MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgencn2 Structured version   Visualization version   GIF version

Theorem kgencn2 22908
Description: A function 𝐹:𝐽𝐾 from a compactly generated space is continuous iff for all compact spaces 𝑧 and continuous 𝑔:𝑧𝐽, the composite 𝐹𝑔:𝑧𝐾 is continuous. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
kgencn2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾))))
Distinct variable groups:   𝑧,𝑔,𝐹   𝑔,𝐽,𝑧   𝑔,𝐾,𝑧   𝑔,𝑋,𝑧   𝑔,𝑌,𝑧

Proof of Theorem kgencn2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 kgencn 22907 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)))))
2 rncmp 22747 . . . . . . . 8 ((𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽)) → (𝐽t ran 𝑔) ∈ Comp)
32adantl 482 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (𝐽t ran 𝑔) ∈ Comp)
4 simprr 771 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → 𝑔 ∈ (𝑧 Cn 𝐽))
5 eqid 2736 . . . . . . . . . . . 12 𝑧 = 𝑧
6 eqid 2736 . . . . . . . . . . . 12 𝐽 = 𝐽
75, 6cnf 22597 . . . . . . . . . . 11 (𝑔 ∈ (𝑧 Cn 𝐽) → 𝑔: 𝑧 𝐽)
8 frn 6675 . . . . . . . . . . 11 (𝑔: 𝑧 𝐽 → ran 𝑔 𝐽)
94, 7, 83syl 18 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ran 𝑔 𝐽)
10 toponuni 22263 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1110ad3antrrr 728 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → 𝑋 = 𝐽)
129, 11sseqtrrd 3985 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ran 𝑔𝑋)
13 vex 3449 . . . . . . . . . . 11 𝑔 ∈ V
1413rnex 7849 . . . . . . . . . 10 ran 𝑔 ∈ V
1514elpw 4564 . . . . . . . . 9 (ran 𝑔 ∈ 𝒫 𝑋 ↔ ran 𝑔𝑋)
1612, 15sylibr 233 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ran 𝑔 ∈ 𝒫 𝑋)
17 oveq2 7365 . . . . . . . . . . 11 (𝑘 = ran 𝑔 → (𝐽t 𝑘) = (𝐽t ran 𝑔))
1817eleq1d 2822 . . . . . . . . . 10 (𝑘 = ran 𝑔 → ((𝐽t 𝑘) ∈ Comp ↔ (𝐽t ran 𝑔) ∈ Comp))
19 reseq2 5932 . . . . . . . . . . 11 (𝑘 = ran 𝑔 → (𝐹𝑘) = (𝐹 ↾ ran 𝑔))
2017oveq1d 7372 . . . . . . . . . . 11 (𝑘 = ran 𝑔 → ((𝐽t 𝑘) Cn 𝐾) = ((𝐽t ran 𝑔) Cn 𝐾))
2119, 20eleq12d 2832 . . . . . . . . . 10 (𝑘 = ran 𝑔 → ((𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾) ↔ (𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾)))
2218, 21imbi12d 344 . . . . . . . . 9 (𝑘 = ran 𝑔 → (((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) ↔ ((𝐽t ran 𝑔) ∈ Comp → (𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾))))
2322rspcv 3577 . . . . . . . 8 (ran 𝑔 ∈ 𝒫 𝑋 → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) → ((𝐽t ran 𝑔) ∈ Comp → (𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾))))
2416, 23syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) → ((𝐽t ran 𝑔) ∈ Comp → (𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾))))
253, 24mpid 44 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) → (𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾)))
26 simplll 773 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → 𝐽 ∈ (TopOn‘𝑋))
27 ssidd 3967 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ran 𝑔 ⊆ ran 𝑔)
28 cnrest2 22637 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ ran 𝑔 ⊆ ran 𝑔 ∧ ran 𝑔𝑋) → (𝑔 ∈ (𝑧 Cn 𝐽) ↔ 𝑔 ∈ (𝑧 Cn (𝐽t ran 𝑔))))
2926, 27, 12, 28syl3anc 1371 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (𝑔 ∈ (𝑧 Cn 𝐽) ↔ 𝑔 ∈ (𝑧 Cn (𝐽t ran 𝑔))))
304, 29mpbid 231 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → 𝑔 ∈ (𝑧 Cn (𝐽t ran 𝑔)))
31 cnco 22617 . . . . . . . . 9 ((𝑔 ∈ (𝑧 Cn (𝐽t ran 𝑔)) ∧ (𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾)) → ((𝐹 ↾ ran 𝑔) ∘ 𝑔) ∈ (𝑧 Cn 𝐾))
3231ex 413 . . . . . . . 8 (𝑔 ∈ (𝑧 Cn (𝐽t ran 𝑔)) → ((𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾) → ((𝐹 ↾ ran 𝑔) ∘ 𝑔) ∈ (𝑧 Cn 𝐾)))
3330, 32syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ((𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾) → ((𝐹 ↾ ran 𝑔) ∘ 𝑔) ∈ (𝑧 Cn 𝐾)))
34 ssid 3966 . . . . . . . . 9 ran 𝑔 ⊆ ran 𝑔
35 cores 6201 . . . . . . . . 9 (ran 𝑔 ⊆ ran 𝑔 → ((𝐹 ↾ ran 𝑔) ∘ 𝑔) = (𝐹𝑔))
3634, 35ax-mp 5 . . . . . . . 8 ((𝐹 ↾ ran 𝑔) ∘ 𝑔) = (𝐹𝑔)
3736eleq1i 2828 . . . . . . 7 (((𝐹 ↾ ran 𝑔) ∘ 𝑔) ∈ (𝑧 Cn 𝐾) ↔ (𝐹𝑔) ∈ (𝑧 Cn 𝐾))
3833, 37syl6ib 250 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ((𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾) → (𝐹𝑔) ∈ (𝑧 Cn 𝐾)))
3925, 38syld 47 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) → (𝐹𝑔) ∈ (𝑧 Cn 𝐾)))
4039ralrimdvva 3203 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) → ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾)))
41 oveq1 7364 . . . . . . . . 9 (𝑧 = (𝐽t 𝑘) → (𝑧 Cn 𝐽) = ((𝐽t 𝑘) Cn 𝐽))
42 oveq1 7364 . . . . . . . . . 10 (𝑧 = (𝐽t 𝑘) → (𝑧 Cn 𝐾) = ((𝐽t 𝑘) Cn 𝐾))
4342eleq2d 2823 . . . . . . . . 9 (𝑧 = (𝐽t 𝑘) → ((𝐹𝑔) ∈ (𝑧 Cn 𝐾) ↔ (𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾)))
4441, 43raleqbidv 3319 . . . . . . . 8 (𝑧 = (𝐽t 𝑘) → (∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾) ↔ ∀𝑔 ∈ ((𝐽t 𝑘) Cn 𝐽)(𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾)))
4544rspcv 3577 . . . . . . 7 ((𝐽t 𝑘) ∈ Comp → (∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾) → ∀𝑔 ∈ ((𝐽t 𝑘) Cn 𝐽)(𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾)))
46 elpwi 4567 . . . . . . . . . . . 12 (𝑘 ∈ 𝒫 𝑋𝑘𝑋)
4746adantl 482 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝑘𝑋)
4847resabs1d 5968 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (( I ↾ 𝑋) ↾ 𝑘) = ( I ↾ 𝑘))
49 idcn 22608 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽))
5049ad3antrrr 728 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽))
5110ad3antrrr 728 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝑋 = 𝐽)
5247, 51sseqtrd 3984 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝑘 𝐽)
536cnrest 22636 . . . . . . . . . . 11 ((( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽) ∧ 𝑘 𝐽) → (( I ↾ 𝑋) ↾ 𝑘) ∈ ((𝐽t 𝑘) Cn 𝐽))
5450, 52, 53syl2anc 584 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (( I ↾ 𝑋) ↾ 𝑘) ∈ ((𝐽t 𝑘) Cn 𝐽))
5548, 54eqeltrrd 2839 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ( I ↾ 𝑘) ∈ ((𝐽t 𝑘) Cn 𝐽))
56 coeq2 5814 . . . . . . . . . . 11 (𝑔 = ( I ↾ 𝑘) → (𝐹𝑔) = (𝐹 ∘ ( I ↾ 𝑘)))
5756eleq1d 2822 . . . . . . . . . 10 (𝑔 = ( I ↾ 𝑘) → ((𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾) ↔ (𝐹 ∘ ( I ↾ 𝑘)) ∈ ((𝐽t 𝑘) Cn 𝐾)))
5857rspcv 3577 . . . . . . . . 9 (( I ↾ 𝑘) ∈ ((𝐽t 𝑘) Cn 𝐽) → (∀𝑔 ∈ ((𝐽t 𝑘) Cn 𝐽)(𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾) → (𝐹 ∘ ( I ↾ 𝑘)) ∈ ((𝐽t 𝑘) Cn 𝐾)))
5955, 58syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (∀𝑔 ∈ ((𝐽t 𝑘) Cn 𝐽)(𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾) → (𝐹 ∘ ( I ↾ 𝑘)) ∈ ((𝐽t 𝑘) Cn 𝐾)))
60 coires1 6216 . . . . . . . . 9 (𝐹 ∘ ( I ↾ 𝑘)) = (𝐹𝑘)
6160eleq1i 2828 . . . . . . . 8 ((𝐹 ∘ ( I ↾ 𝑘)) ∈ ((𝐽t 𝑘) Cn 𝐾) ↔ (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))
6259, 61syl6ib 250 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (∀𝑔 ∈ ((𝐽t 𝑘) Cn 𝐽)(𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾) → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)))
6345, 62syl9r 78 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐽t 𝑘) ∈ Comp → (∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾) → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))))
6463com23 86 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾) → ((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))))
6564ralrimdva 3151 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾) → ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))))
6640, 65impbid 211 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) ↔ ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾)))
6766pm5.32da 579 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾))))
681, 67bitrd 278 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wss 3910  𝒫 cpw 4560   cuni 4865   I cid 5530  ran crn 5634  cres 5635  ccom 5637  wf 6492  cfv 6496  (class class class)co 7357  t crest 17302  TopOnctopon 22259   Cn ccn 22575  Compccmp 22737  𝑘Genckgen 22884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-fin 8887  df-fi 9347  df-rest 17304  df-topgen 17325  df-top 22243  df-topon 22260  df-bases 22296  df-cn 22578  df-cmp 22738  df-kgen 22885
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator