MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgencn2 Structured version   Visualization version   GIF version

Theorem kgencn2 22083
Description: A function 𝐹:𝐽𝐾 from a compactly generated space is continuous iff for all compact spaces 𝑧 and continuous 𝑔:𝑧𝐽, the composite 𝐹𝑔:𝑧𝐾 is continuous. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
kgencn2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾))))
Distinct variable groups:   𝑧,𝑔,𝐹   𝑔,𝐽,𝑧   𝑔,𝐾,𝑧   𝑔,𝑋,𝑧   𝑔,𝑌,𝑧

Proof of Theorem kgencn2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 kgencn 22082 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)))))
2 rncmp 21922 . . . . . . . 8 ((𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽)) → (𝐽t ran 𝑔) ∈ Comp)
32adantl 482 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (𝐽t ran 𝑔) ∈ Comp)
4 simprr 769 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → 𝑔 ∈ (𝑧 Cn 𝐽))
5 eqid 2825 . . . . . . . . . . . 12 𝑧 = 𝑧
6 eqid 2825 . . . . . . . . . . . 12 𝐽 = 𝐽
75, 6cnf 21772 . . . . . . . . . . 11 (𝑔 ∈ (𝑧 Cn 𝐽) → 𝑔: 𝑧 𝐽)
8 frn 6516 . . . . . . . . . . 11 (𝑔: 𝑧 𝐽 → ran 𝑔 𝐽)
94, 7, 83syl 18 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ran 𝑔 𝐽)
10 toponuni 21440 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1110ad3antrrr 726 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → 𝑋 = 𝐽)
129, 11sseqtrrd 4011 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ran 𝑔𝑋)
13 vex 3502 . . . . . . . . . . 11 𝑔 ∈ V
1413rnex 7608 . . . . . . . . . 10 ran 𝑔 ∈ V
1514elpw 4548 . . . . . . . . 9 (ran 𝑔 ∈ 𝒫 𝑋 ↔ ran 𝑔𝑋)
1612, 15sylibr 235 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ran 𝑔 ∈ 𝒫 𝑋)
17 oveq2 7159 . . . . . . . . . . 11 (𝑘 = ran 𝑔 → (𝐽t 𝑘) = (𝐽t ran 𝑔))
1817eleq1d 2901 . . . . . . . . . 10 (𝑘 = ran 𝑔 → ((𝐽t 𝑘) ∈ Comp ↔ (𝐽t ran 𝑔) ∈ Comp))
19 reseq2 5846 . . . . . . . . . . 11 (𝑘 = ran 𝑔 → (𝐹𝑘) = (𝐹 ↾ ran 𝑔))
2017oveq1d 7166 . . . . . . . . . . 11 (𝑘 = ran 𝑔 → ((𝐽t 𝑘) Cn 𝐾) = ((𝐽t ran 𝑔) Cn 𝐾))
2119, 20eleq12d 2911 . . . . . . . . . 10 (𝑘 = ran 𝑔 → ((𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾) ↔ (𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾)))
2218, 21imbi12d 346 . . . . . . . . 9 (𝑘 = ran 𝑔 → (((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) ↔ ((𝐽t ran 𝑔) ∈ Comp → (𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾))))
2322rspcv 3621 . . . . . . . 8 (ran 𝑔 ∈ 𝒫 𝑋 → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) → ((𝐽t ran 𝑔) ∈ Comp → (𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾))))
2416, 23syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) → ((𝐽t ran 𝑔) ∈ Comp → (𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾))))
253, 24mpid 44 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) → (𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾)))
26 simplll 771 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → 𝐽 ∈ (TopOn‘𝑋))
27 ssidd 3993 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ran 𝑔 ⊆ ran 𝑔)
28 cnrest2 21812 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ ran 𝑔 ⊆ ran 𝑔 ∧ ran 𝑔𝑋) → (𝑔 ∈ (𝑧 Cn 𝐽) ↔ 𝑔 ∈ (𝑧 Cn (𝐽t ran 𝑔))))
2926, 27, 12, 28syl3anc 1365 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (𝑔 ∈ (𝑧 Cn 𝐽) ↔ 𝑔 ∈ (𝑧 Cn (𝐽t ran 𝑔))))
304, 29mpbid 233 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → 𝑔 ∈ (𝑧 Cn (𝐽t ran 𝑔)))
31 cnco 21792 . . . . . . . . 9 ((𝑔 ∈ (𝑧 Cn (𝐽t ran 𝑔)) ∧ (𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾)) → ((𝐹 ↾ ran 𝑔) ∘ 𝑔) ∈ (𝑧 Cn 𝐾))
3231ex 413 . . . . . . . 8 (𝑔 ∈ (𝑧 Cn (𝐽t ran 𝑔)) → ((𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾) → ((𝐹 ↾ ran 𝑔) ∘ 𝑔) ∈ (𝑧 Cn 𝐾)))
3330, 32syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ((𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾) → ((𝐹 ↾ ran 𝑔) ∘ 𝑔) ∈ (𝑧 Cn 𝐾)))
34 ssid 3992 . . . . . . . . 9 ran 𝑔 ⊆ ran 𝑔
35 cores 6099 . . . . . . . . 9 (ran 𝑔 ⊆ ran 𝑔 → ((𝐹 ↾ ran 𝑔) ∘ 𝑔) = (𝐹𝑔))
3634, 35ax-mp 5 . . . . . . . 8 ((𝐹 ↾ ran 𝑔) ∘ 𝑔) = (𝐹𝑔)
3736eleq1i 2907 . . . . . . 7 (((𝐹 ↾ ran 𝑔) ∘ 𝑔) ∈ (𝑧 Cn 𝐾) ↔ (𝐹𝑔) ∈ (𝑧 Cn 𝐾))
3833, 37syl6ib 252 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → ((𝐹 ↾ ran 𝑔) ∈ ((𝐽t ran 𝑔) Cn 𝐾) → (𝐹𝑔) ∈ (𝑧 Cn 𝐾)))
3925, 38syld 47 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ (𝑧 ∈ Comp ∧ 𝑔 ∈ (𝑧 Cn 𝐽))) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) → (𝐹𝑔) ∈ (𝑧 Cn 𝐾)))
4039ralrimdvva 3198 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) → ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾)))
41 oveq1 7158 . . . . . . . . 9 (𝑧 = (𝐽t 𝑘) → (𝑧 Cn 𝐽) = ((𝐽t 𝑘) Cn 𝐽))
42 oveq1 7158 . . . . . . . . . 10 (𝑧 = (𝐽t 𝑘) → (𝑧 Cn 𝐾) = ((𝐽t 𝑘) Cn 𝐾))
4342eleq2d 2902 . . . . . . . . 9 (𝑧 = (𝐽t 𝑘) → ((𝐹𝑔) ∈ (𝑧 Cn 𝐾) ↔ (𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾)))
4441, 43raleqbidv 3406 . . . . . . . 8 (𝑧 = (𝐽t 𝑘) → (∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾) ↔ ∀𝑔 ∈ ((𝐽t 𝑘) Cn 𝐽)(𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾)))
4544rspcv 3621 . . . . . . 7 ((𝐽t 𝑘) ∈ Comp → (∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾) → ∀𝑔 ∈ ((𝐽t 𝑘) Cn 𝐽)(𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾)))
46 elpwi 4553 . . . . . . . . . . . 12 (𝑘 ∈ 𝒫 𝑋𝑘𝑋)
4746adantl 482 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝑘𝑋)
4847resabs1d 5882 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (( I ↾ 𝑋) ↾ 𝑘) = ( I ↾ 𝑘))
49 idcn 21783 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽))
5049ad3antrrr 726 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽))
5110ad3antrrr 726 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝑋 = 𝐽)
5247, 51sseqtrd 4010 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝑘 𝐽)
536cnrest 21811 . . . . . . . . . . 11 ((( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽) ∧ 𝑘 𝐽) → (( I ↾ 𝑋) ↾ 𝑘) ∈ ((𝐽t 𝑘) Cn 𝐽))
5450, 52, 53syl2anc 584 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (( I ↾ 𝑋) ↾ 𝑘) ∈ ((𝐽t 𝑘) Cn 𝐽))
5548, 54eqeltrrd 2918 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ( I ↾ 𝑘) ∈ ((𝐽t 𝑘) Cn 𝐽))
56 coeq2 5727 . . . . . . . . . . 11 (𝑔 = ( I ↾ 𝑘) → (𝐹𝑔) = (𝐹 ∘ ( I ↾ 𝑘)))
5756eleq1d 2901 . . . . . . . . . 10 (𝑔 = ( I ↾ 𝑘) → ((𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾) ↔ (𝐹 ∘ ( I ↾ 𝑘)) ∈ ((𝐽t 𝑘) Cn 𝐾)))
5857rspcv 3621 . . . . . . . . 9 (( I ↾ 𝑘) ∈ ((𝐽t 𝑘) Cn 𝐽) → (∀𝑔 ∈ ((𝐽t 𝑘) Cn 𝐽)(𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾) → (𝐹 ∘ ( I ↾ 𝑘)) ∈ ((𝐽t 𝑘) Cn 𝐾)))
5955, 58syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (∀𝑔 ∈ ((𝐽t 𝑘) Cn 𝐽)(𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾) → (𝐹 ∘ ( I ↾ 𝑘)) ∈ ((𝐽t 𝑘) Cn 𝐾)))
60 coires1 6114 . . . . . . . . 9 (𝐹 ∘ ( I ↾ 𝑘)) = (𝐹𝑘)
6160eleq1i 2907 . . . . . . . 8 ((𝐹 ∘ ( I ↾ 𝑘)) ∈ ((𝐽t 𝑘) Cn 𝐾) ↔ (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))
6259, 61syl6ib 252 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (∀𝑔 ∈ ((𝐽t 𝑘) Cn 𝐽)(𝐹𝑔) ∈ ((𝐽t 𝑘) Cn 𝐾) → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)))
6345, 62syl9r 78 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐽t 𝑘) ∈ Comp → (∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾) → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))))
6463com23 86 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑘 ∈ 𝒫 𝑋) → (∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾) → ((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))))
6564ralrimdva 3193 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾) → ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))))
6640, 65impbid 213 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾)) ↔ ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾)))
6766pm5.32da 579 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐹𝑘) ∈ ((𝐽t 𝑘) Cn 𝐾))) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾))))
681, 67bitrd 280 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹𝑔) ∈ (𝑧 Cn 𝐾))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wral 3142  wss 3939  𝒫 cpw 4541   cuni 4836   I cid 5457  ran crn 5554  cres 5555  ccom 5557  wf 6347  cfv 6351  (class class class)co 7151  t crest 16686  TopOnctopon 21436   Cn ccn 21750  Compccmp 21912  𝑘Genckgen 22059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-map 8401  df-en 8502  df-dom 8503  df-fin 8505  df-fi 8867  df-rest 16688  df-topgen 16709  df-top 21420  df-topon 21437  df-bases 21472  df-cn 21753  df-cmp 21913  df-kgen 22060
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator