Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lncvrelatN Structured version   Visualization version   GIF version

Theorem lncvrelatN 35849
Description: A lattice element covered by a line is an atom. (Contributed by NM, 28-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lncvrelat.b 𝐵 = (Base‘𝐾)
lncvrelat.c 𝐶 = ( ⋖ ‘𝐾)
lncvrelat.a 𝐴 = (Atoms‘𝐾)
lncvrelat.n 𝑁 = (Lines‘𝐾)
lncvrelat.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
lncvrelatN (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ ((𝑀𝑋) ∈ 𝑁𝑃𝐶𝑋)) → 𝑃𝐴)

Proof of Theorem lncvrelatN
Dummy variables 𝑟 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hllat 35431 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
213ad2ant1 1167 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) → 𝐾 ∈ Lat)
3 eqid 2825 . . . . 5 (join‘𝐾) = (join‘𝐾)
4 lncvrelat.a . . . . 5 𝐴 = (Atoms‘𝐾)
5 lncvrelat.n . . . . 5 𝑁 = (Lines‘𝐾)
6 lncvrelat.m . . . . 5 𝑀 = (pmap‘𝐾)
73, 4, 5, 6isline2 35842 . . . 4 (𝐾 ∈ Lat → ((𝑀𝑋) ∈ 𝑁 ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟 ∧ (𝑀𝑋) = (𝑀‘(𝑞(join‘𝐾)𝑟)))))
82, 7syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) → ((𝑀𝑋) ∈ 𝑁 ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟 ∧ (𝑀𝑋) = (𝑀‘(𝑞(join‘𝐾)𝑟)))))
9 simpll1 1273 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → 𝐾 ∈ HL)
10 simpll2 1275 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → 𝑋𝐵)
119, 1syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → 𝐾 ∈ Lat)
12 simplrl 795 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → 𝑞𝐴)
13 lncvrelat.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
1413, 4atbase 35357 . . . . . . . . 9 (𝑞𝐴𝑞𝐵)
1512, 14syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → 𝑞𝐵)
16 simplrr 796 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → 𝑟𝐴)
1713, 4atbase 35357 . . . . . . . . 9 (𝑟𝐴𝑟𝐵)
1816, 17syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → 𝑟𝐵)
1913, 3latjcl 17404 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑞𝐵𝑟𝐵) → (𝑞(join‘𝐾)𝑟) ∈ 𝐵)
2011, 15, 18, 19syl3anc 1494 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → (𝑞(join‘𝐾)𝑟) ∈ 𝐵)
2113, 6pmap11 35830 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑞(join‘𝐾)𝑟) ∈ 𝐵) → ((𝑀𝑋) = (𝑀‘(𝑞(join‘𝐾)𝑟)) ↔ 𝑋 = (𝑞(join‘𝐾)𝑟)))
229, 10, 20, 21syl3anc 1494 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → ((𝑀𝑋) = (𝑀‘(𝑞(join‘𝐾)𝑟)) ↔ 𝑋 = (𝑞(join‘𝐾)𝑟)))
23 breq2 4877 . . . . . . . 8 (𝑋 = (𝑞(join‘𝐾)𝑟) → (𝑃𝐶𝑋𝑃𝐶(𝑞(join‘𝐾)𝑟)))
2423biimpd 221 . . . . . . 7 (𝑋 = (𝑞(join‘𝐾)𝑟) → (𝑃𝐶𝑋𝑃𝐶(𝑞(join‘𝐾)𝑟)))
259adantr 474 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) ∧ 𝑃𝐶(𝑞(join‘𝐾)𝑟)) → 𝐾 ∈ HL)
26 simpll3 1277 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → 𝑃𝐵)
2726, 12, 163jca 1162 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → (𝑃𝐵𝑞𝐴𝑟𝐴))
2827adantr 474 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) ∧ 𝑃𝐶(𝑞(join‘𝐾)𝑟)) → (𝑃𝐵𝑞𝐴𝑟𝐴))
29 simplr 785 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) ∧ 𝑃𝐶(𝑞(join‘𝐾)𝑟)) → 𝑞𝑟)
30 simpr 479 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) ∧ 𝑃𝐶(𝑞(join‘𝐾)𝑟)) → 𝑃𝐶(𝑞(join‘𝐾)𝑟))
31 lncvrelat.c . . . . . . . . . 10 𝐶 = ( ⋖ ‘𝐾)
3213, 3, 31, 4cvrat2 35497 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐵𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑃𝐶(𝑞(join‘𝐾)𝑟))) → 𝑃𝐴)
3325, 28, 29, 30, 32syl112anc 1497 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) ∧ 𝑃𝐶(𝑞(join‘𝐾)𝑟)) → 𝑃𝐴)
3433ex 403 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → (𝑃𝐶(𝑞(join‘𝐾)𝑟) → 𝑃𝐴))
3524, 34syl9r 78 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → (𝑋 = (𝑞(join‘𝐾)𝑟) → (𝑃𝐶𝑋𝑃𝐴)))
3622, 35sylbid 232 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → ((𝑀𝑋) = (𝑀‘(𝑞(join‘𝐾)𝑟)) → (𝑃𝐶𝑋𝑃𝐴)))
3736expimpd 447 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) → ((𝑞𝑟 ∧ (𝑀𝑋) = (𝑀‘(𝑞(join‘𝐾)𝑟))) → (𝑃𝐶𝑋𝑃𝐴)))
3837rexlimdvva 3248 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) → (∃𝑞𝐴𝑟𝐴 (𝑞𝑟 ∧ (𝑀𝑋) = (𝑀‘(𝑞(join‘𝐾)𝑟))) → (𝑃𝐶𝑋𝑃𝐴)))
398, 38sylbid 232 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) → ((𝑀𝑋) ∈ 𝑁 → (𝑃𝐶𝑋𝑃𝐴)))
4039imp32 411 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ ((𝑀𝑋) ∈ 𝑁𝑃𝐶𝑋)) → 𝑃𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wcel 2164  wne 2999  wrex 3118   class class class wbr 4873  cfv 6123  (class class class)co 6905  Basecbs 16222  joincjn 17297  Latclat 17398  ccvr 35330  Atomscatm 35331  HLchlt 35418  Linesclines 35562  pmapcpmap 35565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-proset 17281  df-poset 17299  df-plt 17311  df-lub 17327  df-glb 17328  df-join 17329  df-meet 17330  df-p0 17392  df-lat 17399  df-clat 17461  df-oposet 35244  df-ol 35246  df-oml 35247  df-covers 35334  df-ats 35335  df-atl 35366  df-cvlat 35390  df-hlat 35419  df-lines 35569  df-pmap 35572
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator