MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgencn2 Structured version   Visualization version   GIF version

Theorem kgencn2 23472
Description: A function 𝐹:𝐽𝐾 from a compactly generated space is continuous iff for all compact spaces 𝑧 and continuous 𝑔:𝑧𝐽, the composite 𝐹𝑔:𝑧𝐾 is continuous. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
kgencn2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾))))
Distinct variable groups:   𝑧,𝑔,𝐹   𝑔,𝐽,𝑧   𝑔,𝐾,𝑧   𝑔,𝑋,𝑧   𝑔,𝑌,𝑧

Proof of Theorem kgencn2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 kgencn 23471 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)))))
2 rncmp 23311 . . . . . . . 8 ((𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽)) → (𝐽t ran 𝑔) ∈ Comp)
32adantl 481 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (𝐽t ran 𝑔) ∈ Comp)
4 simprr 772 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → 𝑔 ∈ (𝑧 Cn 𝐽))
5 eqid 2731 . . . . . . . . . . . 12 𝑧 = 𝑧
6 eqid 2731 . . . . . . . . . . . 12 𝐽 = 𝐽
75, 6cnf 23161 . . . . . . . . . . 11 (𝑔 ∈ (𝑧 Cn 𝐽) → 𝑔: 𝑧 𝐽)
8 frn 6658 . . . . . . . . . . 11 (𝑔: 𝑧 𝐽 → ran 𝑔 𝐽)
94, 7, 83syl 18 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ran 𝑔 𝐽)
10 toponuni 22829 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1110ad3antrrr 730 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → 𝑋 = 𝐽)
129, 11sseqtrrd 3967 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ran 𝑔𝑋)
13 vex 3440 . . . . . . . . . . 11 𝑔 ∈ V
1413rnex 7840 . . . . . . . . . 10 ran 𝑔 ∈ V
1514elpw 4551 . . . . . . . . 9 (ran 𝑔 ∈ 𝒫 𝑋 ↔ ran 𝑔𝑋)
1612, 15sylibr 234 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ran 𝑔 ∈ 𝒫 𝑋)
17 oveq2 7354 . . . . . . . . . . 11 (𝑘 = ran 𝑔 → (𝐽t 𝑘) = (𝐽t ran 𝑔))
1817eleq1d 2816 . . . . . . . . . 10 (𝑘 = ran 𝑔 → ((𝐽t 𝑘) ∈ Comp ↔ (𝐽t ran 𝑔) ∈ Comp))
19 reseq2 5922 . . . . . . . . . . 11 (𝑘 = ran 𝑔 → (𝐹𝑘) = (𝐹 ↾ ran 𝑔))
2017oveq1d 7361 . . . . . . . . . . 11 (𝑘 = ran 𝑔 → ((𝐽t 𝑘) Cn 𝐾) = ((𝐽t ran 𝑔) Cn 𝐾))
2119, 20eleq12d 2825 . . . . . . . . . 10 (𝑘 = ran 𝑔 → ((𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾) ↔ (𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾)))
2218, 21imbi12d 344 . . . . . . . . 9 (𝑘 = ran 𝑔 → (((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) ↔ ((𝐽t ran 𝑔) ∈ Comp → (𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾))))
2322rspcv 3568 . . . . . . . 8 (ran 𝑔 ∈ 𝒫 𝑋 → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) → ((𝐽t ran 𝑔) ∈ Comp → (𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾))))
2416, 23syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) → ((𝐽t ran 𝑔) ∈ Comp → (𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾))))
253, 24mpid 44 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) → (𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾)))
26 simplll 774 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → 𝐽 ∈ (TopOn‘𝑋))
27 ssidd 3953 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ran 𝑔 ⊆ ran 𝑔)
28 cnrest2 23201 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ ran 𝑔 ⊆ ran 𝑔 ∧ ran 𝑔𝑋) → (𝑔 ∈ (𝑧 Cn 𝐽) ↔ 𝑔 ∈ (𝑧 Cn (𝐽t ran 𝑔))))
2926, 27, 12, 28syl3anc 1373 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (𝑔 ∈ (𝑧 Cn 𝐽) ↔ 𝑔 ∈ (𝑧 Cn (𝐽t ran 𝑔))))
304, 29mpbid 232 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → 𝑔 ∈ (𝑧 Cn (𝐽t ran 𝑔)))
31 cnco 23181 . . . . . . . . 9 ((𝑔 ∈ (𝑧 Cn (𝐽t ran 𝑔)) ∧ (𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾)) → ((𝐹 ↾ ran 𝑔) ∘ 𝑔) ∈ (𝑧 Cn 𝐾))
3231ex 412 . . . . . . . 8 (𝑔 ∈ (𝑧 Cn (𝐽t ran 𝑔)) → ((𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾) → ((𝐹 ↾ ran 𝑔) ∘ 𝑔) ∈ (𝑧 Cn 𝐾)))
3330, 32syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ((𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾) → ((𝐹 ↾ ran 𝑔) ∘ 𝑔) ∈ (𝑧 Cn 𝐾)))
34 ssid 3952 . . . . . . . . 9 ran 𝑔 ⊆ ran 𝑔
35 cores 6196 . . . . . . . . 9 (ran 𝑔 ⊆ ran 𝑔 → ((𝐹 ↾ ran 𝑔) ∘ 𝑔) = (𝐹𝑔))
3634, 35ax-mp 5 . . . . . . . 8 ((𝐹 ↾ ran 𝑔) ∘ 𝑔) = (𝐹𝑔)
3736eleq1i 2822 . . . . . . 7 (((𝐹 ↾ ran 𝑔) ∘ 𝑔) ∈ (𝑧 Cn 𝐾) ↔ (𝐹𝑔) ∈ (𝑧 Cn 𝐾))
3833, 37imbitrdi 251 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ((𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾) → (𝐹𝑔) ∈ (𝑧 Cn 𝐾)))
3925, 38syld 47 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) → (𝐹𝑔) ∈ (𝑧 Cn 𝐾)))
4039ralrimdvva 3187 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) → ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾)))
41 oveq1 7353 . . . . . . . . 9 (𝑧 = (𝐽t 𝑘) → (𝑧 Cn 𝐽) = ((𝐽t 𝑘) Cn 𝐽))
42 oveq1 7353 . . . . . . . . . 10 (𝑧 = (𝐽t 𝑘) → (𝑧 Cn 𝐾) = ((𝐽t 𝑘) Cn 𝐾))
4342eleq2d 2817 . . . . . . . . 9 (𝑧 = (𝐽t 𝑘) → ((𝐹𝑔) ∈ (𝑧 Cn 𝐾) ↔ (𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾)))
4441, 43raleqbidv 3312 . . . . . . . 8 (𝑧 = (𝐽t 𝑘) → (∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾) ↔ ∀𝑔 ∈ ((𝐽t 𝑘) Cn 𝐽)(𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾)))
4544rspcv 3568 . . . . . . 7 ((𝐽t 𝑘) ∈ Comp → (∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾) → ∀𝑔 ∈ ((𝐽t 𝑘) Cn 𝐽)(𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾)))
46 elpwi 4554 . . . . . . . . . . . 12 (𝑘 ∈ 𝒫 𝑋𝑘𝑋)
4746adantl 481 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝑘𝑋)
4847resabs1d 5956 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (( I ↾ 𝑋) ↾ 𝑘) = ( I ↾ 𝑘))
49 idcn 23172 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽))
5049ad3antrrr 730 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽))
5110ad3antrrr 730 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝑋 = 𝐽)
5247, 51sseqtrd 3966 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝑘 𝐽)
536cnrest 23200 . . . . . . . . . . 11 ((( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽) ∧ 𝑘 𝐽) → (( I ↾ 𝑋) ↾ 𝑘) ∈ ((𝐽t 𝑘) Cn 𝐽))
5450, 52, 53syl2anc 584 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (( I ↾ 𝑋) ↾ 𝑘) ∈ ((𝐽t 𝑘) Cn 𝐽))
5548, 54eqeltrrd 2832 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ( I ↾ 𝑘) ∈ ((𝐽t 𝑘) Cn 𝐽))
56 coeq2 5797 . . . . . . . . . . 11 (𝑔 = ( I ↾ 𝑘) → (𝐹𝑔) = (𝐹 ∘ ( I ↾ 𝑘)))
5756eleq1d 2816 . . . . . . . . . 10 (𝑔 = ( I ↾ 𝑘) → ((𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾) ↔ (𝐹 ∘ ( I ↾ 𝑘)) ∈ ((𝐽t 𝑘) Cn 𝐾)))
5857rspcv 3568 . . . . . . . . 9 (( I ↾ 𝑘) ∈ ((𝐽t 𝑘) Cn 𝐽) → (∀𝑔 ∈ ((𝐽t 𝑘) Cn 𝐽)(𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾) → (𝐹 ∘ ( I ↾ 𝑘)) ∈ ((𝐽t 𝑘) Cn 𝐾)))
5955, 58syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (∀𝑔 ∈ ((𝐽t 𝑘) Cn 𝐽)(𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾) → (𝐹 ∘ ( I ↾ 𝑘)) ∈ ((𝐽t 𝑘) Cn 𝐾)))
60 coires1 6212 . . . . . . . . 9 (𝐹 ∘ ( I ↾ 𝑘)) = (𝐹𝑘)
6160eleq1i 2822 . . . . . . . 8 ((𝐹 ∘ ( I ↾ 𝑘)) ∈ ((𝐽t 𝑘) Cn 𝐾) ↔ (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))
6259, 61imbitrdi 251 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (∀𝑔 ∈ ((𝐽t 𝑘) Cn 𝐽)(𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾) → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)))
6345, 62syl9r 78 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐽t 𝑘) ∈ Comp → (∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾) → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))))
6463com23 86 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾) → ((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))))
6564ralrimdva 3132 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾) → ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))))
6640, 65impbid 212 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) ↔ ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾)))
6766pm5.32da 579 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾))))
681, 67bitrd 279 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wss 3897  𝒫 cpw 4547   cuni 4856   I cid 5508  ran crn 5615  cres 5616  ccom 5618  wf 6477  cfv 6481  (class class class)co 7346  t crest 17324  TopOnctopon 22825   Cn ccn 23139  Compccmp 23301  𝑘Genckgen 23448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-1o 8385  df-map 8752  df-en 8870  df-dom 8871  df-fin 8873  df-fi 9295  df-rest 17326  df-topgen 17347  df-top 22809  df-topon 22826  df-bases 22861  df-cn 23142  df-cmp 23302  df-kgen 23449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator