MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgencn2 Structured version   Visualization version   GIF version

Theorem kgencn2 23444
Description: A function 𝐹:𝐽𝐾 from a compactly generated space is continuous iff for all compact spaces 𝑧 and continuous 𝑔:𝑧𝐽, the composite 𝐹𝑔:𝑧𝐾 is continuous. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
kgencn2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾))))
Distinct variable groups:   𝑧,𝑔,𝐹   𝑔,𝐽,𝑧   𝑔,𝐾,𝑧   𝑔,𝑋,𝑧   𝑔,𝑌,𝑧

Proof of Theorem kgencn2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 kgencn 23443 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)))))
2 rncmp 23283 . . . . . . . 8 ((𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽)) → (𝐽t ran 𝑔) ∈ Comp)
32adantl 481 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (𝐽t ran 𝑔) ∈ Comp)
4 simprr 772 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → 𝑔 ∈ (𝑧 Cn 𝐽))
5 eqid 2729 . . . . . . . . . . . 12 𝑧 = 𝑧
6 eqid 2729 . . . . . . . . . . . 12 𝐽 = 𝐽
75, 6cnf 23133 . . . . . . . . . . 11 (𝑔 ∈ (𝑧 Cn 𝐽) → 𝑔: 𝑧 𝐽)
8 frn 6695 . . . . . . . . . . 11 (𝑔: 𝑧 𝐽 → ran 𝑔 𝐽)
94, 7, 83syl 18 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ran 𝑔 𝐽)
10 toponuni 22801 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1110ad3antrrr 730 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → 𝑋 = 𝐽)
129, 11sseqtrrd 3984 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ran 𝑔𝑋)
13 vex 3451 . . . . . . . . . . 11 𝑔 ∈ V
1413rnex 7886 . . . . . . . . . 10 ran 𝑔 ∈ V
1514elpw 4567 . . . . . . . . 9 (ran 𝑔 ∈ 𝒫 𝑋 ↔ ran 𝑔𝑋)
1612, 15sylibr 234 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ran 𝑔 ∈ 𝒫 𝑋)
17 oveq2 7395 . . . . . . . . . . 11 (𝑘 = ran 𝑔 → (𝐽t 𝑘) = (𝐽t ran 𝑔))
1817eleq1d 2813 . . . . . . . . . 10 (𝑘 = ran 𝑔 → ((𝐽t 𝑘) ∈ Comp ↔ (𝐽t ran 𝑔) ∈ Comp))
19 reseq2 5945 . . . . . . . . . . 11 (𝑘 = ran 𝑔 → (𝐹𝑘) = (𝐹 ↾ ran 𝑔))
2017oveq1d 7402 . . . . . . . . . . 11 (𝑘 = ran 𝑔 → ((𝐽t 𝑘) Cn 𝐾) = ((𝐽t ran 𝑔) Cn 𝐾))
2119, 20eleq12d 2822 . . . . . . . . . 10 (𝑘 = ran 𝑔 → ((𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾) ↔ (𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾)))
2218, 21imbi12d 344 . . . . . . . . 9 (𝑘 = ran 𝑔 → (((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) ↔ ((𝐽t ran 𝑔) ∈ Comp → (𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾))))
2322rspcv 3584 . . . . . . . 8 (ran 𝑔 ∈ 𝒫 𝑋 → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) → ((𝐽t ran 𝑔) ∈ Comp → (𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾))))
2416, 23syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) → ((𝐽t ran 𝑔) ∈ Comp → (𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾))))
253, 24mpid 44 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) → (𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾)))
26 simplll 774 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → 𝐽 ∈ (TopOn‘𝑋))
27 ssidd 3970 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ran 𝑔 ⊆ ran 𝑔)
28 cnrest2 23173 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ ran 𝑔 ⊆ ran 𝑔 ∧ ran 𝑔𝑋) → (𝑔 ∈ (𝑧 Cn 𝐽) ↔ 𝑔 ∈ (𝑧 Cn (𝐽t ran 𝑔))))
2926, 27, 12, 28syl3anc 1373 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (𝑔 ∈ (𝑧 Cn 𝐽) ↔ 𝑔 ∈ (𝑧 Cn (𝐽t ran 𝑔))))
304, 29mpbid 232 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → 𝑔 ∈ (𝑧 Cn (𝐽t ran 𝑔)))
31 cnco 23153 . . . . . . . . 9 ((𝑔 ∈ (𝑧 Cn (𝐽t ran 𝑔)) ∧ (𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾)) → ((𝐹 ↾ ran 𝑔) ∘ 𝑔) ∈ (𝑧 Cn 𝐾))
3231ex 412 . . . . . . . 8 (𝑔 ∈ (𝑧 Cn (𝐽t ran 𝑔)) → ((𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾) → ((𝐹 ↾ ran 𝑔) ∘ 𝑔) ∈ (𝑧 Cn 𝐾)))
3330, 32syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ((𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾) → ((𝐹 ↾ ran 𝑔) ∘ 𝑔) ∈ (𝑧 Cn 𝐾)))
34 ssid 3969 . . . . . . . . 9 ran 𝑔 ⊆ ran 𝑔
35 cores 6222 . . . . . . . . 9 (ran 𝑔 ⊆ ran 𝑔 → ((𝐹 ↾ ran 𝑔) ∘ 𝑔) = (𝐹𝑔))
3634, 35ax-mp 5 . . . . . . . 8 ((𝐹 ↾ ran 𝑔) ∘ 𝑔) = (𝐹𝑔)
3736eleq1i 2819 . . . . . . 7 (((𝐹 ↾ ran 𝑔) ∘ 𝑔) ∈ (𝑧 Cn 𝐾) ↔ (𝐹𝑔) ∈ (𝑧 Cn 𝐾))
3833, 37imbitrdi 251 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ((𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾) → (𝐹𝑔) ∈ (𝑧 Cn 𝐾)))
3925, 38syld 47 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) → (𝐹𝑔) ∈ (𝑧 Cn 𝐾)))
4039ralrimdvva 3192 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) → ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾)))
41 oveq1 7394 . . . . . . . . 9 (𝑧 = (𝐽t 𝑘) → (𝑧 Cn 𝐽) = ((𝐽t 𝑘) Cn 𝐽))
42 oveq1 7394 . . . . . . . . . 10 (𝑧 = (𝐽t 𝑘) → (𝑧 Cn 𝐾) = ((𝐽t 𝑘) Cn 𝐾))
4342eleq2d 2814 . . . . . . . . 9 (𝑧 = (𝐽t 𝑘) → ((𝐹𝑔) ∈ (𝑧 Cn 𝐾) ↔ (𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾)))
4441, 43raleqbidv 3319 . . . . . . . 8 (𝑧 = (𝐽t 𝑘) → (∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾) ↔ ∀𝑔 ∈ ((𝐽t 𝑘) Cn 𝐽)(𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾)))
4544rspcv 3584 . . . . . . 7 ((𝐽t 𝑘) ∈ Comp → (∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾) → ∀𝑔 ∈ ((𝐽t 𝑘) Cn 𝐽)(𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾)))
46 elpwi 4570 . . . . . . . . . . . 12 (𝑘 ∈ 𝒫 𝑋𝑘𝑋)
4746adantl 481 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝑘𝑋)
4847resabs1d 5979 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (( I ↾ 𝑋) ↾ 𝑘) = ( I ↾ 𝑘))
49 idcn 23144 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽))
5049ad3antrrr 730 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽))
5110ad3antrrr 730 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝑋 = 𝐽)
5247, 51sseqtrd 3983 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝑘 𝐽)
536cnrest 23172 . . . . . . . . . . 11 ((( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽) ∧ 𝑘 𝐽) → (( I ↾ 𝑋) ↾ 𝑘) ∈ ((𝐽t 𝑘) Cn 𝐽))
5450, 52, 53syl2anc 584 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (( I ↾ 𝑋) ↾ 𝑘) ∈ ((𝐽t 𝑘) Cn 𝐽))
5548, 54eqeltrrd 2829 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ( I ↾ 𝑘) ∈ ((𝐽t 𝑘) Cn 𝐽))
56 coeq2 5822 . . . . . . . . . . 11 (𝑔 = ( I ↾ 𝑘) → (𝐹𝑔) = (𝐹 ∘ ( I ↾ 𝑘)))
5756eleq1d 2813 . . . . . . . . . 10 (𝑔 = ( I ↾ 𝑘) → ((𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾) ↔ (𝐹 ∘ ( I ↾ 𝑘)) ∈ ((𝐽t 𝑘) Cn 𝐾)))
5857rspcv 3584 . . . . . . . . 9 (( I ↾ 𝑘) ∈ ((𝐽t 𝑘) Cn 𝐽) → (∀𝑔 ∈ ((𝐽t 𝑘) Cn 𝐽)(𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾) → (𝐹 ∘ ( I ↾ 𝑘)) ∈ ((𝐽t 𝑘) Cn 𝐾)))
5955, 58syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (∀𝑔 ∈ ((𝐽t 𝑘) Cn 𝐽)(𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾) → (𝐹 ∘ ( I ↾ 𝑘)) ∈ ((𝐽t 𝑘) Cn 𝐾)))
60 coires1 6237 . . . . . . . . 9 (𝐹 ∘ ( I ↾ 𝑘)) = (𝐹𝑘)
6160eleq1i 2819 . . . . . . . 8 ((𝐹 ∘ ( I ↾ 𝑘)) ∈ ((𝐽t 𝑘) Cn 𝐾) ↔ (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))
6259, 61imbitrdi 251 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (∀𝑔 ∈ ((𝐽t 𝑘) Cn 𝐽)(𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾) → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)))
6345, 62syl9r 78 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐽t 𝑘) ∈ Comp → (∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾) → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))))
6463com23 86 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾) → ((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))))
6564ralrimdva 3133 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾) → ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))))
6640, 65impbid 212 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) ↔ ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾)))
6766pm5.32da 579 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾))))
681, 67bitrd 279 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3914  𝒫 cpw 4563   cuni 4871   I cid 5532  ran crn 5639  cres 5640  ccom 5642  wf 6507  cfv 6511  (class class class)co 7387  t crest 17383  TopOnctopon 22797   Cn ccn 23111  Compccmp 23273  𝑘Genckgen 23420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-1o 8434  df-map 8801  df-en 8919  df-dom 8920  df-fin 8922  df-fi 9362  df-rest 17385  df-topgen 17406  df-top 22781  df-topon 22798  df-bases 22833  df-cn 23114  df-cmp 23274  df-kgen 23421
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator