| Step | Hyp | Ref
| Expression |
| 1 | | kgencn 23499 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾))))) |
| 2 | | rncmp 23339 |
. . . . . . . 8
⊢ ((𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽)) → (𝐽 ↾t ran 𝑔) ∈ Comp) |
| 3 | 2 | adantl 481 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (𝐽 ↾t ran 𝑔) ∈ Comp) |
| 4 | | simprr 772 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → 𝑔 ∈ (𝑧 Cn 𝐽)) |
| 5 | | eqid 2736 |
. . . . . . . . . . . 12
⊢ ∪ 𝑧 =
∪ 𝑧 |
| 6 | | eqid 2736 |
. . . . . . . . . . . 12
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 7 | 5, 6 | cnf 23189 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ (𝑧 Cn 𝐽) → 𝑔:∪ 𝑧⟶∪ 𝐽) |
| 8 | | frn 6718 |
. . . . . . . . . . 11
⊢ (𝑔:∪
𝑧⟶∪ 𝐽
→ ran 𝑔 ⊆ ∪ 𝐽) |
| 9 | 4, 7, 8 | 3syl 18 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ran 𝑔 ⊆ ∪ 𝐽) |
| 10 | | toponuni 22857 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
| 11 | 10 | ad3antrrr 730 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → 𝑋 = ∪ 𝐽) |
| 12 | 9, 11 | sseqtrrd 4001 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ran 𝑔 ⊆ 𝑋) |
| 13 | | vex 3468 |
. . . . . . . . . . 11
⊢ 𝑔 ∈ V |
| 14 | 13 | rnex 7911 |
. . . . . . . . . 10
⊢ ran 𝑔 ∈ V |
| 15 | 14 | elpw 4584 |
. . . . . . . . 9
⊢ (ran
𝑔 ∈ 𝒫 𝑋 ↔ ran 𝑔 ⊆ 𝑋) |
| 16 | 12, 15 | sylibr 234 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ran 𝑔 ∈ 𝒫 𝑋) |
| 17 | | oveq2 7418 |
. . . . . . . . . . 11
⊢ (𝑘 = ran 𝑔 → (𝐽 ↾t 𝑘) = (𝐽 ↾t ran 𝑔)) |
| 18 | 17 | eleq1d 2820 |
. . . . . . . . . 10
⊢ (𝑘 = ran 𝑔 → ((𝐽 ↾t 𝑘) ∈ Comp ↔ (𝐽 ↾t ran 𝑔) ∈ Comp)) |
| 19 | | reseq2 5966 |
. . . . . . . . . . 11
⊢ (𝑘 = ran 𝑔 → (𝐹 ↾ 𝑘) = (𝐹 ↾ ran 𝑔)) |
| 20 | 17 | oveq1d 7425 |
. . . . . . . . . . 11
⊢ (𝑘 = ran 𝑔 → ((𝐽 ↾t 𝑘) Cn 𝐾) = ((𝐽 ↾t ran 𝑔) Cn 𝐾)) |
| 21 | 19, 20 | eleq12d 2829 |
. . . . . . . . . 10
⊢ (𝑘 = ran 𝑔 → ((𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾) ↔ (𝐹 ↾ ran 𝑔) ∈ ((𝐽 ↾t ran 𝑔) Cn 𝐾))) |
| 22 | 18, 21 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑘 = ran 𝑔 → (((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)) ↔ ((𝐽 ↾t ran 𝑔) ∈ Comp → (𝐹 ↾ ran 𝑔) ∈ ((𝐽 ↾t ran 𝑔) Cn 𝐾)))) |
| 23 | 22 | rspcv 3602 |
. . . . . . . 8
⊢ (ran
𝑔 ∈ 𝒫 𝑋 → (∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)) → ((𝐽 ↾t ran 𝑔) ∈ Comp → (𝐹 ↾ ran 𝑔) ∈ ((𝐽 ↾t ran 𝑔) Cn 𝐾)))) |
| 24 | 16, 23 | syl 17 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)) → ((𝐽 ↾t ran 𝑔) ∈ Comp → (𝐹 ↾ ran 𝑔) ∈ ((𝐽 ↾t ran 𝑔) Cn 𝐾)))) |
| 25 | 3, 24 | mpid 44 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)) → (𝐹 ↾ ran 𝑔) ∈ ((𝐽 ↾t ran 𝑔) Cn 𝐾))) |
| 26 | | simplll 774 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → 𝐽 ∈ (TopOn‘𝑋)) |
| 27 | | ssidd 3987 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ran 𝑔 ⊆ ran 𝑔) |
| 28 | | cnrest2 23229 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ ran 𝑔 ⊆ ran 𝑔 ∧ ran 𝑔 ⊆ 𝑋) → (𝑔 ∈ (𝑧 Cn 𝐽) ↔ 𝑔 ∈ (𝑧 Cn (𝐽 ↾t ran 𝑔)))) |
| 29 | 26, 27, 12, 28 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (𝑔 ∈ (𝑧 Cn 𝐽) ↔ 𝑔 ∈ (𝑧 Cn (𝐽 ↾t ran 𝑔)))) |
| 30 | 4, 29 | mpbid 232 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → 𝑔 ∈ (𝑧 Cn (𝐽 ↾t ran 𝑔))) |
| 31 | | cnco 23209 |
. . . . . . . . 9
⊢ ((𝑔 ∈ (𝑧 Cn (𝐽 ↾t ran 𝑔)) ∧ (𝐹 ↾ ran 𝑔) ∈ ((𝐽 ↾t ran 𝑔) Cn 𝐾)) → ((𝐹 ↾ ran 𝑔) ∘ 𝑔) ∈ (𝑧 Cn 𝐾)) |
| 32 | 31 | ex 412 |
. . . . . . . 8
⊢ (𝑔 ∈ (𝑧 Cn (𝐽 ↾t ran 𝑔)) → ((𝐹 ↾ ran 𝑔) ∈ ((𝐽 ↾t ran 𝑔) Cn 𝐾) → ((𝐹 ↾ ran 𝑔) ∘ 𝑔) ∈ (𝑧 Cn 𝐾))) |
| 33 | 30, 32 | syl 17 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ((𝐹 ↾ ran 𝑔) ∈ ((𝐽 ↾t ran 𝑔) Cn 𝐾) → ((𝐹 ↾ ran 𝑔) ∘ 𝑔) ∈ (𝑧 Cn 𝐾))) |
| 34 | | ssid 3986 |
. . . . . . . . 9
⊢ ran 𝑔 ⊆ ran 𝑔 |
| 35 | | cores 6243 |
. . . . . . . . 9
⊢ (ran
𝑔 ⊆ ran 𝑔 → ((𝐹 ↾ ran 𝑔) ∘ 𝑔) = (𝐹 ∘ 𝑔)) |
| 36 | 34, 35 | ax-mp 5 |
. . . . . . . 8
⊢ ((𝐹 ↾ ran 𝑔) ∘ 𝑔) = (𝐹 ∘ 𝑔) |
| 37 | 36 | eleq1i 2826 |
. . . . . . 7
⊢ (((𝐹 ↾ ran 𝑔) ∘ 𝑔) ∈ (𝑧 Cn 𝐾) ↔ (𝐹 ∘ 𝑔) ∈ (𝑧 Cn 𝐾)) |
| 38 | 33, 37 | imbitrdi 251 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ((𝐹 ↾ ran 𝑔) ∈ ((𝐽 ↾t ran 𝑔) Cn 𝐾) → (𝐹 ∘ 𝑔) ∈ (𝑧 Cn 𝐾))) |
| 39 | 25, 38 | syld 47 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)) → (𝐹 ∘ 𝑔) ∈ (𝑧 Cn 𝐾))) |
| 40 | 39 | ralrimdvva 3200 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)) → ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹 ∘ 𝑔) ∈ (𝑧 Cn 𝐾))) |
| 41 | | oveq1 7417 |
. . . . . . . . 9
⊢ (𝑧 = (𝐽 ↾t 𝑘) → (𝑧 Cn 𝐽) = ((𝐽 ↾t 𝑘) Cn 𝐽)) |
| 42 | | oveq1 7417 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐽 ↾t 𝑘) → (𝑧 Cn 𝐾) = ((𝐽 ↾t 𝑘) Cn 𝐾)) |
| 43 | 42 | eleq2d 2821 |
. . . . . . . . 9
⊢ (𝑧 = (𝐽 ↾t 𝑘) → ((𝐹 ∘ 𝑔) ∈ (𝑧 Cn 𝐾) ↔ (𝐹 ∘ 𝑔) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾))) |
| 44 | 41, 43 | raleqbidv 3329 |
. . . . . . . 8
⊢ (𝑧 = (𝐽 ↾t 𝑘) → (∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹 ∘ 𝑔) ∈ (𝑧 Cn 𝐾) ↔ ∀𝑔 ∈ ((𝐽 ↾t 𝑘) Cn 𝐽)(𝐹 ∘ 𝑔) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾))) |
| 45 | 44 | rspcv 3602 |
. . . . . . 7
⊢ ((𝐽 ↾t 𝑘) ∈ Comp →
(∀𝑧 ∈ Comp
∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹 ∘ 𝑔) ∈ (𝑧 Cn 𝐾) → ∀𝑔 ∈ ((𝐽 ↾t 𝑘) Cn 𝐽)(𝐹 ∘ 𝑔) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾))) |
| 46 | | elpwi 4587 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ 𝒫 𝑋 → 𝑘 ⊆ 𝑋) |
| 47 | 46 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝑘 ⊆ 𝑋) |
| 48 | 47 | resabs1d 6000 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (( I ↾ 𝑋) ↾ 𝑘) = ( I ↾ 𝑘)) |
| 49 | | idcn 23200 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽)) |
| 50 | 49 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽)) |
| 51 | 10 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝑋 = ∪ 𝐽) |
| 52 | 47, 51 | sseqtrd 4000 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝑘 ⊆ ∪ 𝐽) |
| 53 | 6 | cnrest 23228 |
. . . . . . . . . . 11
⊢ ((( I
↾ 𝑋) ∈ (𝐽 Cn 𝐽) ∧ 𝑘 ⊆ ∪ 𝐽) → (( I ↾ 𝑋) ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐽)) |
| 54 | 50, 52, 53 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (( I ↾ 𝑋) ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐽)) |
| 55 | 48, 54 | eqeltrrd 2836 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ( I ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐽)) |
| 56 | | coeq2 5843 |
. . . . . . . . . . 11
⊢ (𝑔 = ( I ↾ 𝑘) → (𝐹 ∘ 𝑔) = (𝐹 ∘ ( I ↾ 𝑘))) |
| 57 | 56 | eleq1d 2820 |
. . . . . . . . . 10
⊢ (𝑔 = ( I ↾ 𝑘) → ((𝐹 ∘ 𝑔) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾) ↔ (𝐹 ∘ ( I ↾ 𝑘)) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾))) |
| 58 | 57 | rspcv 3602 |
. . . . . . . . 9
⊢ (( I
↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐽) → (∀𝑔 ∈ ((𝐽 ↾t 𝑘) Cn 𝐽)(𝐹 ∘ 𝑔) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾) → (𝐹 ∘ ( I ↾ 𝑘)) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾))) |
| 59 | 55, 58 | syl 17 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (∀𝑔 ∈ ((𝐽 ↾t 𝑘) Cn 𝐽)(𝐹 ∘ 𝑔) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾) → (𝐹 ∘ ( I ↾ 𝑘)) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾))) |
| 60 | | coires1 6258 |
. . . . . . . . 9
⊢ (𝐹 ∘ ( I ↾ 𝑘)) = (𝐹 ↾ 𝑘) |
| 61 | 60 | eleq1i 2826 |
. . . . . . . 8
⊢ ((𝐹 ∘ ( I ↾ 𝑘)) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾) ↔ (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)) |
| 62 | 59, 61 | imbitrdi 251 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (∀𝑔 ∈ ((𝐽 ↾t 𝑘) Cn 𝐽)(𝐹 ∘ 𝑔) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾) → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾))) |
| 63 | 45, 62 | syl9r 78 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐽 ↾t 𝑘) ∈ Comp → (∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹 ∘ 𝑔) ∈ (𝑧 Cn 𝐾) → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)))) |
| 64 | 63 | com23 86 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹 ∘ 𝑔) ∈ (𝑧 Cn 𝐾) → ((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)))) |
| 65 | 64 | ralrimdva 3141 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹 ∘ 𝑔) ∈ (𝑧 Cn 𝐾) → ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)))) |
| 66 | 40, 65 | impbid 212 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)) ↔ ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹 ∘ 𝑔) ∈ (𝑧 Cn 𝐾))) |
| 67 | 66 | pm5.32da 579 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾))) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹 ∘ 𝑔) ∈ (𝑧 Cn 𝐾)))) |
| 68 | 1, 67 | bitrd 279 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹 ∘ 𝑔) ∈ (𝑧 Cn 𝐾)))) |