Step | Hyp | Ref
| Expression |
1 | | kgencn 22615 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾))))) |
2 | | rncmp 22455 |
. . . . . . . 8
⊢ ((𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽)) → (𝐽 ↾t ran 𝑔) ∈ Comp) |
3 | 2 | adantl 481 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (𝐽 ↾t ran 𝑔) ∈ Comp) |
4 | | simprr 769 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → 𝑔 ∈ (𝑧 Cn 𝐽)) |
5 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ ∪ 𝑧 =
∪ 𝑧 |
6 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ ∪ 𝐽 =
∪ 𝐽 |
7 | 5, 6 | cnf 22305 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ (𝑧 Cn 𝐽) → 𝑔:∪ 𝑧⟶∪ 𝐽) |
8 | | frn 6591 |
. . . . . . . . . . 11
⊢ (𝑔:∪
𝑧⟶∪ 𝐽
→ ran 𝑔 ⊆ ∪ 𝐽) |
9 | 4, 7, 8 | 3syl 18 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ran 𝑔 ⊆ ∪ 𝐽) |
10 | | toponuni 21971 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
11 | 10 | ad3antrrr 726 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → 𝑋 = ∪ 𝐽) |
12 | 9, 11 | sseqtrrd 3958 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ran 𝑔 ⊆ 𝑋) |
13 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑔 ∈ V |
14 | 13 | rnex 7733 |
. . . . . . . . . 10
⊢ ran 𝑔 ∈ V |
15 | 14 | elpw 4534 |
. . . . . . . . 9
⊢ (ran
𝑔 ∈ 𝒫 𝑋 ↔ ran 𝑔 ⊆ 𝑋) |
16 | 12, 15 | sylibr 233 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ran 𝑔 ∈ 𝒫 𝑋) |
17 | | oveq2 7263 |
. . . . . . . . . . 11
⊢ (𝑘 = ran 𝑔 → (𝐽 ↾t 𝑘) = (𝐽 ↾t ran 𝑔)) |
18 | 17 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑘 = ran 𝑔 → ((𝐽 ↾t 𝑘) ∈ Comp ↔ (𝐽 ↾t ran 𝑔) ∈ Comp)) |
19 | | reseq2 5875 |
. . . . . . . . . . 11
⊢ (𝑘 = ran 𝑔 → (𝐹 ↾ 𝑘) = (𝐹 ↾ ran 𝑔)) |
20 | 17 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ (𝑘 = ran 𝑔 → ((𝐽 ↾t 𝑘) Cn 𝐾) = ((𝐽 ↾t ran 𝑔) Cn 𝐾)) |
21 | 19, 20 | eleq12d 2833 |
. . . . . . . . . 10
⊢ (𝑘 = ran 𝑔 → ((𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾) ↔ (𝐹 ↾ ran 𝑔) ∈ ((𝐽 ↾t ran 𝑔) Cn 𝐾))) |
22 | 18, 21 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑘 = ran 𝑔 → (((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)) ↔ ((𝐽 ↾t ran 𝑔) ∈ Comp → (𝐹 ↾ ran 𝑔) ∈ ((𝐽 ↾t ran 𝑔) Cn 𝐾)))) |
23 | 22 | rspcv 3547 |
. . . . . . . 8
⊢ (ran
𝑔 ∈ 𝒫 𝑋 → (∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)) → ((𝐽 ↾t ran 𝑔) ∈ Comp → (𝐹 ↾ ran 𝑔) ∈ ((𝐽 ↾t ran 𝑔) Cn 𝐾)))) |
24 | 16, 23 | syl 17 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)) → ((𝐽 ↾t ran 𝑔) ∈ Comp → (𝐹 ↾ ran 𝑔) ∈ ((𝐽 ↾t ran 𝑔) Cn 𝐾)))) |
25 | 3, 24 | mpid 44 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)) → (𝐹 ↾ ran 𝑔) ∈ ((𝐽 ↾t ran 𝑔) Cn 𝐾))) |
26 | | simplll 771 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → 𝐽 ∈ (TopOn‘𝑋)) |
27 | | ssidd 3940 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ran 𝑔 ⊆ ran 𝑔) |
28 | | cnrest2 22345 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ ran 𝑔 ⊆ ran 𝑔 ∧ ran 𝑔 ⊆ 𝑋) → (𝑔 ∈ (𝑧 Cn 𝐽) ↔ 𝑔 ∈ (𝑧 Cn (𝐽 ↾t ran 𝑔)))) |
29 | 26, 27, 12, 28 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (𝑔 ∈ (𝑧 Cn 𝐽) ↔ 𝑔 ∈ (𝑧 Cn (𝐽 ↾t ran 𝑔)))) |
30 | 4, 29 | mpbid 231 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → 𝑔 ∈ (𝑧 Cn (𝐽 ↾t ran 𝑔))) |
31 | | cnco 22325 |
. . . . . . . . 9
⊢ ((𝑔 ∈ (𝑧 Cn (𝐽 ↾t ran 𝑔)) ∧ (𝐹 ↾ ran 𝑔) ∈ ((𝐽 ↾t ran 𝑔) Cn 𝐾)) → ((𝐹 ↾ ran 𝑔) ∘ 𝑔) ∈ (𝑧 Cn 𝐾)) |
32 | 31 | ex 412 |
. . . . . . . 8
⊢ (𝑔 ∈ (𝑧 Cn (𝐽 ↾t ran 𝑔)) → ((𝐹 ↾ ran 𝑔) ∈ ((𝐽 ↾t ran 𝑔) Cn 𝐾) → ((𝐹 ↾ ran 𝑔) ∘ 𝑔) ∈ (𝑧 Cn 𝐾))) |
33 | 30, 32 | syl 17 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ((𝐹 ↾ ran 𝑔) ∈ ((𝐽 ↾t ran 𝑔) Cn 𝐾) → ((𝐹 ↾ ran 𝑔) ∘ 𝑔) ∈ (𝑧 Cn 𝐾))) |
34 | | ssid 3939 |
. . . . . . . . 9
⊢ ran 𝑔 ⊆ ran 𝑔 |
35 | | cores 6142 |
. . . . . . . . 9
⊢ (ran
𝑔 ⊆ ran 𝑔 → ((𝐹 ↾ ran 𝑔) ∘ 𝑔) = (𝐹 ∘ 𝑔)) |
36 | 34, 35 | ax-mp 5 |
. . . . . . . 8
⊢ ((𝐹 ↾ ran 𝑔) ∘ 𝑔) = (𝐹 ∘ 𝑔) |
37 | 36 | eleq1i 2829 |
. . . . . . 7
⊢ (((𝐹 ↾ ran 𝑔) ∘ 𝑔) ∈ (𝑧 Cn 𝐾) ↔ (𝐹 ∘ 𝑔) ∈ (𝑧 Cn 𝐾)) |
38 | 33, 37 | syl6ib 250 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ((𝐹 ↾ ran 𝑔) ∈ ((𝐽 ↾t ran 𝑔) Cn 𝐾) → (𝐹 ∘ 𝑔) ∈ (𝑧 Cn 𝐾))) |
39 | 25, 38 | syld 47 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)) → (𝐹 ∘ 𝑔) ∈ (𝑧 Cn 𝐾))) |
40 | 39 | ralrimdvva 3117 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)) → ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹 ∘ 𝑔) ∈ (𝑧 Cn 𝐾))) |
41 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝑧 = (𝐽 ↾t 𝑘) → (𝑧 Cn 𝐽) = ((𝐽 ↾t 𝑘) Cn 𝐽)) |
42 | | oveq1 7262 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐽 ↾t 𝑘) → (𝑧 Cn 𝐾) = ((𝐽 ↾t 𝑘) Cn 𝐾)) |
43 | 42 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝑧 = (𝐽 ↾t 𝑘) → ((𝐹 ∘ 𝑔) ∈ (𝑧 Cn 𝐾) ↔ (𝐹 ∘ 𝑔) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾))) |
44 | 41, 43 | raleqbidv 3327 |
. . . . . . . 8
⊢ (𝑧 = (𝐽 ↾t 𝑘) → (∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹 ∘ 𝑔) ∈ (𝑧 Cn 𝐾) ↔ ∀𝑔 ∈ ((𝐽 ↾t 𝑘) Cn 𝐽)(𝐹 ∘ 𝑔) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾))) |
45 | 44 | rspcv 3547 |
. . . . . . 7
⊢ ((𝐽 ↾t 𝑘) ∈ Comp →
(∀𝑧 ∈ Comp
∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹 ∘ 𝑔) ∈ (𝑧 Cn 𝐾) → ∀𝑔 ∈ ((𝐽 ↾t 𝑘) Cn 𝐽)(𝐹 ∘ 𝑔) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾))) |
46 | | elpwi 4539 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ 𝒫 𝑋 → 𝑘 ⊆ 𝑋) |
47 | 46 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝑘 ⊆ 𝑋) |
48 | 47 | resabs1d 5911 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (( I ↾ 𝑋) ↾ 𝑘) = ( I ↾ 𝑘)) |
49 | | idcn 22316 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽)) |
50 | 49 | ad3antrrr 726 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽)) |
51 | 10 | ad3antrrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝑋 = ∪ 𝐽) |
52 | 47, 51 | sseqtrd 3957 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝑘 ⊆ ∪ 𝐽) |
53 | 6 | cnrest 22344 |
. . . . . . . . . . 11
⊢ ((( I
↾ 𝑋) ∈ (𝐽 Cn 𝐽) ∧ 𝑘 ⊆ ∪ 𝐽) → (( I ↾ 𝑋) ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐽)) |
54 | 50, 52, 53 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (( I ↾ 𝑋) ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐽)) |
55 | 48, 54 | eqeltrrd 2840 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ( I ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐽)) |
56 | | coeq2 5756 |
. . . . . . . . . . 11
⊢ (𝑔 = ( I ↾ 𝑘) → (𝐹 ∘ 𝑔) = (𝐹 ∘ ( I ↾ 𝑘))) |
57 | 56 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑔 = ( I ↾ 𝑘) → ((𝐹 ∘ 𝑔) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾) ↔ (𝐹 ∘ ( I ↾ 𝑘)) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾))) |
58 | 57 | rspcv 3547 |
. . . . . . . . 9
⊢ (( I
↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐽) → (∀𝑔 ∈ ((𝐽 ↾t 𝑘) Cn 𝐽)(𝐹 ∘ 𝑔) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾) → (𝐹 ∘ ( I ↾ 𝑘)) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾))) |
59 | 55, 58 | syl 17 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (∀𝑔 ∈ ((𝐽 ↾t 𝑘) Cn 𝐽)(𝐹 ∘ 𝑔) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾) → (𝐹 ∘ ( I ↾ 𝑘)) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾))) |
60 | | coires1 6157 |
. . . . . . . . 9
⊢ (𝐹 ∘ ( I ↾ 𝑘)) = (𝐹 ↾ 𝑘) |
61 | 60 | eleq1i 2829 |
. . . . . . . 8
⊢ ((𝐹 ∘ ( I ↾ 𝑘)) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾) ↔ (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)) |
62 | 59, 61 | syl6ib 250 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (∀𝑔 ∈ ((𝐽 ↾t 𝑘) Cn 𝐽)(𝐹 ∘ 𝑔) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾) → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾))) |
63 | 45, 62 | syl9r 78 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐽 ↾t 𝑘) ∈ Comp → (∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹 ∘ 𝑔) ∈ (𝑧 Cn 𝐾) → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)))) |
64 | 63 | com23 86 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹 ∘ 𝑔) ∈ (𝑧 Cn 𝐾) → ((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)))) |
65 | 64 | ralrimdva 3112 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹 ∘ 𝑔) ∈ (𝑧 Cn 𝐾) → ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)))) |
66 | 40, 65 | impbid 211 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾)) ↔ ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹 ∘ 𝑔) ∈ (𝑧 Cn 𝐾))) |
67 | 66 | pm5.32da 578 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾))) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹 ∘ 𝑔) ∈ (𝑧 Cn 𝐾)))) |
68 | 1, 67 | bitrd 278 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹 ∘ 𝑔) ∈ (𝑧 Cn 𝐾)))) |