 + 1) ∈ ℕ → ¬ (𝑘 + 1) = 0)
69 iffalse 4433 . . . . . . . . . . . . . 14 (¬ (𝑘 + 1) = 0 → if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)) = ((𝑘 + 1) − 1))
7066, 68, 693syl 18 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)) = ((𝑘 + 1) − 1))
71 ovex 7190 . . . . . . . . . . . . 13 ((𝑘 + 1) − 1) ∈ V
7270, 71eqeltrdi 2861 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)) ∈ V)
7330, 64, 65, 72fvmptd3 6788 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)) = if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)))
74 nn0cn 11958 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
75 ax-1cn 10647 . . . . . . . . . . . 12 1 ∈ ℂ
76 pncan 10944 . . . . . . . . . . . 12 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
7774, 75, 76sylancl 589 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((𝑘 + 1) − 1) = 𝑘)
7873, 70, 773eqtrd 2798 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)) = 𝑘)
7978oveq2d 7173 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((𝑆𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))) = ((𝑆𝑘)𝑇𝑘))
8061, 79eqtrd 2794 . . . . . . . 8 (𝑘 ∈ ℕ0 → (𝑆‘(𝑘 + 1)) = ((𝑆𝑘)𝑇𝑘))
8180breq1d 5047 . . . . . . 7 (𝑘 ∈ ℕ0 → ((𝑆‘(𝑘 + 1))𝐺(𝑘 + 1) ↔ ((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1)))
8281biimprd 251 . . . . . 6 (𝑘 ∈ ℕ0 → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) → (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1)))
8382adantrd 495 . . . . 5 (𝑘 ∈ ℕ0 → ((((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾) → (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1)))
8454, 83syl9r 78 . . . 4 (𝑘 ∈ ℕ0 → (𝜑 → ((𝑆𝑘)𝐺𝑘 → (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1))))
8584a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝜑 → (𝑆𝑘)𝐺𝑘) → (𝜑 → (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1))))
864, 8, 12, 16, 34, 85nn0ind 12130 . 2 (𝐴 ∈ ℕ0 → (𝜑 → (𝑆𝐴)𝐺𝐴))
8786impcom 411 1 ((𝜑𝐴 ∈ ℕ0) → (𝑆𝐴)𝐺𝐴)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∧ w3a 1085   = wceq 1539   ∈ wcel 2112  {cab 2736  ∀wral 3071  ∃wrex 3072  Vcvv 3410   ∩ cin 3860   ⊆ wss 3861  ifcif 4424  𝒫 cpw 4498  ⟨cop 4532  ∪ cuni 4802  ∪ ciun 4887   class class class wbr 5037  {copab 5099   ↦ cmpt 5117  ⟶wf 6337  ‘cfv 6341  (class class class)co 7157   ∈ cmpo 7159  2nd c2nd 7699  Fincfn 8541  ℂcc 10587  0cc0 10589  1c1 10590   + caddc 10592   − cmin 10922   / cdiv 11349  ℕcn 11688  2c2 11743  ℕ0cn0 11948  ℤcz 12034  ℤ≥cuz 12296  seqcseq 13432  ↑cexp 13493  ballcbl 20168  MetOpencmopn 20171  CMetccmet 23969 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-cnex 10645  ax-resscn 10646  ax-1cn 10647  ax-icn 10648  ax-addcl 10649  ax-addrcl 10650  ax-mulcl 10651  ax-mulrcl 10652  ax-mulcom 10653  ax-addass 10654  ax-mulass 10655  ax-distr 10656  ax-i2m1 10657  ax-1ne0 10658  ax-1rid 10659  ax-rnegex 10660  ax-rrecex 10661  ax-cnre 10662  ax-pre-lttri 10663  ax-pre-lttrn 10664  ax-pre-ltadd 10665  ax-pre-mulgt0 10666 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-iun 4889  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6132  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7115  df-ov 7160  df-oprab 7161  df-mpo 7162  df-om 7587  df-2nd 7701  df-wrecs 7964  df-recs 8025  df-rdg 8063  df-er 8306  df-en 8542  df-dom 8543  df-sdom 8544  df-pnf 10729  df-mnf 10730  df-xr 10731  df-ltxr 10732  df-le 10733  df-sub 10924  df-neg 10925  df-nn 11689  df-n0 11949  df-z 12035  df-uz 12297  df-seq 13433 This theorem is referenced by:  heiborlem5  35569  heiborlem6  35570  heiborlem8  35572
 Copyright terms: Public domain W3C validator