Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lncvrelatN Structured version   Visualization version   GIF version

Theorem lncvrelatN 39799
Description: A lattice element covered by a line is an atom. (Contributed by NM, 28-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lncvrelat.b 𝐵 = (Base‘𝐾)
lncvrelat.c 𝐶 = ( ⋖ ‘𝐾)
lncvrelat.a 𝐴 = (Atoms‘𝐾)
lncvrelat.n 𝑁 = (Lines‘𝐾)
lncvrelat.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
lncvrelatN (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ ((𝑀𝑋) ∈ 𝑁𝑃𝐶𝑋)) → 𝑃𝐴)

Proof of Theorem lncvrelatN
Dummy variables 𝑟 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hllat 39381 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
213ad2ant1 1133 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) → 𝐾 ∈ Lat)
3 eqid 2730 . . . . 5 (join‘𝐾) = (join‘𝐾)
4 lncvrelat.a . . . . 5 𝐴 = (Atoms‘𝐾)
5 lncvrelat.n . . . . 5 𝑁 = (Lines‘𝐾)
6 lncvrelat.m . . . . 5 𝑀 = (pmap‘𝐾)
73, 4, 5, 6isline2 39792 . . . 4 (𝐾 ∈ Lat → ((𝑀𝑋) ∈ 𝑁 ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟 ∧ (𝑀𝑋) = (𝑀‘(𝑞(join‘𝐾)𝑟)))))
82, 7syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) → ((𝑀𝑋) ∈ 𝑁 ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟 ∧ (𝑀𝑋) = (𝑀‘(𝑞(join‘𝐾)𝑟)))))
9 simpll1 1213 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → 𝐾 ∈ HL)
10 simpll2 1214 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → 𝑋𝐵)
119, 1syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → 𝐾 ∈ Lat)
12 simplrl 776 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → 𝑞𝐴)
13 lncvrelat.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
1413, 4atbase 39307 . . . . . . . . 9 (𝑞𝐴𝑞𝐵)
1512, 14syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → 𝑞𝐵)
16 simplrr 777 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → 𝑟𝐴)
1713, 4atbase 39307 . . . . . . . . 9 (𝑟𝐴𝑟𝐵)
1816, 17syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → 𝑟𝐵)
1913, 3latjcl 18337 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑞𝐵𝑟𝐵) → (𝑞(join‘𝐾)𝑟) ∈ 𝐵)
2011, 15, 18, 19syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → (𝑞(join‘𝐾)𝑟) ∈ 𝐵)
2113, 6pmap11 39780 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑞(join‘𝐾)𝑟) ∈ 𝐵) → ((𝑀𝑋) = (𝑀‘(𝑞(join‘𝐾)𝑟)) ↔ 𝑋 = (𝑞(join‘𝐾)𝑟)))
229, 10, 20, 21syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → ((𝑀𝑋) = (𝑀‘(𝑞(join‘𝐾)𝑟)) ↔ 𝑋 = (𝑞(join‘𝐾)𝑟)))
23 breq2 5093 . . . . . . . 8 (𝑋 = (𝑞(join‘𝐾)𝑟) → (𝑃𝐶𝑋𝑃𝐶(𝑞(join‘𝐾)𝑟)))
2423biimpd 229 . . . . . . 7 (𝑋 = (𝑞(join‘𝐾)𝑟) → (𝑃𝐶𝑋𝑃𝐶(𝑞(join‘𝐾)𝑟)))
259adantr 480 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) ∧ 𝑃𝐶(𝑞(join‘𝐾)𝑟)) → 𝐾 ∈ HL)
26 simpll3 1215 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → 𝑃𝐵)
2726, 12, 163jca 1128 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → (𝑃𝐵𝑞𝐴𝑟𝐴))
2827adantr 480 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) ∧ 𝑃𝐶(𝑞(join‘𝐾)𝑟)) → (𝑃𝐵𝑞𝐴𝑟𝐴))
29 simplr 768 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) ∧ 𝑃𝐶(𝑞(join‘𝐾)𝑟)) → 𝑞𝑟)
30 simpr 484 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) ∧ 𝑃𝐶(𝑞(join‘𝐾)𝑟)) → 𝑃𝐶(𝑞(join‘𝐾)𝑟))
31 lncvrelat.c . . . . . . . . . 10 𝐶 = ( ⋖ ‘𝐾)
3213, 3, 31, 4cvrat2 39447 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐵𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑃𝐶(𝑞(join‘𝐾)𝑟))) → 𝑃𝐴)
3325, 28, 29, 30, 32syl112anc 1376 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) ∧ 𝑃𝐶(𝑞(join‘𝐾)𝑟)) → 𝑃𝐴)
3433ex 412 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → (𝑃𝐶(𝑞(join‘𝐾)𝑟) → 𝑃𝐴))
3524, 34syl9r 78 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → (𝑋 = (𝑞(join‘𝐾)𝑟) → (𝑃𝐶𝑋𝑃𝐴)))
3622, 35sylbid 240 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → ((𝑀𝑋) = (𝑀‘(𝑞(join‘𝐾)𝑟)) → (𝑃𝐶𝑋𝑃𝐴)))
3736expimpd 453 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) → ((𝑞𝑟 ∧ (𝑀𝑋) = (𝑀‘(𝑞(join‘𝐾)𝑟))) → (𝑃𝐶𝑋𝑃𝐴)))
3837rexlimdvva 3187 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) → (∃𝑞𝐴𝑟𝐴 (𝑞𝑟 ∧ (𝑀𝑋) = (𝑀‘(𝑞(join‘𝐾)𝑟))) → (𝑃𝐶𝑋𝑃𝐴)))
398, 38sylbid 240 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) → ((𝑀𝑋) ∈ 𝑁 → (𝑃𝐶𝑋𝑃𝐴)))
4039imp32 418 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ ((𝑀𝑋) ∈ 𝑁𝑃𝐶𝑋)) → 𝑃𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wne 2926  wrex 3054   class class class wbr 5089  cfv 6477  (class class class)co 7341  Basecbs 17112  joincjn 18209  Latclat 18329  ccvr 39280  Atomscatm 39281  HLchlt 39368  Linesclines 39512  pmapcpmap 39515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-proset 18192  df-poset 18211  df-plt 18226  df-lub 18242  df-glb 18243  df-join 18244  df-meet 18245  df-p0 18321  df-lat 18330  df-clat 18397  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-lines 39519  df-pmap 39522
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator