MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgencn2 Structured version   Visualization version   GIF version

Theorem kgencn2 22708
Description: A function 𝐹:𝐽𝐾 from a compactly generated space is continuous iff for all compact spaces 𝑧 and continuous 𝑔:𝑧𝐽, the composite 𝐹𝑔:𝑧𝐾 is continuous. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
kgencn2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾))))
Distinct variable groups:   𝑧,𝑔,𝐹   𝑔,𝐽,𝑧   𝑔,𝐾,𝑧   𝑔,𝑋,𝑧   𝑔,𝑌,𝑧

Proof of Theorem kgencn2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 kgencn 22707 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)))))
2 rncmp 22547 . . . . . . . 8 ((𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽)) → (𝐽t ran 𝑔) ∈ Comp)
32adantl 482 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (𝐽t ran 𝑔) ∈ Comp)
4 simprr 770 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → 𝑔 ∈ (𝑧 Cn 𝐽))
5 eqid 2738 . . . . . . . . . . . 12 𝑧 = 𝑧
6 eqid 2738 . . . . . . . . . . . 12 𝐽 = 𝐽
75, 6cnf 22397 . . . . . . . . . . 11 (𝑔 ∈ (𝑧 Cn 𝐽) → 𝑔: 𝑧 𝐽)
8 frn 6607 . . . . . . . . . . 11 (𝑔: 𝑧 𝐽 → ran 𝑔 𝐽)
94, 7, 83syl 18 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ran 𝑔 𝐽)
10 toponuni 22063 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1110ad3antrrr 727 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → 𝑋 = 𝐽)
129, 11sseqtrrd 3962 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ran 𝑔𝑋)
13 vex 3436 . . . . . . . . . . 11 𝑔 ∈ V
1413rnex 7759 . . . . . . . . . 10 ran 𝑔 ∈ V
1514elpw 4537 . . . . . . . . 9 (ran 𝑔 ∈ 𝒫 𝑋 ↔ ran 𝑔𝑋)
1612, 15sylibr 233 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ran 𝑔 ∈ 𝒫 𝑋)
17 oveq2 7283 . . . . . . . . . . 11 (𝑘 = ran 𝑔 → (𝐽t 𝑘) = (𝐽t ran 𝑔))
1817eleq1d 2823 . . . . . . . . . 10 (𝑘 = ran 𝑔 → ((𝐽t 𝑘) ∈ Comp ↔ (𝐽t ran 𝑔) ∈ Comp))
19 reseq2 5886 . . . . . . . . . . 11 (𝑘 = ran 𝑔 → (𝐹𝑘) = (𝐹 ↾ ran 𝑔))
2017oveq1d 7290 . . . . . . . . . . 11 (𝑘 = ran 𝑔 → ((𝐽t 𝑘) Cn 𝐾) = ((𝐽t ran 𝑔) Cn 𝐾))
2119, 20eleq12d 2833 . . . . . . . . . 10 (𝑘 = ran 𝑔 → ((𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾) ↔ (𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾)))
2218, 21imbi12d 345 . . . . . . . . 9 (𝑘 = ran 𝑔 → (((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) ↔ ((𝐽t ran 𝑔) ∈ Comp → (𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾))))
2322rspcv 3557 . . . . . . . 8 (ran 𝑔 ∈ 𝒫 𝑋 → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) → ((𝐽t ran 𝑔) ∈ Comp → (𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾))))
2416, 23syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) → ((𝐽t ran 𝑔) ∈ Comp → (𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾))))
253, 24mpid 44 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) → (𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾)))
26 simplll 772 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → 𝐽 ∈ (TopOn‘𝑋))
27 ssidd 3944 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ran 𝑔 ⊆ ran 𝑔)
28 cnrest2 22437 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ ran 𝑔 ⊆ ran 𝑔 ∧ ran 𝑔𝑋) → (𝑔 ∈ (𝑧 Cn 𝐽) ↔ 𝑔 ∈ (𝑧 Cn (𝐽t ran 𝑔))))
2926, 27, 12, 28syl3anc 1370 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (𝑔 ∈ (𝑧 Cn 𝐽) ↔ 𝑔 ∈ (𝑧 Cn (𝐽t ran 𝑔))))
304, 29mpbid 231 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → 𝑔 ∈ (𝑧 Cn (𝐽t ran 𝑔)))
31 cnco 22417 . . . . . . . . 9 ((𝑔 ∈ (𝑧 Cn (𝐽t ran 𝑔)) ∧ (𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾)) → ((𝐹 ↾ ran 𝑔) ∘ 𝑔) ∈ (𝑧 Cn 𝐾))
3231ex 413 . . . . . . . 8 (𝑔 ∈ (𝑧 Cn (𝐽t ran 𝑔)) → ((𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾) → ((𝐹 ↾ ran 𝑔) ∘ 𝑔) ∈ (𝑧 Cn 𝐾)))
3330, 32syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ((𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾) → ((𝐹 ↾ ran 𝑔) ∘ 𝑔) ∈ (𝑧 Cn 𝐾)))
34 ssid 3943 . . . . . . . . 9 ran 𝑔 ⊆ ran 𝑔
35 cores 6153 . . . . . . . . 9 (ran 𝑔 ⊆ ran 𝑔 → ((𝐹 ↾ ran 𝑔) ∘ 𝑔) = (𝐹𝑔))
3634, 35ax-mp 5 . . . . . . . 8 ((𝐹 ↾ ran 𝑔) ∘ 𝑔) = (𝐹𝑔)
3736eleq1i 2829 . . . . . . 7 (((𝐹 ↾ ran 𝑔) ∘ 𝑔) ∈ (𝑧 Cn 𝐾) ↔ (𝐹𝑔) ∈ (𝑧 Cn 𝐾))
3833, 37syl6ib 250 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ((𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾) → (𝐹𝑔) ∈ (𝑧 Cn 𝐾)))
3925, 38syld 47 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) → (𝐹𝑔) ∈ (𝑧 Cn 𝐾)))
4039ralrimdvva 3125 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) → ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾)))
41 oveq1 7282 . . . . . . . . 9 (𝑧 = (𝐽t 𝑘) → (𝑧 Cn 𝐽) = ((𝐽t 𝑘) Cn 𝐽))
42 oveq1 7282 . . . . . . . . . 10 (𝑧 = (𝐽t 𝑘) → (𝑧 Cn 𝐾) = ((𝐽t 𝑘) Cn 𝐾))
4342eleq2d 2824 . . . . . . . . 9 (𝑧 = (𝐽t 𝑘) → ((𝐹𝑔) ∈ (𝑧 Cn 𝐾) ↔ (𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾)))
4441, 43raleqbidv 3336 . . . . . . . 8 (𝑧 = (𝐽t 𝑘) → (∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾) ↔ ∀𝑔 ∈ ((𝐽t 𝑘) Cn 𝐽)(𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾)))
4544rspcv 3557 . . . . . . 7 ((𝐽t 𝑘) ∈ Comp → (∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾) → ∀𝑔 ∈ ((𝐽t 𝑘) Cn 𝐽)(𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾)))
46 elpwi 4542 . . . . . . . . . . . 12 (𝑘 ∈ 𝒫 𝑋𝑘𝑋)
4746adantl 482 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝑘𝑋)
4847resabs1d 5922 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (( I ↾ 𝑋) ↾ 𝑘) = ( I ↾ 𝑘))
49 idcn 22408 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽))
5049ad3antrrr 727 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽))
5110ad3antrrr 727 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝑋 = 𝐽)
5247, 51sseqtrd 3961 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝑘 𝐽)
536cnrest 22436 . . . . . . . . . . 11 ((( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽) ∧ 𝑘 𝐽) → (( I ↾ 𝑋) ↾ 𝑘) ∈ ((𝐽t 𝑘) Cn 𝐽))
5450, 52, 53syl2anc 584 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (( I ↾ 𝑋) ↾ 𝑘) ∈ ((𝐽t 𝑘) Cn 𝐽))
5548, 54eqeltrrd 2840 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ( I ↾ 𝑘) ∈ ((𝐽t 𝑘) Cn 𝐽))
56 coeq2 5767 . . . . . . . . . . 11 (𝑔 = ( I ↾ 𝑘) → (𝐹𝑔) = (𝐹 ∘ ( I ↾ 𝑘)))
5756eleq1d 2823 . . . . . . . . . 10 (𝑔 = ( I ↾ 𝑘) → ((𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾) ↔ (𝐹 ∘ ( I ↾ 𝑘)) ∈ ((𝐽t 𝑘) Cn 𝐾)))
5857rspcv 3557 . . . . . . . . 9 (( I ↾ 𝑘) ∈ ((𝐽t 𝑘) Cn 𝐽) → (∀𝑔 ∈ ((𝐽t 𝑘) Cn 𝐽)(𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾) → (𝐹 ∘ ( I ↾ 𝑘)) ∈ ((𝐽t 𝑘) Cn 𝐾)))
5955, 58syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (∀𝑔 ∈ ((𝐽t 𝑘) Cn 𝐽)(𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾) → (𝐹 ∘ ( I ↾ 𝑘)) ∈ ((𝐽t 𝑘) Cn 𝐾)))
60 coires1 6168 . . . . . . . . 9 (𝐹 ∘ ( I ↾ 𝑘)) = (𝐹𝑘)
6160eleq1i 2829 . . . . . . . 8 ((𝐹 ∘ ( I ↾ 𝑘)) ∈ ((𝐽t 𝑘) Cn 𝐾) ↔ (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))
6259, 61syl6ib 250 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (∀𝑔 ∈ ((𝐽t 𝑘) Cn 𝐽)(𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾) → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)))
6345, 62syl9r 78 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐽t 𝑘) ∈ Comp → (∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾) → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))))
6463com23 86 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾) → ((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))))
6564ralrimdva 3106 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾) → ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))))
6640, 65impbid 211 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) ↔ ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾)))
6766pm5.32da 579 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾))))
681, 67bitrd 278 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wss 3887  𝒫 cpw 4533   cuni 4839   I cid 5488  ran crn 5590  cres 5591  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  t crest 17131  TopOnctopon 22059   Cn ccn 22375  Compccmp 22537  𝑘Genckgen 22684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-fin 8737  df-fi 9170  df-rest 17133  df-topgen 17154  df-top 22043  df-topon 22060  df-bases 22096  df-cn 22378  df-cmp 22538  df-kgen 22685
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator