Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem4 Structured version   Visualization version   GIF version

Theorem heiborlem4 34035
Description: Lemma for heibor 34042. Using the function 𝑇 constructed in heiborlem3 34034, construct an infinite path in 𝐺. (Contributed by Jeff Madsen, 23-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heibor.5 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
heibor.6 (𝜑𝐷 ∈ (CMet‘𝑋))
heibor.7 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
heibor.8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
heibor.9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
heibor.10 (𝜑𝐶𝐺0)
heibor.11 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
Assertion
Ref Expression
heiborlem4 ((𝜑𝐴 ∈ ℕ0) → (𝑆𝐴)𝐺𝐴)
Distinct variable groups:   𝑥,𝑛,𝑦,𝐴   𝑢,𝑛,𝐹,𝑥,𝑦   𝑥,𝐺   𝜑,𝑥   𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧,𝐷   𝑇,𝑚,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛,𝑢,𝑣,𝑦   𝑚,𝐽,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑈,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑆,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑚,𝑋,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝐶,𝑚,𝑛,𝑢,𝑣,𝑦   𝑛,𝐾,𝑥,𝑦,𝑧   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐴(𝑧,𝑣,𝑢,𝑚)   𝐵(𝑧,𝑚)   𝐶(𝑥,𝑧)   𝑇(𝑣,𝑢)   𝑈(𝑚)   𝐹(𝑧,𝑣,𝑚)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐾(𝑣,𝑢,𝑚)

Proof of Theorem heiborlem4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6375 . . . . 5 (𝑥 = 0 → (𝑆𝑥) = (𝑆‘0))
2 id 22 . . . . 5 (𝑥 = 0 → 𝑥 = 0)
31, 2breq12d 4822 . . . 4 (𝑥 = 0 → ((𝑆𝑥)𝐺𝑥 ↔ (𝑆‘0)𝐺0))
43imbi2d 331 . . 3 (𝑥 = 0 → ((𝜑 → (𝑆𝑥)𝐺𝑥) ↔ (𝜑 → (𝑆‘0)𝐺0)))
5 fveq2 6375 . . . . 5 (𝑥 = 𝑘 → (𝑆𝑥) = (𝑆𝑘))
6 id 22 . . . . 5 (𝑥 = 𝑘𝑥 = 𝑘)
75, 6breq12d 4822 . . . 4 (𝑥 = 𝑘 → ((𝑆𝑥)𝐺𝑥 ↔ (𝑆𝑘)𝐺𝑘))
87imbi2d 331 . . 3 (𝑥 = 𝑘 → ((𝜑 → (𝑆𝑥)𝐺𝑥) ↔ (𝜑 → (𝑆𝑘)𝐺𝑘)))
9 fveq2 6375 . . . . 5 (𝑥 = (𝑘 + 1) → (𝑆𝑥) = (𝑆‘(𝑘 + 1)))
10 id 22 . . . . 5 (𝑥 = (𝑘 + 1) → 𝑥 = (𝑘 + 1))
119, 10breq12d 4822 . . . 4 (𝑥 = (𝑘 + 1) → ((𝑆𝑥)𝐺𝑥 ↔ (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1)))
1211imbi2d 331 . . 3 (𝑥 = (𝑘 + 1) → ((𝜑 → (𝑆𝑥)𝐺𝑥) ↔ (𝜑 → (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1))))
13 fveq2 6375 . . . . 5 (𝑥 = 𝐴 → (𝑆𝑥) = (𝑆𝐴))
14 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
1513, 14breq12d 4822 . . . 4 (𝑥 = 𝐴 → ((𝑆𝑥)𝐺𝑥 ↔ (𝑆𝐴)𝐺𝐴))
1615imbi2d 331 . . 3 (𝑥 = 𝐴 → ((𝜑 → (𝑆𝑥)𝐺𝑥) ↔ (𝜑 → (𝑆𝐴)𝐺𝐴)))
17 heibor.11 . . . . . . 7 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
1817fveq1i 6376 . . . . . 6 (𝑆‘0) = (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘0)
19 0z 11635 . . . . . . 7 0 ∈ ℤ
20 seq1 13021 . . . . . . 7 (0 ∈ ℤ → (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘0) = ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘0))
2119, 20ax-mp 5 . . . . . 6 (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘0) = ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘0)
2218, 21eqtri 2787 . . . . 5 (𝑆‘0) = ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘0)
23 0nn0 11555 . . . . . 6 0 ∈ ℕ0
24 heibor.10 . . . . . . 7 (𝜑𝐶𝐺0)
25 heibor.4 . . . . . . . . 9 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
2625relopabi 5414 . . . . . . . 8 Rel 𝐺
2726brrelex1i 5328 . . . . . . 7 (𝐶𝐺0 → 𝐶 ∈ V)
2824, 27syl 17 . . . . . 6 (𝜑𝐶 ∈ V)
29 iftrue 4249 . . . . . . 7 (𝑚 = 0 → if(𝑚 = 0, 𝐶, (𝑚 − 1)) = 𝐶)
30 eqid 2765 . . . . . . 7 (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))) = (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))
3129, 30fvmptg 6469 . . . . . 6 ((0 ∈ ℕ0𝐶 ∈ V) → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘0) = 𝐶)
3223, 28, 31sylancr 581 . . . . 5 (𝜑 → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘0) = 𝐶)
3322, 32syl5eq 2811 . . . 4 (𝜑 → (𝑆‘0) = 𝐶)
3433, 24eqbrtrd 4831 . . 3 (𝜑 → (𝑆‘0)𝐺0)
35 df-br 4810 . . . . . 6 ((𝑆𝑘)𝐺𝑘 ↔ ⟨(𝑆𝑘), 𝑘⟩ ∈ 𝐺)
36 heibor.9 . . . . . . 7 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
37 fveq2 6375 . . . . . . . . . . 11 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (𝑇𝑥) = (𝑇‘⟨(𝑆𝑘), 𝑘⟩))
38 df-ov 6845 . . . . . . . . . . 11 ((𝑆𝑘)𝑇𝑘) = (𝑇‘⟨(𝑆𝑘), 𝑘⟩)
3937, 38syl6eqr 2817 . . . . . . . . . 10 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (𝑇𝑥) = ((𝑆𝑘)𝑇𝑘))
40 fvex 6388 . . . . . . . . . . . 12 (𝑆𝑘) ∈ V
41 vex 3353 . . . . . . . . . . . 12 𝑘 ∈ V
4240, 41op2ndd 7377 . . . . . . . . . . 11 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (2nd𝑥) = 𝑘)
4342oveq1d 6857 . . . . . . . . . 10 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → ((2nd𝑥) + 1) = (𝑘 + 1))
4439, 43breq12d 4822 . . . . . . . . 9 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → ((𝑇𝑥)𝐺((2nd𝑥) + 1) ↔ ((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1)))
45 fveq2 6375 . . . . . . . . . . . 12 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (𝐵𝑥) = (𝐵‘⟨(𝑆𝑘), 𝑘⟩))
46 df-ov 6845 . . . . . . . . . . . 12 ((𝑆𝑘)𝐵𝑘) = (𝐵‘⟨(𝑆𝑘), 𝑘⟩)
4745, 46syl6eqr 2817 . . . . . . . . . . 11 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (𝐵𝑥) = ((𝑆𝑘)𝐵𝑘))
4839, 43oveq12d 6860 . . . . . . . . . . 11 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → ((𝑇𝑥)𝐵((2nd𝑥) + 1)) = (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1)))
4947, 48ineq12d 3977 . . . . . . . . . 10 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) = (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))))
5049eleq1d 2829 . . . . . . . . 9 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾 ↔ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾))
5144, 50anbi12d 624 . . . . . . . 8 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾) ↔ (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
5251rspccv 3458 . . . . . . 7 (∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾) → (⟨(𝑆𝑘), 𝑘⟩ ∈ 𝐺 → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
5336, 52syl 17 . . . . . 6 (𝜑 → (⟨(𝑆𝑘), 𝑘⟩ ∈ 𝐺 → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
5435, 53syl5bi 233 . . . . 5 (𝜑 → ((𝑆𝑘)𝐺𝑘 → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
55 seqp1 13023 . . . . . . . . . . 11 (𝑘 ∈ (ℤ‘0) → (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘(𝑘 + 1)) = ((seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))))
56 nn0uz 11922 . . . . . . . . . . 11 0 = (ℤ‘0)
5755, 56eleq2s 2862 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘(𝑘 + 1)) = ((seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))))
5817fveq1i 6376 . . . . . . . . . 10 (𝑆‘(𝑘 + 1)) = (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘(𝑘 + 1))
5917fveq1i 6376 . . . . . . . . . . 11 (𝑆𝑘) = (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)
6059oveq1i 6852 . . . . . . . . . 10 ((𝑆𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))) = ((seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)))
6157, 58, 603eqtr4g 2824 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (𝑆‘(𝑘 + 1)) = ((𝑆𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))))
62 peano2nn0 11580 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
63 nn0p1nn 11579 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
64 nnne0 11310 . . . . . . . . . . . . . . 15 ((𝑘 + 1) ∈ ℕ → (𝑘 + 1) ≠ 0)
6564neneqd 2942 . . . . . . . . . . . . . 14 ((𝑘 + 1) ∈ ℕ → ¬ (𝑘 + 1) = 0)
66 iffalse 4252 . . . . . . . . . . . . . 14 (¬ (𝑘 + 1) = 0 → if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)) = ((𝑘 + 1) − 1))
6763, 65, 663syl 18 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)) = ((𝑘 + 1) − 1))
68 ovex 6874 . . . . . . . . . . . . 13 ((𝑘 + 1) − 1) ∈ V
6967, 68syl6eqel 2852 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)) ∈ V)
70 eqeq1 2769 . . . . . . . . . . . . . 14 (𝑚 = (𝑘 + 1) → (𝑚 = 0 ↔ (𝑘 + 1) = 0))
71 oveq1 6849 . . . . . . . . . . . . . 14 (𝑚 = (𝑘 + 1) → (𝑚 − 1) = ((𝑘 + 1) − 1))
7270, 71ifbieq2d 4268 . . . . . . . . . . . . 13 (𝑚 = (𝑘 + 1) → if(𝑚 = 0, 𝐶, (𝑚 − 1)) = if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)))
7372, 30fvmptg 6469 . . . . . . . . . . . 12 (((𝑘 + 1) ∈ ℕ0 ∧ if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)) ∈ V) → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)) = if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)))
7462, 69, 73syl2anc 579 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)) = if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)))
75 nn0cn 11549 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
76 ax-1cn 10247 . . . . . . . . . . . 12 1 ∈ ℂ
77 pncan 10541 . . . . . . . . . . . 12 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
7875, 76, 77sylancl 580 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((𝑘 + 1) − 1) = 𝑘)
7974, 67, 783eqtrd 2803 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)) = 𝑘)
8079oveq2d 6858 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((𝑆𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))) = ((𝑆𝑘)𝑇𝑘))
8161, 80eqtrd 2799 . . . . . . . 8 (𝑘 ∈ ℕ0 → (𝑆‘(𝑘 + 1)) = ((𝑆𝑘)𝑇𝑘))
8281breq1d 4819 . . . . . . 7 (𝑘 ∈ ℕ0 → ((𝑆‘(𝑘 + 1))𝐺(𝑘 + 1) ↔ ((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1)))
8382biimprd 239 . . . . . 6 (𝑘 ∈ ℕ0 → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) → (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1)))
8483adantrd 485 . . . . 5 (𝑘 ∈ ℕ0 → ((((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾) → (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1)))
8554, 84syl9r 78 . . . 4 (𝑘 ∈ ℕ0 → (𝜑 → ((𝑆𝑘)𝐺𝑘 → (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1))))
8685a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝜑 → (𝑆𝑘)𝐺𝑘) → (𝜑 → (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1))))
874, 8, 12, 16, 34, 86nn0ind 11719 . 2 (𝐴 ∈ ℕ0 → (𝜑 → (𝑆𝐴)𝐺𝐴))
8887impcom 396 1 ((𝜑𝐴 ∈ ℕ0) → (𝑆𝐴)𝐺𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  {cab 2751  wral 3055  wrex 3056  Vcvv 3350  cin 3731  wss 3732  ifcif 4243  𝒫 cpw 4315  cop 4340   cuni 4594   ciun 4676   class class class wbr 4809  {copab 4871  cmpt 4888  wf 6064  cfv 6068  (class class class)co 6842  cmpt2 6844  2nd c2nd 7365  Fincfn 8160  cc 10187  0cc0 10189  1c1 10190   + caddc 10192  cmin 10520   / cdiv 10938  cn 11274  2c2 11327  0cn0 11538  cz 11624  cuz 11886  seqcseq 13008  cexp 13067  ballcbl 20006  MetOpencmopn 20009  CMetccmet 23331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-n0 11539  df-z 11625  df-uz 11887  df-seq 13009
This theorem is referenced by:  heiborlem5  34036  heiborlem6  34037  heiborlem8  34039
  Copyright terms: Public domain W3C validator